MIRROR SYMMETRY FOR EXCEPTIONAL UNIMODULAR SINGULARITIES

CHANGZHENG LI, SI LI, KYOJI SAITO, AND YEFENG SHEN

Abstract. In this paper, we prove the mirror symmetry conjecture between the Saito-Givental theory of exceptional unimodular singularities on Landau-Ginzburg B-side and the Fan-Jarvis-Ruan-Witten theory of their mirror partners on Landau-Ginzburg A-side. On the B-side, we compute the genus-zero generating function from a perturbative formula of primitive forms introduced by the first three authors recently. This computation matches the orbifold-Grothendieck-Riemann-Roch and WDVV calculations in FJRW theory on the A-side. The coincidence of the full data at all genera is established by reconstruction techniques. Our result establishes the first examples of LG-LG mirror symmetry of all genera for weighted homogeneous polynomials of central charge greater than one which contain negative degree deformation parameters.

Contents

1. Introduction 1
2. A-model: FJRW-theory 7
3. B-model: Saito’s theory of primitive form 19
4. Mirror Symmetry for exceptional unimodular singularities 28
Appendix A. 34
References 41

1. Introduction

Mirror symmetry is a fascinating geometric phenomenon discovered in string theory. The rise of mathematical interest dates back to the early 1990s, when Candelas, Ossa, Green and Parkes [6] successfully predicted the number of rational curves on the quintic 3-fold in terms of period integrals on the mirror quintics. Since then, one popular mathematical formulation of mirror symmetry is about the equivalence on the mirror pairs between the Gromov-Witten theory of counting curves and the theory of variation
of Hodge structures. This is proved in [19,32] for a large class of mirror examples via toric geometry. Mirror symmetry has also deep extensions to open strings incorporating with D-brane constructions [26,47]. In our paper, we will focus on closed string mirror symmetry.

Gromov-Witten theory presents the mathematical counterpart of A-twisted supersymmetric nonlinear $\sigma$-models, borrowing the name of A-model in physics terminology. Its mirror theory is called the B-model. On either side, there is a closely related linearized model, called the N=2 Landau-Ginzburg model (or LG model), describing the quantum geometry of singularities. There exist deep connections in physics between nonlinear sigma models on Calabi-Yau manifolds and Landau-Ginzburg models (see [25] for related literature).

In this paper, we will study the LG-LG mirror symmetry conjecture, which asserts an equivalence of two nontrivial theories of singularities for mirror pairs $(W,G), (W^T,G^T)$. Here $W$ is an invertible weighted homogeneous polynomial on $\mathbb{C}^n$ with an isolated critical point at the origin, and $G$ is a finite abelian symmetry group of $W$. The mirror weighted homogeneous polynomial $W^T$ was introduced by Berglund and H"ubsch [5] in early 1990s. For invertible polynomial $W = \sum_{i=1}^n \prod_{j=1}^n x_j^{a_{ij}}$, the mirror polynomial is $W_T = \sum_{i=1}^n \prod_{j=1}^n x_j^{a_{ji}}$. The mirror group $G^T$ was introduced by Berglund and Henningson [4] and Krawitz [27] independently. Krawitz also constructed a ring isomorphism between two models. Now the mirror symmetry between these LG pairs is also called Berglund-H"ubsch-Krawitz mirror [10]. When $G = G_W$ is the group of diagonal symmetries of $W$, the dual group $G_W^T = \{1\}$ is trivial. In order to formulate the conjecture, let us introduce the theories on both sides first. We remark that one of the most general mirror constructions of LG models was proposed by Hori and Vafa [23].

A geometric candidate of LG A-model is the Fan-Jarvis-Ruan-Witten theory (or FJRW theory) constructed by Fan, Jarvis and Ruan [13,14], based on a proposal of Witten [49]. Several purely algebraic versions of LG A-model have been worked out [7,35]. The FJRW theory is closely related to the Gromov-Witten theory, in terms of the so-called Landau-Ginzburg/Calabi-Yau correspondence [9,36]. The purpose of the FJRW theory is to solve the moduli problem for the Witten equations of a LG model $(W,G)$ $(G$ is an appropriate subgroup of $G_W$). The outputs are the FJRW invariants. Analogous to the Gromov-Witten invariants, the FJRW invariants are defined via the intersection theory of appropriate virtual fundamental cycles with tautological classes on the moduli space of stable curves. These invariants virtually count the solutions of the Witten equations on orbifold curves. For our purpose later, we consider $G = G_W$, and summarize the main ingredients of the FJRW theory as follows (see Section 2 for more details):
• An FJRW ring \((H_W, \cdot)\). Here \(H_W\) is the FJRW state space given by the \(G_W\)-invariant Lefschetz thimbles of \(W\), and the multiplication \(\cdot\) is defined by an intersection pairing together with the genus 0 primary FJRW invariants with 3 marked points.

• A prepotential \(F_{\text{FJRW}}^{0, W}\) of a formal Frobenius manifold structure on \(H_W\), whose coefficients are all the genus 0 primary FJRW invariants \(\langle \cdots \rangle_0^W\).

• A total ancestor potential \(A_{\text{FJRW}}^W\) that collects the FJRW invariants at all genera.

A geometric candidate of the LG B-model of \((W_T, G_T)\) is still missing for general \(G_T\). When \(G = G_W\), then \(G_T = \{1\}\) and a candidate comes from the third author’s theory of primitive forms \([40]\). The starting point here is a germ of holomorphic function \((f = W_T)\) to our interest here

\[ f(x) : (\mathbb{C}^n, 0) \rightarrow (\mathbb{C}, 0), \quad x = \{x_i\}_{i=1,...,\mu} \]

with an isolated singularity at the origin 0. We consider its universal unfolding

\[ (\mathbb{C}^n \times \mathbb{C}^\mu, 0 \times 0) \rightarrow (\mathbb{C} \times \mathbb{C}^\mu, 0 \times 0), \quad (x, s) \rightarrow (F(x, s), s) \]

where \(\mu = \dim \mathbb{C} \text{Jac}(f)_0\) is the Milnor number, and \(s = \{s_\alpha\}_{\alpha=1,...,\mu}\) parametrize the deformation. Roughly speaking, a primitive form is a relative holomorphic volume form

\[ \zeta = P(x, s) d^n x, \quad d^n x = dx_1 \cdots dx_n \]

at the germ \((\mathbb{C}^n \times \mathbb{C}^\mu, 0 \times 0)\), which induces a Frobenius manifold structure (which is called the flat structure in \([40]\)) at the germ \((\mathbb{C}^\mu, 0)\). This gives the genus 0 invariants in the LG B-model. At higher genus, Givental \([18]\) proposed a remarkable formula (with its uniqueness established by Teleman \([48]\)) of the total ancestor potential for semi-simple Frobenius manifold structures, which can be extended to some non-semisimple boundary points \([11, 33]\) including \(s = 0\) of our interest. The whole package is now referred to as the Saito-Givental theory. We will call the extended total ancestor potential at \(s = 0\) a Saito-Givental potential and denote it by \(\mathcal{A}_SG^f\).

For \(G = G_W\), the LG-LG mirror conjecture (of all genera) is well-formulated \([10]\):

**Conjecture 1.1.** For a mirror pair \((W, G_W)\) and \((W_T, \{1\})\), there exists a ring isomorphism \((H_W, \cdot) \cong \text{Jac}(W_T)\) together with a choice of primitive forms \(\zeta\), such that the FJRW potential \(\mathcal{A}_{\text{FJRW}}^W\) is identified with the Saito-Givental potential \(\mathcal{A}_{SG}^W\).

For the weighted homogeneous polynomial \(W = W(x_1, \cdots, x_n)\), we have

\[ W(\lambda^{q_1} x_1, \cdots, \lambda^{q_n} x_n) = \lambda W(x_1, \cdots, x_n), \quad \forall \lambda \in \mathbb{C}^*, \]
with each weight $q_i$ being a unique rational number satisfying $0 < q_i \leq \frac{1}{2}$ [37]. There is a partial classification of $W$ using the central charge $\hat{c}_W$:

$$\hat{c}_W := \sum_i (1 - 2q_i).$$

So far, Conjecture 1.1 has only been proved for $\hat{c}_W < 1$ (i.e., ADE singularities) by Fan, Jarvis and Ruan [13] and for $\hat{c}_W = 1$ (i.e., simple elliptic singularities) by Krawitz, Milanov and Shen [29, 34]. However, it was open for $\hat{c}_W > 1$, including exceptional unimodular modular singularities and a wide class of those related to K3 surfaces and CY 3-folds. One of the major obstacle is that computations in the LG B-model require concrete information about the primitive forms. The existence of the primitive forms for a general isolated singularity has been proved by M. Saito [45]. However, explicit formulas were only known for weighted homogeneous polynomials of $\hat{c}_W \leq 1$ [40]. This is due to the difficulty of mixing between positive and negative degree deformations when $\hat{c}_W > 1$.

The main objective of the present paper is to prove that Conjecture 1.1 is true when $W$ is one of the exceptional unimodular singularities as in the following table. Here we use variables $x, y, z$ instead of the conventional $x_1, x_2, \cdots, x_n$. These polynomials are all of central charge larger than 1, providing the first nontrivial examples with the existence of negative degree deformation (i.e., irrelevant deformation) parameters.

### Table 1. Exceptional unimodular singularities

<table>
<thead>
<tr>
<th>Polynomial</th>
<th>Polynomial</th>
<th>Polynomial</th>
<th>Polynomial</th>
</tr>
</thead>
<tbody>
<tr>
<td>$E_{12}$</td>
<td>$x^3 + y^7$</td>
<td>$W_{12}$</td>
<td>$x^4 + y^5$</td>
</tr>
<tr>
<td>$Q_{12}$</td>
<td>$x^2y + xy^3 + z^3$</td>
<td>$Z_{12}$</td>
<td>$x^3y + y^4x$</td>
</tr>
<tr>
<td>$E_{14}$</td>
<td>$x^2 + xy^4 + z^3$</td>
<td>$E_{13}$</td>
<td>$x^3 + xy^5$</td>
</tr>
<tr>
<td>$Q_{10}$</td>
<td>$x^2y + y^4 + z^3$</td>
<td>$Z_{11}$</td>
<td>$x^3y + y^5$</td>
</tr>
<tr>
<td>$Q_{11}$</td>
<td>$x^2y + y^3z + z^3$</td>
<td>$Q_{11}$</td>
<td>$x^2y + y^3z + z^3$</td>
</tr>
<tr>
<td>$S_{11}$</td>
<td>$x^2y + y^2z + z^4$</td>
<td>$S_{11}$</td>
<td>$x^2y + y^2z + z^4$</td>
</tr>
</tbody>
</table>

Originally, the 14 exceptional unimodular singularities by Arnold [3] are one parameter families of singularities with three variables. Each family contains a weighted homogeneous singularity characterized by the existence of only one negative degree but no zero-degree deformation parameter [42]. In this paper, we consider the stable equivalence class of a singularity, and always choose polynomial representatives of the class with no square terms for additional variables. The FJRW theory with the group of diagonal symmetries is invariant when adding square terms for additional variables.
LG-LG mirror symmetry for exceptional unimodular singularities. Let us explain how we achieve the goal in more details. Following [27], we can specify a ring isomorphism $\text{Jac}(W^T) \cong (H_W, \bullet)$. Then we calculate some FJRW invariants, by an orbifold-Grothendieck-Riemann-Roch formula and WDVV equations. More precisely, we have

**Proposition 1.2.** Let $W^T$ be one of the 14 singularities, then

$$\Psi : \text{Jac}(W^T) \rightarrow (H_W, \bullet),$$

defined in (2.18) and (2.21), generates a ring isomorphism. Let $M^T_i$ be the $i$-th monomial of $W^T$, and $\phi_\mu$ be of the highest degree among the specified basis of $\text{Jac}(W^T)$ in Table 2. Let $q_i$ be the weight of $x_i$ with respect to $W$. For each $i$, we have genus 0 FJRW invariants

$$\langle \Psi(x_i), \Psi(x_i), \Psi\left(\frac{M^T_i}{x_i^2}\right), \Psi(\phi_\mu)\rangle^W_0 = q_i, \text{ whenever } M^T_i \neq x_i^2.$$

Surprisingly, if $W^T$ belongs to $Q_{11}$ or $S_{11}$, then the ring isomorphism $\text{Jac}(W^T) \cong (H_W, \bullet)$ was not known in the literature. The difficulty comes from that if there is some $q_j = \frac{1}{2}$, then one of the ring generators is a so-called broad element in FJRW theory and invariants with broad generators are hard to compute. We overcome this difficulty for the two cases, using Getzler’s relation on $\overline{M}_{1,4}$. It is quite interesting that the higher genus structure detects the ring structure. We expect that our method works for general unknown cases of $(H_W, \bullet)$ as well.

On the B-side, it is already known that there exists a unique primitive form (up to a nonzero scalar) if $W^T$ is one of the exceptional singularities [22, 31]. Recently the first three authors have developed a perturbative way to compute the primitive forms for arbitrary weighted homogeneous singularities [31]. This leads to a perturbative algorithm (as fully developed in section 3.2) for the potential function $F_{SG, W^T}$ of the associated Frobenius manifold structure. This provides the data of LG B-model at genus 0. From the computational results, we show that the A-side FJRW invariants for $W$ in Proposition 1.2 coincide with the B-side corresponding invariants for $W^T$ (up to a sign).

In the next step, we establish a reconstruction theorem in such cases (Lemma 4.2), showing that the WDVV equations are powerful enough to determine the full prepotentials for both sides from those invariants in (1.1). This gives the main result of our paper:

**Theorem 1.3.** Let $W^T$ be one of the 14 exceptional unimodular singularities in Table 1. Then the specified ring isomorphism $\Psi$ induces an isomorphism of Frobenius manifolds between $\text{Jac}(W^T)$ (which comes from the primitive form of $W^T$) and $H_W$ (which comes from the FJRW theory of $(W, G_W)$). That is, the prepotentials are equal to each other:

$$F_{SG, W^T} = F_{FJRW, W}.$$
In general, the computations of FJRW invariants are challenging due to our very little understanding of virtual fundamental cycles, especially at higher genus. However, according to Teleman [48] and Milanov [33], the non-semisimple limit $\mathcal{A}_{W \mathcal{T}}$ is fully determined by the genus-0 data on the semisimple points nearby. As a consequence, we upgrade our mirror symmetry statement to higher genus and prove Conjecture 1.1 for the exceptional unimodular singularities.

**Corollary 1.4.** Conjecture 1.1 is true for $W \mathcal{T}$ being one of the 14 exceptional unimodular singularities in Table 1. The specified ring isomorphism $\Psi$ induces the following coincidence of total ancestor potentials:

$$\mathcal{A}_{W \mathcal{T}}^{SG} = \mathcal{A}_{W}^{FJRW}. \tag{1.3}$$

The choice in Table 1 has the property that the mirror weighted homogeneous polynomials are again representatives of the exceptional unimodular singularities. Arnold discovered a strange duality among the 14 exceptional unimodular singularities, which says the Gabrielov numbers of each coincide with the Dolgachev numbers of its strange dual [2]. The strange duality is also reproved algebraically in [43]. The choices in Table 1 also represent Arnold’s strange duality: the first two rows are strange dual to themselves, and the last two rows are dual to each other. For example, $E_{14}$ is strange dual to $Q_{10}$. Beyond the choices in Table 1 we also discuss the LG-LG mirror symmetry for other invertible polynomial representatives (some of whose mirrors may no longer be exceptional unimodular singularities) where equality (1.3) still holds. The results are summarized in **Theorem 4.3** and **Remark 4.5**.

The present paper is organized as follows. In section 2, we give a brief review of the FJRW theory and compute those initial FJRW invariants as in Proposition 1.2. In section 3, we give a self-contained reformulation of the method of [31] and compute the relevant correlation functions in LG B-model. In section 4, we prove Conjecture 1.1 when the B-side is given by one of the exceptional unimodular singularities. We also discuss the more general case when either side is given by an arbitrary weighted homogeneous polynomial representative of the exceptional unimodular singularities. Finally in the appendix, we provide detailed descriptions of the specified isomorphism $\Psi$ as well as a complete list of the genus-zero four-point functions on the B-side for all the exceptional unimodular singularities. We would like to point out that section 2 and section 3 are completely independent of each other. Our readers can choose either sections to start first.
Acknowledgement: The authors would like to thank Kentaro Hori, Hiroshi Iritani, Todor Eliseev Milanov, Atsushi Takahashi, and especially Yongbin Ruan, for helpful discussions and valuable comments. S.L. is partially supported by NSF DMS-1309118. K.S. is partially supported by JSPS Grant-in-Aid for Scientific Research (A) No. 25247004. In addition, Y.S. would like to thank Alessandro Chiodo, Jeremy Guéré, Weiqiang He for helpful discussions. S.L. would like to thank Kavli IPMU, and Y.S. would like to thank IAS of HKUST for their hospitality. Part of the work was done during their visit.

2. A-model: FJRW-theory

2.1. FJRW-theory. In this section, we give a brief review of FJRW theory. For more details, we refer the readers to [13, 14]. We start with a nondegenerate weighted homogeneous polynomial $W = W(x_1, \cdots, x_n)$, where the nondegeneracy means that $W$ has isolated critical point at the origin $0 \in \mathbb{C}^n$ and contains no monomial of the form $x_i x_j$ for $i \neq j$. This implies that each $x_i$ has a unique weight $q_i \in \mathbb{Q} \cap [0, 1]$. Let $G_W$ be the group of diagonal symmetries,

$$G_W := \left\{ (\lambda_1, \ldots, \lambda_n) \in (\mathbb{C}^*)^n \middle| W(\lambda_1 x_1, \ldots, \lambda_n x_n) = W(x_1, \ldots, x_n) \right\}. \quad (2.1)$$

In this paper, we will only consider the FJRW theory for the pair $(W, G_W)$. In general, the FJRW theory also works for any subgroup $G \subset G_W$ where $G$ contains the exponential grading element

$$J = \left( \exp(2\pi \sqrt{-1} q_1), \ldots, \exp(2\pi \sqrt{-1} q_n) \right) \in G_W. \quad (2.2)$$

Definition 2.1. The FJRW state space $H_W$ for $(W, G_W)$ is defined to be the direct sum of all $G_W$-invariant relative cohomology:

$$H_W := \bigoplus_{\gamma \in G_W} H_\gamma, \quad H_\gamma := H^{\text{mid}}(\text{Fix}(\gamma); W_\gamma^\infty; \mathbb{C})^{G_W}. \quad (2.3)$$

Here $\text{Fix}(\gamma)$ is the fixed points set of $\gamma$, and $\mathbb{C}^{N_\gamma} \cong \text{Fix}(\gamma) \subset \mathbb{C}^n$. $W_\gamma$ is the restriction of $W$ to $\text{Fix}(\gamma)$. $W_\gamma^\infty := (\text{Re} W_\gamma)^{-1}(M, \infty)$ with $M \gg 0$, where $\text{Re} W_\gamma$ is the real part of $W_\gamma$.

Each $\gamma \in G_W$ has a unique form

$$\gamma = \left( \exp(2\pi \sqrt{-1} \Theta_1^\gamma), \cdots, \exp(2\pi \sqrt{-1} \Theta_n^\gamma) \right) \in (\mathbb{C}^*)^n, \quad \Theta_i^\gamma \in [0, 1) \cap \mathbb{Q}. \quad (2.4)$$

Thus $H_W$ is a graded vector space, where for each nonzero $\alpha \in H_\gamma$, we assign its degree

$$\deg \alpha = N_\gamma + \sum_{i=1}^n (\Theta_i^\gamma - q_i).$$

We call $H_\gamma$ a narrow sector if $\text{Fix}(\gamma)$ consists of $0 \in \mathbb{C}^n$ only, or a broad sector otherwise.
The FJRW vector space $H_W$ is equipped with a symmetric and nondegenerate pairing
\[
\langle \gamma, \eta \rangle := \sum_{\gamma \in G_W} \langle \gamma \rangle_{\gamma}
\]
from the intersection pairing $\langle \gamma, \eta \rangle : H_{\gamma} \times H_{\gamma^{-1}} \to \mathbb{C}$ of Lefchetz thimbles, and we have (see section 5.1 of [13] and references therein)
\[
(H_W, \langle \gamma, \eta \rangle) \cong \left( \bigoplus_{\gamma \in G_W} \langle \text{Jac}(W_{\gamma}) \omega_{\gamma} \rangle_{G_W}, \text{Residue} \right).
\]
Here $\omega_{\gamma}$ is a volume form on $\text{Fix}(\gamma)$ of the type $dx_{i_1} \wedge \cdots \wedge dx_{i_N}$, where we mean $\omega_{\gamma} = 1$ if $N_{\gamma} = 0$. $G_W$ acts on both $x_i$ and $dx_j$. Let $(\text{Jac}(W_{\gamma}) \omega_{\gamma} \rangle_{G_W}$ be the $G_W$-invariant part of the action. We choose a generator
\[
1_{\gamma} := \omega_{\gamma} \in H^N_{\gamma}(\text{Fix}(\gamma); W_{\gamma}; \mathbb{C}).
\]
If $H_{\gamma}$ is narrow, then $H_{\gamma} \cong (\text{Jac}(W_{\gamma}) \omega_{\gamma} \rangle_{G_W} \cong \mathbb{C}$ is generated by $1_{\gamma}$. If $H_{\gamma}$ is broad, we denote generators of $H_{\gamma}$ by $\phi 1_{\gamma}$ via $\phi \omega_{\gamma} \in (\text{Jac}(W_{\gamma}) \omega_{\gamma} \rangle_{G_W}$.

It is highly nontrivial to construct a virtual cycle for the moduli of solutions of Witten equations. For the details of the construction, we refer to the original paper of Fan, Jarvis and Ruan [14]. Let $\mathcal{C} := \mathcal{C}_{g,k}$ be a stable genus-$g$ orbifold curve with marked points $p_1, \ldots, p_k$ (where $2g - 2 + k > 0$). We only allow orbifold points at marked points and nodals. Near each orbifold point $p$, a local chart is given by $\mathbb{C}/G_p$ with $G_p \cong \mathbb{Z}/m\mathbb{Z}$ for some positive integer $m$. Let $\mathcal{L}_1, \ldots, \mathcal{L}_n$ be orbifold line bundles over $\mathcal{C}$. Let $\sigma_i$ be a $\mathcal{C}^\infty$-section of $\mathcal{L}_i$. We consider the W-structures, which can be thought of as the background data to be used to set up the Witten equations
\[
\partial \sigma_i + \overline{\partial W}_{\sigma_i} = 0.
\]
For simplicity, we only discuss cases that $W = M_1 + \cdots + M_n$, with $M_i = \prod_{j=1}^n x_j^{a_{ij}}$. Let $K_{\mathcal{C}}$ be the canonical bundle for the underlying curve $\mathcal{C}$ and $\rho : \mathcal{C} \to \mathcal{C}$ be the forgetful morphism. A W-structure $\mathfrak{L}$ consists of $(\mathcal{C}, \mathcal{L}_1, \ldots, \mathcal{L}_n, \varphi_1, \ldots, \varphi_n)$ where $\varphi_i$ is an isomorphism of orbifold line bundles
\[
\varphi_i : \bigotimes_{j=1}^n \mathcal{L}_j \otimes a_{ij} \to \rho^*(K_{\mathcal{C},\log}), \quad K_{\mathcal{C},\log} := K_{\mathcal{C}} \otimes \bigotimes_{j=1}^k \mathcal{O}(p_j).
\]
A W-structure induces a representation $r_p : G_p \to G_W$ at each point $p \in \mathcal{C}$. We require it to be faithful. The moduli space of pairs $\mathcal{C} = (\mathcal{C}, \mathfrak{L})$ is called the moduli of stable W-orbicurves and denoted by $\overline{\mathcal{M}}_{g,k}$. According to [13], $\overline{\mathcal{M}}_{g,k}$ is a Deligne-Mumford stack, and the forgetful morphism $\text{st} : \overline{\mathcal{M}}_{g,k} \to \overline{\mathcal{M}}_{g,k}$ to the moduli space of stable curves is
flat, proper and quasi-finite. \( \mathcal{M}_{g,k} \) can be decomposed into open and closed stacks by decorations on each marked point,

\[
\mathcal{M}_{g,k} = \sum_{(\gamma_1, \ldots, \gamma_k) \in (G_W)^k} \mathcal{M}_{g,k}(\gamma_1, \ldots, \gamma_k), \quad \gamma_j := r_{p_j}(1).
\]

Furthermore, let \( \Gamma \) be the dual graph of the underlying curve \( C \). Each vertex of \( \Gamma \) represents an irreducible component of \( C \), each edge represents a node, and each half-edge represents a marked point. Let \( \#E(\Gamma) \) be the number of edges in \( \Gamma \). We decorate the half-edge representing the point \( p_j \) by an element \( \gamma_j \in G_W \). We denote the decoration by \( \Gamma_{\gamma_j} \) and call it a \textit{G\textsubscript{W}-decorated dual graph}. We further call it \textit{fully G\textsubscript{W}-decorated} if we also assign some \( \gamma_+ \in G_W \) and \( \gamma_- = (\gamma_+)^{-1} \) on the two sides of each edge. Let us denote the moduli of stable \( W \)-orbicurves with fixed decorations \( (\gamma_1, \ldots, \gamma_k) \) on \( \Gamma \) by \( \mathcal{M}_{g,k}(\Gamma_{\gamma_1}, \ldots, \gamma_k) \).

We have a decomposition

\[
\mathcal{M}_{g,k}(\gamma_1, \ldots, \gamma_k) = \sum_{\Gamma} \mathcal{M}_{g,k}(\Gamma_{\gamma_1}, \ldots, \gamma_k).
\]

Let \( \rho : \mathcal{C} \to C \) be the forgetful morphism to the underlying curve. If \( \mathcal{M}_{g,k}(\gamma_1, \ldots, \gamma_k) \) is nonempty, then the Line bundle criterion follows([13] Proposition 2.2.8]):

\[
(2.7) \quad \text{deg}(\rho_* \mathcal{L}_i) = (2g - 2 + k)q_i - \sum_{j=1}^k \Theta_j^{\gamma_j} \in \mathbb{Z}, \ i = 1, \ldots, n.
\]

In [14], Fan, Jarvis and Ruan perturb the polynomial \( W \) to polynomials of Morse type and construct virtual cycles from the solutions of the perturbed Witten equations. Those virtual cycles transform in the same way as the Lefschetz thimbles attached to the critical points of the perturbed polynomials. As a consequence, they construct a virtual cycle

\[
[\mathcal{M}_{g,k}(\Gamma_{\gamma_1}, \ldots, \gamma_k)]_{\text{vir}} \in H_*(\mathcal{M}_{g,k}(\Gamma_{\gamma_1}, \ldots, \gamma_k), \mathbb{C}) \otimes \prod_{j=1}^k H_{N_{\gamma_j}}(\text{Fix}(\gamma_j), W_{\gamma_j}^{\infty}, \mathbb{C})^{G_W},
\]

which has total degree

\[
(2.8) \quad 2 \left((\epsilon_W - 3)(1 - g) + k - \#E(\Gamma) - \sum_{j=1}^k \sum_{i=1}^n (\Theta_j^{\gamma_j} - q_i)\right).
\]

Based on this, they obtain a cohomological field theory \( \{ \Lambda_{g,k}^W : (H_W)^{\otimes k} \to H^*(\mathcal{M}_{g,k}, \mathbb{C}) \} \) with a flat identity. Each \( \Lambda_{g,k}^W \) is defined by extending the following map linearly to \( H_\mathcal{N} \),

\[
\Lambda_{g,k}^W(\alpha_1, \ldots, \alpha_k) := \frac{|G_W|^8}{\text{deg}(\text{st})} \text{PD st}_* \left( [\mathcal{M}_{g,k}(\gamma_1, \ldots, \gamma_k)]_{\text{vir}} \cap \prod_{j=1}^k \alpha_j \right), \quad \alpha_j \in H_{\gamma_j}.
\]
\[ \langle \tau_1 (\alpha_1), \ldots, \tau_k (\alpha_k) \rangle^W_{g,k} = \int_{\overline{M}_{g,k}} \Lambda^W_{g,k}(\alpha_1, \ldots, \alpha_k) \prod_{j=1}^{k} \psi_j^{\ell_j}, \quad \alpha_j \in H_{\gamma_j}. \]

The FJRW invariants in (2.9) are called primary if all \( \ell_j = 0 \). We simply denoted them by \( \langle \alpha_1, \ldots, \alpha_k \rangle^W_g \). We call \((H_W, \bullet)\) an FJRW ring where the multiplication \( \bullet \) on \( H_W \) is defined by

\[ \langle \alpha \bullet \beta, \gamma \rangle = \langle \alpha, \beta, \gamma \rangle^W_0. \]

Let us fix a basis \( \{ \alpha_j \}_{j=1}^\mu \) of \( H_W \), with \( \alpha_1 \) being the identity. Let \( t(z) = \sum_{m \geq 0} \sum_{j=1}^\mu t_{m, \alpha_j} \alpha_j z^m \). The FJRW total ancestor potential is defined to be

\[ S_{FJRW}^W = \exp \left( \sum_{g \geq 0} \frac{h^g-1}{g!} \left( t(\psi_1) + \psi_1, \ldots, t(\psi_k) + \psi_k \right)^W_{g,k} \right). \]

There is a formal Frobenius manifold structure on \( H_W \), in the sense of Dubrovin [12]. Its prepotential is given by

\[ F_{0, W}^{FJRW} = \sum_{k \geq 3} \frac{1}{k!} (t_0, \ldots, t_0)^W_{g,k}, \quad t_0 = \sum_{j=1}^\mu t_{0, \alpha_j} \alpha_j. \]

The prepotential satisfies the WDVV (Witten-Dijkgraaf-Verlinde-Verlinde) equations:

\[ \sum_{i,j} \frac{\partial^3 F_{0, W}^{FJRW}}{\partial t_{\alpha_i} \partial t_{\alpha_j} \partial t_{\alpha_k}} \eta_{ij} = \sum_{i,j} \frac{\partial^3 F_{0, W}^{FJRW}}{\partial t_{\alpha_i} \partial t_{\alpha_j} \partial t_{\alpha_k}} \eta_{ij} \frac{\partial^3 F_{0, W}^{FJRW}}{\partial t_{\alpha_i} \partial t_{\alpha_j} \partial t_{\alpha_k}}, \quad t_\alpha := t_{0, \alpha}, \]

where \( (\eta^{ij}) \) is the inverse of the matrix \( (\langle \alpha_i, \alpha_j \rangle) \). It implies ([13, Lemma 6.2.6])

\[ \langle \ldots, \alpha_a, \alpha_b \bullet \alpha_c, \alpha_d \rangle_{0,k} = S_k + \langle \ldots, \alpha_a, \alpha_b, \alpha_c, \alpha_d \rangle_{0,k} + \langle \ldots, \alpha_a, \alpha_b, \alpha_c \bullet \alpha_d \rangle_{0,k} - \langle \ldots, \alpha_a \bullet \alpha_d, \alpha_b, \alpha_c \rangle_{0,k}. \]

where \( k \geq 3, S_k \) is a linear combination of products of correlators with number of marked points no greater than \( k - 1 \). Moreover, both \( S_3 = S_4 = 0 \).

Another important tool is the Concavity Axiom [13, Theorem 4.1.8]. Consider the universal \( W \)-structure \( (\mathcal{L}_1, \ldots, \mathcal{L}_n) \) on the universal curve \( \mathcal{C} \to \overline{M}_{g,k} (\Gamma_{\gamma_1, \ldots, \gamma_k}) \).

\[ \text{If all } H_{\gamma_i} \text{ are narrow and } \pi_* (\bigoplus_{i=1}^n \mathcal{L}_i) = 0, \]

then \( R^1 \pi_* (\bigoplus_{i=1}^n \mathcal{L}_i) \) is a vector bundle of constant rank, denoted by \( D \), and

\[ \left[ \overline{W}_{g,k} (\Gamma_{\gamma_1, \ldots, \gamma_k}) \right]^{\text{vir}} \cap \prod_{i=1}^k \mathbf{1}_{\gamma_i} = (-1)^D c_D \left( R^1 \pi_* (\bigoplus_{i=1}^n \mathcal{L}_i) \right) \cap \left[ \overline{W}_{g,k} (\Gamma_{\gamma_1, \ldots, \gamma_k}) \right]. \]
It can be calculated by the orbifold Grothendieck-Riemann-Roch formula [8, Theorem 1.1.1]. As a consequence, if the codimension \( D = 1 \), we have

\[
\Lambda_{0,4}^W(1_{\gamma_1}, \ldots, 1_{\gamma_4}) = \prod_{i=1}^n \left( \frac{B_2(q_i)}{2} \kappa_1 - \sum_{j=1}^{\frac{n}{2}} \frac{B_2(\Theta_{ij})}{2} \psi_j + \sum_{\Gamma} \frac{B_2(\Gamma^T)}{2} [\Gamma] \right).
\]

Here \( B_2(x) := x^2 - x + \frac{1}{6} \) is the second Bernoulli polynomial. \( \kappa_1 \) is the 1-st kappa class on \( \overline{M}_{0,4} \). Here the graphs \( \Gamma \) are fully \( G_W \)-decorated on the boundary of \( \overline{\mathcal{W}}_{0,4}(\gamma_1, \ldots, \gamma_4) \) such that each component of \( \Gamma \) satisfies the line bundle criterion (2.7).

We call a correlator \textit{concave} if it satisfies (2.14). Otherwise we call it \textit{nonconcave}. Nonconcave correlator may contain broad sectors. In this paper, we will use WDVV to compute the nonconcave correlators. Some other methods are described in [7, 21].

### 2.2. FJRW invariants

In this subsection, we will prove Proposition 1.2. Let us first describe the construction of the mirror polynomial \( W^T \). Let \( W = M_1 + \cdots + M_n \), with \( M_i = \prod_{j=1}^{m_i} x_{ij}^{a_{ij}} \). We call such a polynomial \( W \) \textit{invertible} because its exponent matrix \( E_W := (a_{ij}) \) is invertible. Berglund and Hubsch [5] introduced a mirror polynomial \( W^T \),

\[
W^T := \sum_{i=1}^{n} \prod_{j=1}^{n} x_{ij}^{a_{ij}}.
\]

Its exponent matrix \( E_{W^T} \) is just the transpose matrix of \( E_W \), i.e. \( E_{W^T} = (E_W)^T \). In [30], Kreuzer and Skarke proved that every invertible \( W \) is a direct sum of three \textit{atomic types} of singularities: Fermat, chain and loop. If \( W \) is of atomic type, then \( W^T \) belongs to the same atomic type. We list the three atomic types (with \( q_i \leq \frac{1}{2} \)) and a \( \mathbb{C} \)-basis of their Jacobi algebra as follows. The table also contains an element \( \phi_\mu \) of highest degree.

<table>
<thead>
<tr>
<th>Atomic Type</th>
<th>Polynomial ( f )</th>
<th>( \mathbb{C} )-basis of Jac(( f ))</th>
<th>( \phi_\mu )</th>
</tr>
</thead>
<tbody>
<tr>
<td>( m )-Fermat</td>
<td>( x_1^{a_1} + \cdots + x_m^{a_m} )</td>
<td>( \prod_{i=1}^{m} x_i^{k_i}, k_i &lt; a_i - 1 )</td>
<td>( \prod_{i=1}^{m} x_i^{a_i - 2} )</td>
</tr>
<tr>
<td>( m )-Chain:</td>
<td>( x_1^{a_1} x_2 + x_2^{a_2} x_3 + \cdots + x_m^{a_m} )</td>
<td>( { \prod_{i=1}^{m} x_i^{k_i} } )</td>
<td>( x_1^{a_1 - 2} \prod_{i=2}^{m} x_i^{a_i - 1} )</td>
</tr>
<tr>
<td>( m )-Loop:</td>
<td>( x_1^{a_1} x_2 + x_2^{a_2} x_3 + \cdots + x_m^{a_m} x_1 )</td>
<td>( \prod_{i=1}^{m} x_i^{k_i}, k_i &lt; a_i )</td>
<td>( \prod_{i=1}^{m} x_i^{a_i - 1} )</td>
</tr>
</tbody>
</table>

Here in the case of \( m \)-Chain, \( \mathbf{k} = (k_1, \ldots, k_m) \) satisfies (1) \( k_j \leq a_j - 1 \) for all \( j \) and (2) the property that \( \mathbf{k} \) is not of the form \((a_1 - 1, 0, a_3 - 1, 0, \cdots, a_{2l-1} - 1, i, *, \cdots, *) \) with \( i \geq 1 \).

A first step towards the LG-LG mirror symmetry Conjecture [1.1] is a ring isomorphism between \( (H_W, \bullet) \) and Jac(\( W^T \)). The ring isomorphism has been studied in [1, 13, 15, 27, 28] for various examples. According to the Axiom of Sums of singularities [13, Theorem 4.1.8]...
We can view $\rho$ as an element in $W$ for $i$. There is a degree-preserving ring isomorphism $\Psi$. We will give the new constructions for the two exceptional cases, and will also briefly introduce the earlier constructions for the other 12 cases.

Since $E_W$ is invertible, we can write $E_W^{-1}$ using column vectors $\rho_k$.

$$E_W^{-1} = (\rho_1 | \cdots | \rho_n), \quad \rho_k := (\varphi_1^{(k)}, \cdots, \varphi_n^{(k)})^T, \quad \varphi_i^{(k)} \in \mathbb{Q}.$$

We can view $\rho_k$ as an element in $G_W$ by defining the action

$$\rho_k = (\exp(2\pi\sqrt{-1}\varphi_1^{(k)}), \cdots, \exp(2\pi\sqrt{-1}\varphi_n^{(k)})) \in G_W.$$

Thus $\rho_iJ \in G_W$, with $J$ the exponential grading element in (2.2).

**Proposition 2.3** ([27]). For any $n$-variable invertible polynomial $W$ with each degree $q_i < \frac{1}{2}$, there is a degree-preserving ring isomorphism $\Psi : \text{Jac}(W^T) \to (H_W, \bullet)$. In particular, if $\rho_iJ$ is narrow for $i = 1, \cdots, n$, then $\Psi$ is generated by

$$\Psi(x_i) = 1_{\rho_iJ}, \quad i = 1, \cdots, n \quad (2.18)$$

**Example 2.4.** Let $W = x^p + y^q$, $p, q > 2$. Denote $\gamma_{i,j} = \left(\exp(\frac{2\pi\sqrt{-1}i}{p}), \exp(\frac{2\pi\sqrt{-1}j}{q})\right)$. The FJRW ring $(H_W, \bullet)$ is generated by $\{1_{\gamma_{2,1}}, 1_{\gamma_{1,2}}\}$. Then $W^T = W$ and the ring isomorphism $\Psi : \text{Jac}(W^T) \cong (H_W, \bullet)$ generated by (2.18) extends as

$$\Psi(x^{i-1}y^{j-1}) = 1_{\gamma_{i,j}}, \quad 1 \leq i \leq p, 1 \leq j \leq q \quad (2.19)$$

For 2-Loop singularities, $\rho_iJ$ may not be narrow. However, ring isomorphisms still exist. According to [1][27], we have

**Example 2.5.** For $W = x^2y + xy^3 + z^3 \in Q_{12}$, $G_W \cong \mu_{15}$. A ring isomorphism $\Psi : \text{Jac}(W^T) \cong (H_W, \bullet)$ is obtained by extending (2.18) from

$$\Psi(x) = x1_{j_{10}} \quad (2.20)$$

The corresponding vector space isomorphism $\Psi : \text{Jac}(W^T) \to H_W$ is as follows:

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_j$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{11}}$</th>
<th>$x1_{j_{10}}$</th>
<th>$y^21_{j_{10}}$</th>
<th>$1_{j_{18}}$</th>
<th>$1_{j_{17}}$</th>
<th>$x1_{j_{13}}$</th>
<th>$y^21_{j_{13}}$</th>
<th>$1_{j_{14}}$</th>
<th>$1_{j_{2}}$</th>
<th>$1_{j_{14}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$y$</td>
<td>$z$</td>
<td>$x$</td>
<td>$y^2$</td>
<td>$yz$</td>
<td>$xy$</td>
<td>$x^2$</td>
<td>$xy^2$</td>
<td>$x^2z$</td>
<td>$xyz$</td>
<td>$xy^2z$</td>
</tr>
</tbody>
</table>
Now we discuss if there exists \( q_i = \frac{1}{2} \) for \( W \). Without loss of generality, we assume \( W \) is of the atomic type: \( W = x_1^2 + x_1 x_2^2 + \cdots + x_{m-1} x_m^2 \). Then \( \text{Fix}(\rho_1) = \{ (x_1, \cdots , x_m) \in \mathbb{C}^k | x_i = 0, \ i > 2 \} \). Thus \( H_{\rho_1} \) is generated by a broad element \( x_2^{d_2-1} \rho_1 \), which is a ring generator of \( H_W \). If \( m = 2 \), it is known \([15]\) that \( \Psi : \text{Jac}(W) \to (H_W, \bullet) \) generates a ring isomorphism, by \( \Psi(x_1) = a_2 x_2^{d_2-1} \rho_1 \) and \( \Psi(x_2) = 1_{\rho_2} \). The key point is that the residue formula in \((2.5)\) implies

\[
\langle x_2^{d_2-1} \rho_1, x_2^{d_2-1} \rho_1, 1_{\rho_2}^{1-i} \rangle_W = \langle x_2^{d_2-1} \rho_1, x_2^{d_2-1} \rho_1, 1 \rangle_W = -\frac{1}{a_2}.
\]

Inspired from this, for \( m \geq 3 \), we consider

\[
K := \langle x_2^{d_2-1} \rho_1, x_2^{d_2-1} \rho_1, 1_{\rho_2}^{1-i} \rangle_W.
\]

If \( K \neq 0 \), then it is possible to define

\[
(2.21) \quad \Psi(x_1) = \left( \sqrt{-\frac{d_2}{K}} \right) x_2^{d_2-1} \rho_1.
\]

In Section 2.3, using Getzler’s relation, we will prove the following nonvanishing lemma,

**Lemma 2.6.** Let \( W = x^2 + xy^q + yz^r \), \((q, r) = (3,3), (2,4)\). Then

\[
K_{q, r} := \langle y_1^{q-1} \rho_1, y_1^{q-1} \rho_1, 1_{\rho_2}^{1-i} \rangle_W \neq 0.
\]

As a direct consequence of Lemma 2.6, it is not hard to check the following statement.

**Proposition 2.7.** Let \( W^T \) be one of the exceptional unimodular singularities in Table 1, then the map \( \Psi \) in \((2.18)\) and \((2.21)\) generates a degree-preserving ring isomorphism

\[
\Psi : \text{Jac}(W^T) \cong (H_W, \bullet).
\]

**Proof.** We only need to consider \( W = x^2 + xy^q + yz^r \), \((q, r) = (3,3), (2,4)\). Lemma 2.6 allows us to extend \( \Psi \) by defining \( \Psi(x) \) as in \((2.21)\). Then we can check directly that

\[
\Psi(x) \bullet \Psi(x) = \left( -\frac{q}{K_{q, r}} \langle y_1^{q-1} \rho_1, y_1^{q-1} \rho_1, 1_{\rho_2}^{1-i} \rangle_W \right) 1_{\rho_2}^{q-1} \rho_1 = -q \Psi(y^{q-1} z).
\]

Other relations are easily checked. \( \square \)

Explicitly, if \( W = x^2 + xy^3 + yz^3 \), the vector space isomorphism \( \Psi : \text{Jac}(W^T) \cong H_W \) is

\[
\begin{array}{|c|c|c|c|c|c|c|c|c|c|c|}
\hline
H_W & 1_f & 1_{f_{15}} & 1_{f_{15}} & \sqrt{-\frac{3}{k_{3,5}}} y^2 1_{f_{12}} & 1_f & 1_{f_{9}} & 1_{f_{12}} & \sqrt{-\frac{3}{k_{3,3}}} y^2 1_{f_{6}} & 1_{f_{3}} & 1_{f_{7}} & 1_{f_{15}}
\hline
\text{Jac}(W^T) & 1 & y & z & x & y^2 & yz & z^2 & xz & y^2 z & y^2 z & y^2 z
\hline
\end{array}
\]

If \( W = x^2 + xy^2 + yz^4 \), then the vector space isomorphism is given by
<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{f^3}$</th>
<th>$\sqrt{-\frac{2}{K_{\mathbb{C}^2}}}y_11_{f^2}$</th>
<th>$1_{f^1}$</th>
<th>$1_y$</th>
<th>$y1_{f^8}$</th>
<th>$1_{f^7}$</th>
<th>$\sqrt{-\frac{2}{K_{\mathbb{C}^2}}}y_11_{f^4}$</th>
<th>$1_{f^3}$</th>
<th>$1_{f^15}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$z$</td>
<td>$x$</td>
<td>$y$</td>
<td>$z^2$</td>
<td>$xz$</td>
<td>$yz$</td>
<td>$z^3$</td>
<td>$xz^2$</td>
<td>$yz^2$</td>
</tr>
</tbody>
</table>

We will give explicit formulas of the isomorphism $\Psi$ of all other cases in the appendix. Those isomorphisms $\Psi$ turn out to identify the ancestor total potential of the FJRW theory of $(W, G_W)$ with that of Saito-Givental theory of $W^T$ up to a rescaling.

Next we compute the FJRW invariants in Proposition [1.2]. We introduce a new notation

$$\langle 1_{f_i}, 1_{x_i}, 1_{M^T/x_i}, 1_{\phi_i} \rangle_W^W = q_i, \quad \forall i = 1, \ldots, n.$$  

**Proposition 2.8.** Let $M^T_i$ be the $i$-th monomial of $W^T$ with the ordering in Table 1. We have

$$\langle 1_{x_i}, 1_{x_i}, 1_{M^T/x_i}, 1_{\phi_i} \rangle_W^W = q_i, \quad \forall i = 1, \ldots, n.$$  

**Proof.** We classify all the correlators in (2.24) into concave correlators and nonconcave correlators. For the concave correlators, we use (2.16) to compute. For the nonconcave correlators, we use WDVV to reconstruct them from concave correlators and again use (2.16). We will freely interchange the notation

$$\langle 1_{x_1}, 1_{x_2}, 1_{x_3} \rangle = (x, y, z).$$

Let us start with concave correlators. As an example, we compute $\langle 1_{x}, 1_{x}, 1_{x^{p-2}}, 1_{\phi_i} \rangle_W^W$ for $W = x^p + y^3$. The computation of all the other concave correlators in (2.24) follows similarly. For $W = x^p + y^3$, we recall that for $\gamma_{i,j} \in G_W \cong \mathbb{C}_p \times \mathbb{C}_q$, we have $\Theta_1^{\gamma_{i,j}} = i_p, \Theta_2^{\gamma_{i,j}} = i_q$. All the sectors are narrow and $1_{\gamma_{i,j}} = 1_{x^{p-1}y^{j-1}}$ with our notation conventions. According to the line bundle criterion (2.7), we know that for $\langle 1_{x}, 1_{x}, 1_{x^{p-2}}, 1_{\phi_i} \rangle_W^W$, 

$$\deg \rho_e \mathcal{L}_1 = -2, \quad \deg \rho_e \mathcal{L}_2 = -1.$$ 

Thus $\pi_e \mathcal{L}_1 = \pi_e \mathcal{L}_2 = 0$ and the correlator is concave. Moreover, $R^1 \pi_e \mathcal{L}_2 = 0$ and the nonzero contribution of the virtual cycle only comes from $R^1 \pi_e \mathcal{L}_1$. Now we can apply (2.16). There are three decorated dual graphs in $\Gamma_{0,q}(1_{x}, 1_{x}, 1_{x^{p-2}}, 1_{\phi_i})$, where we simply denote $1_{i,j} := 1_{\gamma_{i,j}}$. 

\[ 
\begin{align*}
&1_{12,1} \quad 1_{12,1} \quad 1_{12,1} \quad 1_{12,1} \\
&\gamma_{i_1} \quad \gamma_{i_2}^{-1} \quad \gamma_{i_3} \quad \gamma_{i_3}^{-1} \\
&1_{12,1} \quad 1_{12,1} \quad 1_{12,1} \quad 1_{12,1} \\
&\gamma_{i_1} \quad \gamma_{i_2}^{-1} \quad \gamma_{i_3} \quad \gamma_{i_3}^{-1}
\end{align*}
\]
The decorations of the boundary classes are $\mathcal{O}_1^{Y_0} = \frac{p-3}{p}, 0, 0$ for $i = 1, 2, 3$. We obtain

$$\langle 1_{2,1}, 1_{2,1}, 1_{p-1,1}, 1_{p-1,q-1} \rangle_0^W$$

$$= \int_{M_{0,4}} \wedge_{0,4}^W (1_{2,1}, 1_{2,1}, 1_{p-1,1}, 1_{p-1,q-1})$$

$$= \frac{1}{2} \left( B_2\left(\frac{1}{p}\right) - 2B_2\left(\frac{2}{p}\right) - 2B_2\left(\frac{p-1}{p}\right) + 2B_2(0) + B_2(\frac{p-3}{p}) \right)$$

$$= \frac{1}{p}.$$  

All the nonconcave correlators in (2.24) are listed as follows:

- $\langle 1_y, 1_y, 1_z, 1_{\phi_\mu} \rangle_0^W$ for 3-Chain $W = x^2 + xy^2 + yz^4$.
- $\langle 1_x, 1_y, 1_y, 1_{\phi_\mu} \rangle_0^W$ for 3-Chain $W = x^2 + xy^q + yz^r$, $(q, r) = (3, 3)$ or $(2, 4)$.
- $\langle 1_x, 1_y, 1_y, 1_{\phi_\mu} \rangle_0^W$ and $\langle 1_y, 1_y, 1_x, 1_{\phi_\mu} \rangle_0^W$ for 3-Loop $W = x^2 + y^2 + yz^3$.
- $\langle 1_x, 1_y, 1_y, 1_{\phi_\mu} \rangle_0^W$ for $W = x^2 + xy^4 + z^3$.
- $\langle 1_x, 1_y, 1_y, 1_{\phi_\mu} \rangle_0^W$ for $W = x^2 y + y^3 + z^3$.
- $\langle 1_x, 1_y, 1_y, 1_{\phi_\mu} \rangle_0^W$ for $W = x^2 y + y^2 + z^4$.

For the nonconcave correlators, we will use the WDVV equations and the ring relations to reconstruct them from concave correlators. Let us start with the value of $\langle 1_y, 1_y, 1_{y^{r-2}z}, 1_{\phi_\mu} \rangle_0^W$ in a 3-Chain $W = x^2 + xy^q + yz^r$. Since $\phi_\mu = yz^3 \in \text{Jac}(W^T)$ and $1_y \cdot 1_{yz} = 0$, we get

$$\langle 1_z, 1_y, 1_y \cdot 1_{z^2}, 1_{y^0} \rangle_0^W = \langle 1_z, 1_y, 1_{yz}, 1_z \cdot 1_{y^0} \rangle_0^W - \langle 1_z, 1_y \cdot 1_y, 1_{yz}, 1_z \rangle_0^W = 0 - (-4) \frac{1}{16} = \frac{1}{4}.$$  

The first equality follows from the WDVV equation (2.13). We also use $1_y \cdot 1_{yz} = 0$. Both $\langle 1_z, 1_y, 1_{yz}, 1_z \cdot 1_y \rangle_0^W$ and $\langle 1_z, 1_y \cdot 1_y, 1_{yz}, 1_z \rangle_0^W$ are concave correlators and can be computed by (2.16). For other nonconcave correlators, we will list the WDVV equations. The concavity computation is checked easily. For 3-Chain $W = x^2 + xy^q + yz^r$, $(q, r) = (3, 3)$ or $(2, 4)$, $1_{\phi_\mu} = 1_{y^{r-1}z^r}^{-1}$.

$$\langle 1_y, 1_x, 1_{\phi_\mu}, 1_x \rangle_0^W = -\langle 1_y, 1_x \cdot 1_x, 1_y, 1_{y^{r-2}z^{r-1}} \rangle_0^W = q \langle 1_y, 1_{y^{r-1}z}, 1_y, 1_{y^{r-2}z^{r-1}} \rangle_0^W = \frac{1}{2}.$$  

For 3-Loop $W = x^2 z + xy^2 + yz^3$, $1_{\phi_\mu} = 1_{xy^2}$. We get

$$\langle 1_y, 1_x, 1_{xy} \cdot 1_{z^2}, 1_x \rangle_0^W = \langle 1_y, 1_x, 1_{xy}, 1_z \cdot 1_x \rangle_0^W - \langle 1_y, 1_x, 1_{xy}, 1_{z^2} \rangle_0^W = \frac{1}{3} - (-2) \frac{2}{3} = \frac{5}{3}.$$  

$$\langle 1_z, 1_y, 1_z \cdot 1_{xyz}, 1_y \rangle_0^W = \langle 1_z, 1_y \cdot 1_z, 1_{xyz}, 1_y \rangle_0^W - \langle 1_z, 1_y \cdot 1_y, 1_z, 1_{xyz} \rangle_0^W = \frac{1}{3} - (-3) \frac{1}{3} = \frac{4}{3}.$$  

For $W = x^2 + xy^4 + z^3$, $1_x$ is broad. However,

$$\langle 1_y, 1_x, 1_{\phi_\mu}, 1_x \rangle_0^W = -\langle 1_y, 1_x \cdot 1_x, 1_y, 1_{yz^2} \rangle_0^W = 4 \langle 1_y, 1_y, 1_y, 1_{y^2z} \rangle_0^W = \frac{1}{2}.$$
For \( W = x^2 y + xy^3 + z^3 \), we get

\[
\langle 1_y, 1_x, 1_{xy} \bullet 1_{yz}, 1_x \rangle_0^W + \langle 1_y, 1_x \bullet 1_{xy}, 1_{yz} \rangle_0^W = \langle 1_y, 1_x, 1_{xy}, 1_{yz} \bullet 1_x \rangle_0^W
\]

\[
= -\frac{1}{2} \langle 1_y, 1_x, 1_y \bullet 1_{yz}, 1_x \rangle_0^W = -\frac{1}{2} \langle 1_y, 1_{xy}, 1_y, 1_{yz} \rangle_0^W = \langle 1_y, 1_{xy}, 1_y \bullet 1_{yz}, 1_{xy} \rangle_0^W
\]

\[
= -\langle 1_y, 1_{xy}, 1_y, 1_{xy} \rangle_0^W.
\]

The first, third and last equalities are WDVV equations. Finally, we get

\[
\langle 1_x, 1_y, 1_{xy^2} \rangle_0^W = \langle 1_y, 1_x, 1_y \rangle_0^W = \langle 1_y, 1_y \rangle_0^W = -\langle 1_x, 1_y \rangle_0^W = -\left( -\frac{1}{5} \right) = \frac{2}{5}.
\]

For \( W = x^2 y + y^2 + z^4 \), we get

\[
\langle 1_y, 1_x, 1_y \bullet 1_{yz}, 1_{xy} \rangle_0^W = \langle 1_y, 1_y, 1_{xy}, 1_{yz} \rangle_0^W - \langle 1_y, 1_{xy}, 1_y, 1_{yz} \rangle_0^W
\]

\[
= \left( \langle 1_y, 1_{xy}, 1_y \bullet 1_{yz}, 1_{xy} \rangle_0^W - \langle 1_y, 1_{xy}, 1_{xz}, 1_{xy} \rangle_0^W \right) - \langle 1_x, 1_y \bullet 1_{yz}, 1_{xy} \rangle_0^W.
\]

Combining this equation and \( y^2 = -2x \), we get

\[
\langle 1_x, 1_y, 1_{xy^2}, 1_y \rangle_0^W = \langle 1_y, 1_x, 1_y \rangle_0^W + \langle 1_x, 1_y, 1_{xy}, 1_{xz} \rangle_0^W = \langle 1_y, 1_x, 1_y \rangle_0^W = \frac{3}{8}.
\]

\[
\square
\]

2.3. Nonvanishing invariants. In this subsection, we will prove Lemma 2.6. Our tool is the Getzler’s relation [16], which is a linear relation between codimension two cycles in \( H_*(\overline{\mathcal{M}}_{1,4}, \mathbb{Q}) \). Let us briefly introduce this relation here. Consider the dual graph,

\[
\Delta_0 \cdot \Delta_{\{234\}} := \begin{array}{c}
\circ \\
1 \\
2 \\
3 \\
4 
\end{array}
\]

This graph represents a codimension-two stratum in \( \overline{\mathcal{M}}_{1,4} \): A vertex represents a genus-0 component. An edge connecting two vertices (including a circle connecting the same vertex) represents a node, a tail (or half-edge) represents a marked point on the component of the corresponding vertex. Let \( \Delta_{0,3} \) be the \( S_4 \)-invariant of the codimension-two stratum in \( \overline{\mathcal{M}}_{1,4} \),

\[
\Delta_{0,3} = \Delta_0 \cdot \Delta_{\{123\}} + \Delta_0 \cdot \Delta_{\{124\}} + \Delta_0 \cdot \Delta_{\{134\}} + \Delta_0 \cdot \Delta_{\{234\}}.
\]

We denote \( \delta_{0,3} = [\Delta_{0,3}] \) the corresponding cycle in \( H_4(\overline{\mathcal{M}}_{1,4}, \mathbb{Q}) \). We list the corresponding unordered dual graph for other strata below. A filled circle (as a vertex) represents a genus-1 component. See [16] for more details.
We start with Proof of Lemma 2.6:

law \[13\text{, Theorem 4.1.8 (6)}\] in FJRW theory implies

This implies

δ

(2.26) 12

⟨

are two correlators contain broad sectors, we simply denote

We integrate

S

4

= ∫

δ

(1,1)

J

1

, 9

J

9

, 1

which contribute. We have the

give the same correlator.

Finally, 1f is the identity, and the string equation implies \( \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W = 0 \). There are two correlators contain broad sectors, we simply denote

\[ C_1 := \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W, \quad C_2 := \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W. \]

We can calculate the concave correlators using orbifold-GRR formula in (2.16) and get

\[ \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W = \frac{1}{4}, \quad \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W = -\frac{1}{8}, \quad \langle 1_f, 1_f, 1_f, 1_f \rangle_0^W = \frac{1}{8}. \]

This implies

\[ \int_{\delta_{0,3}} \Lambda_{1,4}^W(1_f, 1_f, 1_f, 1_f) = C_2 + \frac{C_1}{2} + \frac{1}{4}. \]
Similarly, we get
\[
\int_{\delta_0} \Lambda_{1,4}^W(1, 1, 1, 1) = 6C_2^2 + 3C_1^2 + \frac{9}{16}, \quad \int_{\delta_0} \Lambda_{1,4}^W(1, 1, 1, 1) = \frac{165}{128}.
\]
The last equality requires the computation for a genus-0 correlator with 5 marked points. It is reconstructed from some known 4-point correlators by WDVV equations. On the other hand, using the homological degree (2.8), we conclude the vanishing of the integration of \(\Lambda_{1,4}^W(1, 1, 1, 1)\) over those strata which contain genus-1 component. Thus
\[
\int_{12\delta_2 + 4\delta_3 - 2\delta_4 + 6\delta_5} \Lambda_{1,4}^W(1, 1, 1, 1) = 0.
\]
Now apply Getzler’s relation (2.26), we get
\[
(2.27) \quad -12C_2^2 + C_1 - 3C_1^2 + \frac{53}{128} = 0.
\]
On the other hand, since \(1, 1 = 1_{113} \cdot 1_{113}\), we apply WDVV equations and get
\[
\begin{align*}
\langle u, u, 1 \rangle_0^W &= \left(\langle 1_{113}, u, v \rangle_0^W \right)^2, \\
\langle 1, 1, 1 \rangle_0^W + \langle 1_{113}, 1_{113}, 1 \rangle_0^W &= 2\langle 1, 1, 1 \rangle_0^W \langle 1_{113}, u, v \rangle_0^W, \\
\langle 1, 1, 1 \rangle_0^W + \langle 1_{113}, 1_{113}, 1 \rangle_0^W &= \langle 1, 1, 1 \rangle_0^W \langle 1_{113}, u, v \rangle_0^W.
\end{align*}
\]
If \(\langle u, u, 1 \rangle_0^W = 0\), then \(\langle 1, 1, 1 \rangle_0^W = 0\) and the rest two equations above implies
\[
C_1 = C_2 = -\langle 1, 1, 1, 1 \rangle_0^W = -\frac{3}{16},
\]
where the last equality follows from (2.16). However, this contradicts with formula (2.27).

Next we consider \(W = x^2 + xy^3 + y^2\). We denote
\[
\begin{align*}
&u := y^21_{113}, \\
&w := -3y^21_{113}, \\
&C_1 := \langle 1_{113}, 1_{113}, w, w \rangle_0^W, \\
&C_2 := \langle 1, 1_{113}, u, w \rangle_0^W, \\
&C_3 := \langle 1, 1, 1, u, u \rangle_0^W.
\end{align*}
\]
We integrate \(\Lambda_{1,4}^W(1_{113}, 1_{113}, 1, 1)\) over the Getzler’s relation (2.26) and get
\[
(2.28) \quad -8C_2^2 - \frac{2C_2}{3} - 3C_1C_3 + \frac{8}{81} = 0.
\]
On the other hand, since \(1, 1 = 1_{113} \cdot 1_{113}\), the WDVV equations imply
\[
\begin{align*}
\langle 1, 1_{113}, u, w \rangle_0^W + \langle 1_{113}, 1_{113}, 1, 1 \rangle_0^W &= \langle 1_{113}, 1_{113}, w, w \rangle_0^W \langle 1, 1_{113}, u, u \rangle_0^W, \\
\langle 1, 1_{113}, u, u \rangle_0^W &= \langle 1, 1_{113}, u, w \rangle_0^W \langle 1, 1_{113}, u, u \rangle_0^W.
\end{align*}
\]
Now \(\langle 1, 1_{113}, u, u \rangle_0^W = 0\) implies \(C_2 = -\frac{5}{18}\) and \(C_3 = 0\). This contradicts with (2.28). \(\square\)
3. B-model: Saito’s theory of primitive form

Throughout this section, we consider the Landau-Ginzburg B-model defined by

\[ f : X = \mathbb{C}^n \to \mathbb{C}, \]

where \( f \) is a weighted homogeneous polynomial with isolated singularity at the origin:

\[ f(\lambda^{q_1}x_1, \ldots, \lambda^{q_n}x_n) = \lambda f(x_1, \ldots, x_n). \]

Recall that \( q_i \) are called the weights of \( x_i \), and the central charge of \( f \) is defined by

\[ \hat{c}_f = \sum_i (1 - 2q_i). \]

Associated to \( f \), the third author has introduced the concept of a primitive form \[40\], which, in particular, induces a Frobenius manifold structure (sometimes called a flat structure) on the local universal deformation space of \( f \). This gives rise to the genus zero correlation functions in the Landau-Ginzburg B-model, which are conjectured to be equivalent to the FJRW-invariants on the mirror singularities.

The general existence of primitive forms for local isolated singularities is proved by M.Saito \[45\] via Deligne’s mixed Hodge theory. In the case for \( f \) being a weighted homogeneous polynomial, the existence problem is greatly simplified due to the semisimplicity of the monodromy \[40, 45\]. However, explicit formulas of primitive forms were only known for ADE and simple elliptic singularities \[40\] (i.e., for \( \hat{c}_f \leq 1 \)). This led to the difficulty of computing correlation functions in the Landau-Ginzburg B-model, and has become one of the main obstacles toward proving mirror symmetry between Landau-Ginzburg models.

Recently there has developed a perturbative method \[31\] to compute the primitive forms for arbitrary weighted homogeneous singularities. With the help of certain reconstruction type theorem from the WDVV equation (see e.g. Lemma \[4.2\]), it completely solves the computation problem in the Landau-Ginzburg B-model at genus zero.

In this section, we will give a self-contained exposition of the method of \[31\] for the purpose of applications to mirror symmetry, and compute the relevant correlation functions for the 14 exceptional unimodular singularities.

3.1. Higher residue and good basis. Let \( 0 \in X = \mathbb{C}^n \) be the origin. Let \( \Omega^k_{X,0} \) be the germ of holomorphic \( k \)-forms at \( 0 \). In this paper we will work with the following space \[41\]

\[ \mathcal{H}_f^{(0)} := \Omega^u_{X,0}[[z]]/(df + zd)\Omega^{u-1}_{X,0}. \]
which is a formally completed version of the Brieskorn lattice associated to $f$. Given a differential form $\varphi \in \Omega^n_{\mathcal{X},0}$, we will use $[\varphi]$ to represent its class in $\mathcal{H}^{(0)}_f$.

There is a natural semi-infinite Hodge filtration on $\mathcal{H}^{(0)}_f$ given by $\mathcal{H}^{(-k)}_f := z^k \mathcal{H}^{(0)}_f$, with graded pieces

$$\mathcal{H}^{(-k)}_f / \mathcal{H}^{(-k-1)}_f \cong \Omega_f, \quad \text{where } \Omega_f := \Omega^n_{\mathcal{X},0} / df \wedge \Omega^{n-1}_{\mathcal{X},0}.$$ 

In particular, $\mathcal{H}^{(0)}_f$ is a free $\mathbb{C}[[z]]$-module of rank $\mu = \dim_{\mathbb{C}} \text{Jac}(f)_0$, the Milnor number of $f$. We will also denote the extension to Laurent series by $\mathcal{H}_f := \mathcal{H}^{(0)}_f \otimes_{\mathbb{C}[[z]]} \mathbb{C}((z))$.

There is a natural $\mathbb{Q}$-grading on $\mathcal{H}^{(0)}_f$ defined by assigning the degrees

$$\deg(x_i) = q_i, \quad \deg(dx_i) = q_i, \quad \deg(z) = 1.$$ 

Then for a homogeneous element of the form $\varphi = z^k g(x_1) dx_1 \wedge \cdots \wedge dx_{n^\prime}$, we have

$$\deg(\varphi) = \deg(g) + k + \sum_i q_i.$$ 

In [41], the third author constructed a higher residue pairing

$$K_f : \mathcal{H}^{(0)}_f \otimes \mathcal{H}^{(0)}_f \to z^n \mathbb{C}[[z]]$$

which satisfies the following properties

1. $K_f$ is equivariant with respect to the $\mathbb{Q}$-grading, i.e.,

   $$\deg(K_f(\alpha, \beta)) = \deg(\alpha) + \deg(\beta)$$

   for homogeneous elements $\alpha, \beta \in \mathcal{H}^{(0)}_f$.

2. $K_f(\alpha, \beta) = (-1)^n K_f(\beta, \alpha)$, where the $-$ operator takes $z \to -z$.

3. $K_f(v(z)\alpha, \beta) = K_f(\alpha, v(-z)\beta) = v(z) K_f(\alpha, \beta)$ for $v(z) \in \mathbb{C}[[z]]$.

4. The leading $z$-order of $K_f$ defines a pairing

   $$\mathcal{H}^{(0)}_f / z \mathcal{H}^{(0)}_f \otimes \mathcal{H}^{(0)}_f / z \mathcal{H}^{(0)}_f \to \mathbb{C}, \quad \alpha \otimes \beta \mapsto \lim_{z \to 0} z^{-n} K_f(\alpha, \beta)$$

   which coincides with the usual residue pairing

   $$\eta_f : \Omega_f \otimes \Omega_f \to \mathbb{C}.$$ 

The last property implies that $K_f$ defines a semi-infinite extension of the residue pairing, which explains the name “higher residue”. It is naturally extended to

$$K_f : \mathcal{H}_f \otimes \mathcal{H}_f \to \mathbb{C}((z))$$
which we denote by the same symbol. This defines a symplectic pairing $ω_f$ on $\mathcal{H}_f$ by

$$ω_f(\alpha, \beta) := \operatorname{Res}_{z=0} z^{-n}K_f(\alpha, \beta)dz,$$

with $\mathcal{H}_f^{(0)}$ being a maximal isotropic subspace. Following [40],

**Definition 3.1.** A good section $σ$ is defined by a splitting of the quotient $\mathcal{H}_f^{(0)} \to \Omega_f$,

$$σ : \Omega_f \to \mathcal{H}_f^{(0)},$$

such that: (1) $σ$ preserves the $\mathbb{Q}$-grading; (2) $K_f(\operatorname{Im}(σ), \operatorname{Im}(σ)) \subset z^n\mathbb{C}$.

A basis of the image $\operatorname{Im}(σ)$ of a good section $σ$ will be referred to as a good basis of $\mathcal{H}_f^{(0)}$.

**Definition 3.2.** A good opposite filtration $\mathcal{L}$ is defined by a splitting

$$\mathcal{H}_f = \mathcal{H}_f^{(0)} \oplus \mathcal{L}$$

such that: (1) $\mathcal{L}$ preserves the $\mathbb{Q}$-grading; (2) $\mathcal{L}$ is an isotropic subspace; (3) $z^{-1} : \mathcal{L} \to \mathcal{L}$.

**Remark 3.3.** Here for $f$ being weighted homogeneous, (1) is a convenient and equivalent statement to the conventional condition that $\nabla^{GM}_{z \partial_z}$ preserves $\mathcal{L}$ (see e.g. [31] for an exposition).

The above two definitions are equivalent. In fact, a good opposite filtration $\mathcal{L}$ defines the splitting $σ : \Omega_f \xrightarrow{\sim} \mathcal{H}_f^{(0)} \cap z\mathcal{L}$. Conversely, a good section $σ$ gives rise to the good opposite filtration $\mathcal{L} = z^{-1}\operatorname{Im}(σ)[z^{-1}]$. As shown in [40, 45], the primitive forms associated to the weighted homogeneous singularities are in one-to-one correspondence with good sections (up to a nonzero scalar). Therefore, we only introduce the notion of good sections, and refer our readers to loc. cite for precise notion of the primitive forms. We remark that for general isolated singularities, we need the notion of very good sections [45, 46] in order to incorporate with the monodromy.

### 3.2. The Perturbative Equation

We start with a good basis $\{[φ_α d^n x]\}_{α=1}^μ$ of $\mathcal{H}_f^{(0)}$, where $d^n x := dx_1 \cdots dx_n$. In this subsection, we will formulate the perturbative method of [31] for computing its associated primitive form, flat coordinates and the potential function. The construction works for general $f$ after the replacement of a good basis by a very good one (see also [46]). We will focus on $f$ being weighted homogeneous since in such case it leads to a very effective computation algorithm in practice. In the following discussion we will then assume $\{φ_α\}_{α=1}^μ$ to be weighted homogeneous polynomials in $\mathbb{C}[x]$ that represent a basis of the Jacobi algebra $\text{Jac}(f)$ and $φ_1 = 1$. 
3.2.1. The exponential map. Let $F$ be a local universal unfolding of $f(x)$ around $0 \in \mathbb{C}^\mu$:

$$F : \mathbb{C}^n \times \mathbb{C}^\mu \to \mathbb{C}, \quad F(x, s) := f(x) + \sum_{\alpha=1}^{\mu} s_\alpha \phi_\alpha(x), \quad s = (s_1, \cdots, s_\mu).$$

The polynomial $F$ becomes weighted homogeneous of total degree 1 after the assignment

$$\text{deg}(s_\alpha) := 1 - \text{deg}(\phi_\alpha).$$

The higher residue pairing is also defined for $F$ as the family version, but we will not use it explicitly in our discussion (although implicitly used essentially).

Let $B := \text{Span}_\mathbb{C}\{\phi_\alpha d^n x\} \subset \mathcal{H}_f^{(0)}$ be spanned by the chosen good basis. Then

$$\mathcal{H}_f^{(0)} = B[[z]], \quad \mathcal{H}_f = B((z)).$$

Let $B_F := \text{Span}_\mathbb{C}\{\phi_\alpha d^n x\}$ be another copy of the vector space spanned by the forms $\phi_\alpha d^n x$. We use a different notation to distinguish it with $B$, since $B_F$ should be viewed as a subspace of the Brieskorn lattice for the unfolding $F$. See [31] for more details.

Consider the following exponential operator [31]

$$e^{(F-f)/z} : B_F \to B((z))[[s]]$$

defined as a $\mathbb{C}$-linear map on the basis of $B_F$ as follows. Let $\mathbb{C}[s]_k := \text{Sym}^k(\text{Span}_\mathbb{C}\{s_1, \cdots, s_\mu\})$ denote the space of $k$-homogeneous polynomial in $s$ (not to be confused with the weighted homogeneous polynomials). As elements in $\mathcal{H}_f \otimes \mathbb{C}[s]_k$, we can decompose

$$[z^{-k}(F - f)^k \phi_\alpha d^n x] = \sum_{m \geq -k} \sum_{\beta} h^{(k)}_{\alpha \beta, m} z^m [\phi_\beta d^n x],$$

where $h^{(k)}_{\alpha \beta, m} \in \mathbb{C}[s]_k$. Then we define

$$e^{(F-f)/z} (\phi_\alpha d^n x) := \sum_{k=0}^{\infty} \sum_{m \geq -k} h^{(k)}_{\alpha \beta, m} z^m [\phi_\beta d^n x] \in B((z))[[s]]$$

**Proposition 3.4.** The exponential map extends to a $\mathbb{C}((z))[[s]]$-linear isomorphism

$$e^{(F-f)/z} : B_F((z))[[s]] \to B((z))[[s]].$$

**Proof.** Clearly, $e^{(F-f)/z}$ extends to a $\mathbb{C}((z))[[s]]$-linear map on $B_F((z))[[s]]$. The statement follows by noticing $e^{(F-f)/z} \equiv 1 \mod (s)$ under the manifest identification between $B$ and $B_F$. \hfill \square

We will use the same symbol

$$K_f : B((z))[[s]] \times B((z))[[s]] \to \mathbb{C}((z))[[s]]$$

to denote the $\mathbb{C}[[s]]$-linear extension of the higher residue pairing to $\mathcal{H}_f[[s]] = B((z))[[s]]$. 
Lemma 3.5. For any \( \varphi_1, \varphi_2 \in B_F \), we have
\[
K_F(e^{(F-f)/z}\varphi_1, e^{(F-f)/z}\varphi_2) \in \mathbb{C}[[z, s]]
\]
In particular, \( e^{(F-f)/z} \) maps \( B_F[[z]] \) to an isotropic subspace of \( \mathcal{H}_f[[s]] \).

Proof. Let \( K_F \) denote the higher residue pairing for the unfolding \( F^{[1]} \). The exponential operator \( e^{(F-f)/z} \) gives an isometry (with respect to the higher residue pairing) between the Brieskorn lattice for the unfolding \( F \) and the trivial unfolding \( f^{[31,46]} \). That is, \( K_F(e^{(F-f)/z}\varphi_1, e^{(F-f)/z}\varphi_2) = K_F(\varphi_1, \varphi_2) \in \mathbb{C}[[z, s]] \), where \( \varphi_1, \varphi_2 \) are treated as elements of Brieskorn lattice for the unfolding \( F \).

Remark 3.6. The above lemma can also be proved directly via an explicit formula of \( K_f \) described in \( [31] \). By such a formula, there exists a compactly supported differential operator \( \mathcal{P}(\frac{\partial}{\partial x_i}, z \frac{\partial}{\partial x_i}, \partial_x, \wedge dz_i) \) on smooth differential forms composed of \( \frac{\partial}{\partial x_i}, z \frac{\partial}{\partial x_i}, \partial_x, \wedge dz_i \) and some cut-off function such that
\[
K_F(e^{(F-f)/z}\varphi_1, e^{(F-f)/z}\varphi_2) = z^n \int_X e^{(F-f)/z}\varphi_1 \wedge \mathcal{P}(\frac{\partial}{\partial x_i}, z \frac{\partial}{\partial x_i}, \partial_x, \wedge dz_i)(e^{-(F-f)/z}\varphi_2).
\]
Since \( \mathcal{P} \) will not introduce negative powers of \( z \) when passing through \( e^{(F-f)/z} \), the lemma follows.

Theorem 3.7. Given a good basis \( \{[\alpha d^n x]\}_{\alpha=1}^\mu \subset \mathcal{H}_f^{(0)} \), there exists a unique pair \((\zeta, \mathcal{J})\) satisfying the following: (1) \( \zeta \in B_F[[z]][[s]] \), \( \mathcal{J} \in [d^n x] + z^{-1}B[z^{-1}][[s]] \subset \mathcal{H}_f[[s]] \), and \((*)\)
\[
e^{(F-f)/z}\zeta = \mathcal{J}.
\]
Moreover, both \( \zeta \) and \( \mathcal{J} \) are weighted homogeneous.

Proof. We will solve \( \zeta(s) \) recursively with respect to the order in \( s \). Let
\[
\zeta = \sum_{k=0}^\infty \zeta(k) = \sum_{k=0}^\infty \sum_\alpha \zeta_{(k)}^\alpha \phi_\alpha d^n x, \quad \zeta_{(k)}^\alpha \in \mathbb{C}[[z]] \otimes \mathbb{C}[s]_k.
\]
Since \( e^{(F-f)/z} \equiv 1 \mod (s) \), the leading order of \((*)\) is
\[
\zeta_{(0)} \in [d^n x] + z^{-1}B[z^{-1}]
\]
which is uniquely solved by \( \zeta_{(0)} = \phi_1 d^n x \). Suppose we have solved \((*)\) up to order \( N \), i.e., \( \zeta_{(\leq N)} := \sum_{k=0}^N \zeta(k) \) such that
\[
e^{(F-f)/t} \zeta_{(\leq N)} \in [d^n x] + z^{-1}B[z^{-1}][[s]] \mod (s^{N+1}).
\]
Let \( R_{N+1} \in B((z)) \otimes \mathbb{C}[s]_{(N+1)} \) be the \( (N+1) \)-th order component of \( e^{(F-f)/t} \zeta_{(\leq N)} \). Let
\[
R_{N+1} = R_{N+1}^+ + R_{N+1}^-
\]
where $R^+_{N+1} \in B[[z]] \otimes_{\mathbb{C}} \mathbb{C}[s]_{(N+1)}$, $R^-_{N+1} \in z^{-1}B[z^{-1}] \otimes_{\mathbb{C}} \mathbb{C}[s]_{(N+1)}$. Let $\tilde{R}^+_{N+1} \in B_F[[z]] \otimes_{\mathbb{C}} \mathbb{C}[s]_{(N+1)}$ correspond to $R^+_{N+1}$ under the manifest identification between $B$ and $B_F$. Then

$$\tilde{\zeta}_{(\leq N+1)} := \zeta_{(\leq N)} - \tilde{R}^+_{N+1}$$

gives the unique solution of $\ast$ up to order $N + 1$. This algorithm allows us to solve $\zeta, J$ perturbatively to arbitrary order. The weighted homogeneity follows from the fact that $\ast$ respects the weighted degree.

\begin{remark}
The above theorem has been essentially proved in [31]. Therein it is shown that the volume form

$$\sum_{k=0}^{\infty} \sum_{\alpha} \zeta_{(k)}^\alpha \phi_\alpha d^n x$$

gives the power series expansion of a representative of the primitive form associated to the good basis $\{[\phi_\alpha d^n x]\}_\mu^{\alpha=1}$. In particular, this is a perturbative way to compute the primitive form via a formal solution of the Riemann-Hilbert-Birkhoff problem.
\end{remark}

3.2.2. Flat coordinates and potential function. Let $(\zeta, J)$ be the unique solution of $\ast$. As shown in [31], $\zeta$ represents the power series expansion of a primitive form. However for the purpose of mirror symmetry, it is more convenient to work with $J$, which plays the role of Givental’s J-function (see [20] for an introduction). This allows us to read off the flat coordinates and the potential function of the associated Frobenius manifold structure.

With the natural embedding $z^{-1}C[z^{-1}][[s]] \hookrightarrow z^{-1}C[[z^{-1}]][[s]]$, we decompose

$$J = [d^n x] + \sum_{m=-1}^{-\infty} z^m J_m, \quad \text{where } J_m = \sum_{\alpha} J_m^\alpha [\phi_\alpha d^n x], J_m^\alpha \in \mathbb{C}[[s]].$$

We denote the $z^{-1}$-term by

$$t_\alpha(s) := J_{-1}^\alpha(s).$$

It is easy to see that $t_\alpha$ is weighted homogeneous of the same degree as $s_\alpha$ such that $t_\alpha = s_\alpha + O(s^2)$. Therefore $t_\alpha$ defines a set of new homogeneous local coordinates on the (formal) deformation space of $f$.

\begin{proposition}
The function $J = J(s(t))$ in coordinates $t_\alpha$ satisfies

$$\partial_{t_\alpha} \partial_{t_\beta} J = z^{-1} \sum_{\gamma} A_{\alpha\beta}^\gamma(t) \partial_{t_\gamma} J$$

for some homogeneous $A_{\alpha\beta}^\gamma(t) \in \mathbb{C}[[t]]$ of weighted degree $\deg \phi_\alpha + \deg \phi_\beta - \deg \phi_\gamma$. Moreover, for any $\alpha, \beta, \gamma, \delta$,

$$\partial_{t_\alpha} A_{\beta\gamma}^\delta = \partial_{t_\beta} A_{\alpha\gamma}^\delta, \quad \sum_{\sigma} A_{\alpha\sigma}^\delta A_{\beta\gamma}^\sigma = \sum_{\sigma} A_{\beta\sigma}^\delta A_{\alpha\gamma}^\sigma$$

\end{proposition}
Proof. Consider the splitting
\[ \mathcal{H}_f[[s]] = B((z))[[s]] = \mathcal{H}_+ \oplus \mathcal{H}_-, \]
where
\[ \mathcal{H}_+ := e^{(F-f)/z}(B_F[[z]][[s]]) \subset B((z))[[s]], \quad \mathcal{H}_- := z^{-1}B[z^{-1}][[s]]. \]
Let \( \mathcal{B}_F := \mathcal{H}_+ \cap z\mathcal{H}_- \). Equation \((*)\) implies that \( z\partial_{t_\alpha} J \in \mathcal{B}_F \), with \( z \)-leading term of constant coefficient
\[ z\partial_{t_\alpha} J \in [\phi_\alpha d^n x] + \mathcal{H}_-. \]
In particular, \( \{ z\partial_{t_\alpha} J \} \) form a \( \mathbb{C}[[s]] \)-basis of \( \mathcal{B}_F \).

Similarly, \( z^2\partial_{t_\alpha} \partial_{t_\beta} J = z^2\partial_{t_\alpha} \partial_{t_\beta} (e^{(F-f)/z} \zeta) \in \mathcal{H}_+ \), and \( z^2\partial_{t_\alpha} \partial_{t_\beta} J \in z\mathcal{H}_- \) by the above property of leading constant coefficient. Therefore \( z^2\partial_{t_\alpha} \partial_{t_\beta} J \in \mathcal{B}_F \). This implies the existence of functions \( A^\beta_{\alpha\beta} = A^\beta_{\alpha\beta}(s(t)) \) such that
\[ z^2\partial_{t_\alpha} \partial_{t_\beta} J = \sum_\gamma zA^\gamma_{\alpha\beta}(t)\partial_{t_\gamma} J. \]
The homogeneous degree follows from the fact that \( J \) is weighted homogeneous.

Let \( A_\alpha \) denote the linear transformation on \( \mathcal{B}_F \) by
\[ A_\alpha : z\partial_{t_\beta} J \rightarrow \sum_\gamma A^\gamma_{\alpha\beta} z\partial_{t_\gamma} J. \]
We can rewrite the above equation as \((\partial_{t_\alpha} - z^{-1}A_\alpha)\partial_{t_\beta} J = 0\). We notice that
\[ [\partial_{t_\alpha} - z^{-1}A_\alpha, \partial_{t_\beta} - z^{-1}A_\beta] = 0 \text{ on } \mathcal{B}_F, \quad \forall \alpha, \beta. \]
Therefore the last equations in the proposition hold. \( \square \)

Lemma 3.10. In terms of the coordinates \( t_\alpha \), we have
\[ K_f(z\partial_{t_\alpha} J, z\partial_{t_\beta} J) = z^n g_{\alpha\beta}. \]
Here \( g_{\alpha\beta} \) is the constant equal to the residue pairing \( \eta_f(\phi_\alpha d^n x, \phi_\beta d^n x) \).

Proof. We adopt the same notations as in the above proof. Since \( z\partial_{t_\alpha} J \in \mathcal{H}_+ \),
\[ K_f(z\partial_{t_\alpha} J, z\partial_{t_\beta} J) \in z^n \mathbb{C}[[z]][[s]] \]
by Lemma 3.5. Since also \( z\partial_{t_\alpha} J = [\phi_\alpha d^n x] + \mathcal{H}_- \in z\mathcal{H}_- \), we have
\[ K_f(z\partial_{t_\alpha} J, z\partial_{t_\beta} J) \in z^n g_{\alpha\beta} + z^{n-1}\mathbb{C}[z^{-1}][[s]]. \]
The lemma follows from the above two properties. \( \square \)

Corollary 3.11. Let \( A_{\alpha\beta\gamma}(t) := \sum_\delta A^\delta_{\alpha\beta\gamma} g_{\delta\gamma} \). Then \( A_{\alpha\beta\gamma} \) is symmetric in \( \alpha, \beta, \gamma \).
Moreover, \( \partial_t, K_f(z \partial_z \mathcal{J}, z \partial_z \mathcal{J}) = 0 \). The corollary now follows from Proposition \(3.9\) \(\square\).

The properties in the propositions of this subsection can be summarized as follows. The triple \((\partial_{t_a}, A_{\alpha \beta}^\gamma, g_{\alpha \beta})\) defines a (formal) Frobenius manifold structure on a neighborhood \(S\) of the origin with \(\{t_a\}\) being the flat coordinates, together with the potential function \(\mathcal{F}_0(t)\) satisfying

\[
A_{\alpha \beta}^\gamma(t) = \partial_{t_a} \partial_{t_b} \partial_{t_c} \mathcal{F}_0(t).
\]

It is not hard to see that \(\mathcal{F}_0(t)\) is homogeneous of degree \(3 - \hat{\epsilon}_f\). As in the next proposition, the potential function \(\mathcal{F}_0(t)\) can also be computed perturbatively. Let

\[
\mathcal{F}_0(t) = \mathcal{F}_{0, (\leq N)}(t) + O(t^{N+1}).
\]

**Proposition 3.12.** The potential function \(\mathcal{F}_0\) associated to the unique pair \((\zeta, \mathcal{J})\) satisfies

\[
\partial_{t_a} \mathcal{F}_0(t) = \sum_{\beta} g_{\alpha \beta} \mathcal{J}_2^\alpha(s(t)).
\]

Moreover, \(\mathcal{F}_{0, (\leq N)}(t)\) is determined by \(\zeta_{(\leq N-3)}(s)\).

**Proof.** The first statement follows directly from Proposition \(3.9\).

Recall \(\zeta(s) = \zeta_{(\leq N)}(s) + O(s^{N+1})\). Let \(\mathcal{J}_m^\alpha(s) = \mathcal{J}_{m, (\leq N)}^\alpha(s) + O(s^{N+1})\). It is easy to see that \(\mathcal{F}_{0, (\leq N)}(t)\) only depends on \(\mathcal{J}_{m, (\leq N-2)}^\alpha(s), \mathcal{J}_{m, (\leq N-1)}^\alpha(s), \) and \(\mathcal{J}_{m, (\leq N)}^\alpha(s)\) only depends on \(\zeta_{(\leq N+m)}(s)\). Hence, the second statement follows. \(\square\)

**Remark 3.13.** By Remark \(3.8\), \(\zeta\) is in fact an analytic primitive form. Therefore, both \(t_a\) and \(\mathcal{F}_0(t)\) are in fact analytic functions of \(s\) at the germ \(s = 0\).

### 3.3. Computation for exceptional unimodular singularities

We start with the next proposition, which follows from a related statement for Brieskorn lattices \(22\). An explicit calculation of the moduli space of good sections for general weighted homogenous polynomials is also given in \([31, 46]\). For exposition, we include a proof here.

**Proposition 3.14.** If \(f\) is one of the 14 exceptional unimodular singularities, then there exists a unique good section \(\{[\phi_\alpha d^\mu x]\}_{\alpha=1}^\mu\), where \(\{\phi_\alpha\} \subset \mathbb{C}[x]\) are (arbitrary) weighted homogeneous representatives of a basis of the Jacobi algebra \(\text{Jac}(f)\).

**Proof.** We give the details for \(E_{12}\)-singularity. The other 13 types are established similarly.

The \(E_{12}\)-singularity is given by \(f = x^3 + y^7\) with \(\deg x = \frac{1}{3}\), \(\deg y = \frac{1}{7}\), and central charge \(\hat{\epsilon}_f = \frac{22}{21}\). We consider the weighted homogeneous monomials

\[
\{\phi_1, \cdots, \phi_{12}\} = \{1, y, y^2, x, y^3, xy, y^4, xy^2, y^5, xy^3, xy^4, xy^5\} \subset \mathbb{C}[x, y]
\]
which represent a basis of \( \text{Jac}(f) \). The classical residue pairing \( g_{\alpha \beta} \) between \( \phi_\alpha, \phi_\beta \) is equal to 1 if \( \alpha + \beta = 13 \), and 0 otherwise. Since \( K_f \) preserves the \( \mathbb{Q} \)-grading,

\[
\deg K_f([\phi_\alpha dx dy], [\phi_\beta dx dy]) = \deg \phi_\alpha + \deg \phi_\beta + 2 - \hat{c}_f,
\]

which has to be an integer for a non-zero pairing. A simple degree counting implies that

\[
K_f([\phi_\alpha dx dy], [\phi_\beta dx dy]) = z^2 g_{\alpha \beta}
\]

and therefore \([\phi_\alpha dx dy] \) constitutes a good basis.

Let \( \{ \phi'_\alpha \} \) be another set of weighted homogeneous polynomials such that \( \{ [\phi'_\alpha dx dy] \} \) gives a good basis. We can assume \( \phi'_\alpha \equiv \phi_\alpha \) as elements in \( \text{Jac}(f) \) and \( \deg \phi'_\alpha = \deg \phi_\alpha \). Since \([\phi_\alpha dx dy] \) forms a \( \mathbb{C}[[z]] \)-basis of \( \mathcal{H}_f^{(0)} \), we can decompose

\[
[\phi'_\alpha dx dy] = \sum_{\beta} R^\beta_\alpha [\phi_\beta dx dy], \quad R^\beta_\alpha \in \mathbb{C}[[z]].
\]

By the weighted homogeneity, \( R^\beta_\alpha \) is homogeneous of degree \( \deg \phi_\alpha - \deg \phi_\beta \), which is not an integer unless \( \alpha = \beta \). Thus \( [\phi'_\alpha dx dy] = [\phi_\alpha dx dy] \), and hence the uniqueness. \( \square \)

Let \( \mathcal{F}_0 \) be the potential function of the associated Frobenius manifold structure. Then \( \mathcal{F}_0 \) is an analytic function, as an immediate consequence of the above uniqueness together with the existence of the (analytic) primitive form. As will be shown in Lemma 4.2, we only need to compute \( \mathcal{F}_{0,(\leq 4)} \) to prove mirror symmetry.

We illustrate the perturbative calculation for the \( E_{12} \)-singularity \( f = x^3 + y^7 \). The full result is summarized in the appendix by similar calculations. We adopt the same notations as in the proof of Proposition 3.14. By Proposition 3.12, we only need \( \zeta_{(\leq 1)} \) to compute \( \mathcal{F}_{0,(\leq 4)} \), which is

\[
\zeta_{(\leq 1)} = dx dy.
\]

Using the equivalence relation in \( \mathcal{H}_f \), we can expand

\[
e^{(F-f)/z}(\zeta_{(\leq 1)}) = \sum_{k=0}^{3} \frac{(F-f)^k}{k!} z^{-k} \zeta_{(\leq 1)} + O(s^4)
\]

in terms of the good basis \( \{ \phi_\alpha \} \). We find the flat coordinates up to order 2

\[
t_1 \equiv s_1 - \frac{5s_2}{7} - \frac{s_3s_9}{7}, \quad t_2 \equiv s_2 - \frac{s_2^2}{7} - \frac{2s_3s_9}{7}, \quad t_3 \equiv s_3 - \frac{3s_3s_9}{7},
\]

\[
t_4 \equiv s_4 - \frac{5s_4}{7} - \frac{s_4s_9}{7} - \frac{s_3s_{11}}{7} - \frac{s_3s_{12}}{7}, \quad t_5 \equiv s_5 - \frac{s_5^2}{7}, \quad t_6 \equiv s_6 - \frac{2s_5s_{11}}{7} - \frac{2s_5s_{12}}{7} - \frac{s_4s_{12}}{7},
\]

\[
t_7 \equiv s_7, \quad t_8 \equiv s_8 - \frac{3s_8s_{11}}{7} - \frac{3s_8s_{12}}{7}, \quad t_9 \equiv s_9,
\]

\[
t_{10} \equiv s_{10} - \frac{4s_5s_{12}}{7}, \quad t_{11} \equiv s_{11}, \quad t_{12} \equiv s_{12}.
\]
This allows us to solve the inverse function $s_\alpha = s_\alpha(t)$ up to order 2. An straightforward but tedious computation of the $z^{-2}$-term shows that in terms of flat coordinates

$$F_{(\leq 4)} = F_{(3)} + F_{(4)},$$

where $F_{(3)}$ is the third order term representing the algebraic structure of $\text{Jac}(f)$

$$\partial_{t_\alpha} \partial_{t_\beta} \partial_{t_\gamma} \mathcal{F}_{(3)} = \eta_f([\phi_\alpha \phi_\beta \phi_\gamma dxdy], [dxdy]).$$

The fourth order term $F_{(4)}$, which we call the 4-point function, is computed by

$$-F_{(4)} = \frac{1}{14} t^2 s^2 + \frac{1}{18} t^2 t^2 s^2 + \frac{1}{7} t^2 t^2 t^2 s^2 + \frac{1}{2} t^2 t^2 t^2 t^2 s^2 + \frac{1}{6} t^4 t^6 t^8 + \frac{1}{14} t^2 t^3 t^6 t^9 + \frac{1}{7} t^3 t^6 t^7 t^9$$

$$+ \frac{1}{7} t^3 t^5 t^8 t^9 + \frac{1}{7} t^2 t^7 t^8 t^9 + \frac{1}{14} t^2 t^3 t^6 t^9 + \frac{1}{14} t^3 t^6 t^9 + \frac{1}{6} t^4 t^6 t^9 + \frac{2}{7} t^3 t^5 t^7 t^9 + \frac{1}{14} t^2 t^4 t^6 t^9$$

$$+ \frac{1}{6} t^3 t^6 t^9 t^10 + \frac{1}{14} t^3 t^4 t^6 t^9 + \frac{1}{7} t^2 t^3 t^6 t^9 + \frac{1}{14} t^3 t^5 t^7 t^9 + \frac{1}{6} t^2 t^4 t^6 t^9 + \frac{1}{7} t^2 t^3 t^7 t^9 + \frac{1}{14} t^2 t^3 t^9 t^11$$

$$+ \frac{1}{18} t^4 t^6 t^9 + \frac{1}{14} t^2 t^5 t^9 + \frac{1}{14} t^6 t^9 + \frac{1}{14} t^2 t^3 t^7 t^9 + \frac{1}{14} t^2 t^3 t^7 t^9 + \frac{1}{14} t^2 t^3 t^7 t^9.$$

In particular, for our later use, we can read off

$$\partial_{t_\alpha} \partial_{t_\beta} \partial_{t_\gamma} \partial_{t_\delta} F_0|_{t=0} = -\frac{1}{3}, \quad \partial_{t_\alpha} \partial_{t_\beta} \partial_{t_\gamma} \partial_{t_\delta} F_0|_{t=0} = -\frac{1}{7}.$$

4. Mirror Symmetry for Exceptional Unimodular Singularities

In this section, we use two reconstruction results to prove the mirror symmetry conjecture between the 14 exceptional unimodular singularities and their FJRW mirrors both at genus 0 and higher genera.

4.1. Mirror symmetry at genus zero. Throughout this subsection, we assume $W^T$ to be one of the 14 exceptional unimodular singularities in Table [1]. We will consider the ring isomorphism $\Psi : \text{Jac}(W^T) \rightarrow (H_W, \bullet)$ defined in Proposition [2.7]. We will also denote the specified basis of $\text{Jac}(W^T)$ therein by $\{\phi_1, \cdots, \phi_\mu\}$ such that $\deg \phi_1 \leq \deg \phi_2 \leq \cdots \leq \deg \phi_\mu$. As have mentioned, there is a formal Frobenius manifold structure on the FJRW ring $(H_W, \bullet)$ with a prepotential $F_{\text{FJRW}}^{W^T}_{0,W}$. We have also shown in the previous section that there is a Frobenius manifold structure with flat coordinates $(t_1, \cdots, t_\mu)$ associated to (the primitive form) $\zeta$ therein, whose prepotential will be denoted as $F^{SG}_{0,W^T}$ from now on.

We introduce the primary correlators $\langle \cdots \rangle_{0,k}^{W^T,SG}$ associated to the Frobenius manifold structure on B-side. The primary correlators, up to linear combinations, are given by

$$\langle \phi_{i_1}, \cdots, \phi_{i_k} \rangle_{0,k}^{W^T,SG} = \frac{\partial^k F^{SG}_{0,W^T}}{\partial t_{i_1} \cdots \partial t_{i_k}}(0).$$
As from the specified ring isomorphism $\Psi$ and $\Phi$, we have
\[
\langle 1_{\phi_i}, 1_{\phi_j}, 1_{\phi_k} \rangle^W_{0,3} = \langle \phi_i, \phi_j, \phi_k \rangle^{W,SG}_{0,3}.
\]
As from Proposition 2.8 and the computation in section 3.3 and in the appendix, we have
\[
\langle 1_{x_i}, 1_{x_j}, 1_{M^T/x^2_i}, 1_{\phi_k} \rangle^W_{0,4} = -\langle x_i, x_j, M^T_i/x^2_i, \phi_k \rangle^{W,SG}_{0,4}.
\]
To deal with the sign, we will do the following modifications, as in [13, section 6.5]. We simply denote $(-1)^r := e^{i\pi r/(r+1)}$. Let $\hat{F}^{SG}$ denote the potential function of the Frobenius manifold structure $\hat{\zeta} := (-1)^{-\ell_{WT}} \zeta$. Set $\tilde{\phi}_j := (-1)^{-\deg \phi_j} \phi_j$ and define a map $\tilde{\Psi} : \text{Jac}(W^T) \to H_W$ by $\tilde{\Psi}(\tilde{\phi}_j) := \Psi(\phi_j)$. Let $\hat{t}_j$ denote the flat coordinate of $\hat{F}^{SG}$, namely
\[
\hat{t}_j = (-1)^{1-\deg t_j} t_j.
\]
As a consequence, we have $\hat{F}^{SG,0}_{0,W^T} = F^{SG,0}_{0,W^T}$ and $\hat{F}^{SG,4}_{0,W^T} = -F^{SG,4}_{0,W^T}$. Denote $\tilde{\phi}_j := \tilde{\Psi}(\phi_j)$. Then $\tilde{\Psi}$ defines a pairing-preserving ring isomorphism, which is read off from the identities $\langle 1_{\tilde{\phi}_i}, 1_{\tilde{\phi}_j}, 1_{\tilde{\phi}_k} \rangle^W_{0,3} = \langle \tilde{\phi}_i, \tilde{\phi}_j, \tilde{\phi}_k \rangle^{W,SG}_{0,3}$, Moreover,
\[
\langle 1_{\tilde{x}_i}, \tilde{x}_j, 1_{\tilde{M}^T_i/x^2_i}, 1_{\tilde{\phi}_k} \rangle^W_{0,4} = \langle \tilde{x}_i, \tilde{x}_j, \tilde{M}^T_i/x^2_i, \tilde{\phi}_k \rangle^{W,SG}_{0,4}.
\]
From now on, we will simplify the notations by ignoring the symbol $\hat{}$ and the superscript $\hat{\cdot}$. In addition, we will simply denote both $H_W$ and $\text{Jac}(W^T)$ as $H$, and simply denote the correlators on both sides as $\langle \phi_i, \cdots, \phi_k \rangle_{0,k}$ (or $\langle \phi_{i_1}, \cdots, \phi_{i_k} \rangle$), whenever there is no risk of confusion. We have the following "Selection rule" for primary correlators.

**Lemma 4.1.** A primary correlator $\langle \phi_{i_1}, \cdots, \phi_{i_k} \rangle_{0,k}$ on either A-side or B-side is nonzero only if
\[
\sum_{j=1}^k \deg \phi_{i_j} = \ell_{WT} - 3 + k.
\]

**Proof.** The A-side case follows from formula 2.8 and $\hat{\ell}_W = \ell_{WT}$. The primary correlator on B-side is given by $\partial_{i_1} \cdots \partial_{i_k} F_{0,W^T}^{SG}(0)$, where $\deg \phi_{i_j} = 1 - \deg t_j$. Then the statement follows, by noticing that $F_{0,W^T}^{SG}(0)$ is weighted homogenous of degree $3 - \ell_{WT}$. \(\square\)

A homogeneous $\alpha \in H$ is called a primitive class with respect to the specified basis $\{\phi_j\}$, if it cannot be written as $\alpha = \alpha_1 \cdot \alpha_2$ for $0 < \deg \alpha_1 < \deg \alpha$. A primary correlator $\langle \phi_{i_1}, \cdots, \phi_{i_k} \rangle_{0,k}$ is called basic if at least $k - 2$ insertions $\phi_{i_j}$ are primitive classes. Now Theorem 1.3 is a direct consequence of the equalities (4.3) and the following statement:

**Lemma 4.2** (Reconstruction Lemma). If $W^T$ is one of the 14 exceptional singularities, then all the following hold.

1. The prepotential $F_0$ is uniquely determined from basic correlators $\langle \cdots \rangle_{0,k}$ with $k \leq 5$. 

(2) All basic correlators \( \langle \phi_{i_1}, \cdots, \phi_{i_5} \rangle_{0,5} \) vanish.

(3) All the 4-point basic correlators are uniquely determined from the formula (1.1).

Proof of (1): The potential function \( \mathcal{F}_0 \) satisfies the WDVV equation (2.12) (hence the formula (2.13)). We can assume that \( \langle \cdots \rangle_{0,k} \) is not of type \( \langle 1, \cdots \rangle_{0,k} \), \( k \geq 4 \), (otherwise it vanishes according to string equation, or the invariance of the primitive form along the \( \phi_1 \)-direction where we notice \( \phi_1 = 1 \)). Consider a correlator \( \langle \cdots, \alpha_p, \alpha_b \cdot \alpha_c, \alpha_d \rangle_{0,k} \) with last three insertions non-primitive. By formula (2.13), such correlator is the sum of \( 1 \), \( \alpha \), or \( \hat{\alpha} \).

Proof of (2): For \( W^T = x^p + y^q \), \( x, y \) are generators for the ring structure \( H \). The multiplications for all the insertions will be in a form of \( x^a \cdot y^b \). By the degree constraint, a nonzero basic correlator \( \langle \phi_{i_1}, \cdots, \phi_{i_5} \rangle_{0,k} \) satisfies

\[
(4.5) \quad \xi_{WT} - 3 + k = \sum_{j=1}^{k} \deg \phi_{i_j} = aq + bq + cq,
\]

Let us denote by \( P \) the maximal numbers among the degree of a generator \( x, y \) and \( z \) (or \( x \) and \( y \) if \( W^T = W^T(x,y) \) is in two variables \( x, y \) only). By direct calculations, we conclude

\[
\frac{\xi_{WT} + 1}{1 - P} + 2 < 6.
\]

Proof of (3): For \( W^T = x^p + y^q \), where we notice that \( p, q \) are coprime. The arguments for the remaining \( W^T \) on B-side and all the \( W \) on A-side are all similar and elementary, details of which are left to the readers.
Thus the possibly nonzero basic correlators are $\langle x, x, x^{p-2}y^i, x^{p-2}y^{q-2-i} \rangle_{0\lambda} = 0, \ldots, q - 2$. On the other hands, if formula (1.1) holds, then by WDVV equation (2.13), we have

$$\langle x, x, x^{p-2} \bullet y^i, x^{p-2}y^{q-2-i} \rangle = - \langle x, x^{p-2}, y^i, x^{p-2}y^{q-2-i} \rangle + \langle x, x \bullet x^{p-2}, y^i, x^{p-2}y^{q-2-i} \rangle + \langle x, x, x^{p-2}, y^i \bullet x^{p-2}y^{q-2-i} \rangle$$

$$= \langle x, x, x^{p-2}, y^i \bullet x^{p-2}y^{q-2-i} \rangle = \frac{1}{p}.$$ 

For 2-Chain $W^T = x^p y + y^q$, the degree constraint (4.5) tells us

$$a \frac{q - 1}{pq} + b \frac{1}{q} = \hat{c}_W - 3 + k.$$ 

For $k = 4$, this implies that $(a, b) = (2p - 2, q)$ or $(p - 2, 2q - 1)$. The basic correlators are $(x, x, x^{p-2}y^{1+i}, x^{p-2}y^{q-1-i})$ with $0 \leq i \leq q - 1$, $\langle y, y, x^i y^{q-2}, x^{p-2-i}y^{q-1} \rangle$ with $0 \leq i \leq p - 2$ and $\langle x, y, x^i y^{q-1}, x^{p-3-i}y^{q-1} \rangle$ with $0 \leq i \leq p - 3$. The first two types are uniquely determined from the correlators which are listed in Proposition 1.2. For example, if $0 < i < q - 1$, since $p x^{p-1}y = \partial_x W^T = 0$ in $\text{Jac}(W^T)$, we have

$$\langle x, x, x^{p-2}y \bullet y^i, x^{p-2}y^{q-1-i} \rangle = \langle x, x, x^{p-2}y, x^{p-2}y^{q-1-i} \bullet y^i \rangle.$$ 

The last type is determined by

$$\langle x, y, x^i y^{q-1}, x^{p-3-i}y^{q-1} \rangle$$

$$= - \frac{1}{q} \langle x, y, x^i y^{q-1}, x^{p-2-i} \bullet x^{p-1} \rangle$$

$$= - \frac{1}{q} \left( \langle x, y, x^{p-1}, x^{p-2}y^{q-1} \rangle + \langle x, y \bullet x^{p-1}, x^{p-2-i}, x^i y^{q-1} \rangle \right)$$

$$= - \frac{1}{q} \langle x, y, x \bullet x^{p-2}, x^{p-2}y^{q-1} \rangle = - \frac{1}{q} \langle x, x, x^{p-2} \bullet y, x^{p-2}y^{q-1} \rangle = - \frac{1}{pq}.$$ 

Here we use the relation $x^p + qy^{q-1} = \partial_x W^T = 0$ in $\text{Jac}(W^T)$ in the first equality.

For 2-Loop $W^T = x^3y + xy^4$, the degree constraint (4.6) with $k = 4$ implies that $(a, b) = (5, 4)$ or $(3, 7)$. If the formula (1.1) holds, namely if

$$\langle x, x, xy, x^2 y^3 \rangle = \frac{3}{11}, \quad \langle y, y, xy^2, x^2 y^3 \rangle = \frac{2}{11},$$

then we conclude $\langle x, y, x^2, x^2 y^3 \rangle = \frac{3}{11}$, $\langle x, y, x^2 y^2, xy^3 \rangle = \frac{2}{11}$ and $\langle x, x, x^2 y^2, xy^3 \rangle = \frac{2}{11}$ from a single WDVV equation for each correlator. For the rest, we conclude $\langle x, x, xy^3, x^2 y \rangle = \frac{1}{11}$ and $\langle x, y, xy^3, xy^3 \rangle = - \frac{1}{11}$ by solving the following linear equations which come from the WDVV equation,

$$\begin{cases}
-3\langle x, x, x^2 y, xy^3 \rangle + \langle x, x \bullet xy^3, y, xy^3 \rangle = \langle x, x \bullet y^3, y, xy^3 \rangle, \\
-4\langle x, y, xy^3, xy^3 \rangle = \langle x, y, x^2, x \bullet xy^3 \rangle + \langle x, y \bullet x^2, x, xy^3 \rangle.
\end{cases}$$
Here the coefficient $-3$ (resp. $-4$) comes from $3x^2y + y^4 = 0$ (resp. $x^3 + 4xy^3 = 0$) in $\text{Jac}(W^T)$. Similarly, we conclude $(x, y, x^2y^2, x^2y) = -\frac{1}{11}$ and $(y, y, x^2y^2, xy^3) = \frac{1}{11}$.

For $W^T = x^2y + y^4 + z^3 \in \mathbb{Q}_{10}$, the number of 4-point basic correlators is 10. Three of them are the initial correlators in (1.1), $(x, x, y, y^3z)$, $(y, y, y^2z^2, y^3)$, $(z, z, yz, y^3z)$, the rest are $(y, y, y^2z, y^3)$, $(y, z, y^3, y^3)$, $(z, z, yz, y^2z)$, $(x, x, y^2, y^3)$, $(x, x, y^2, y^2z)$, $(x, y, xz, y^3)$, and $(z, z, xz, xz)$. We have 7 WDVV equations to reconstruct them from the initial correlators,

$$
\begin{cases}
4(y, y, y^2z, y^3) = (x, x, y, y^3z), & (y, y, y^2z, y^3) = (y, y, y^2z, y^3) - (y, y, y^2, y^3z), \\
\langle z, z, yz, y^2z \rangle = \langle z, z, y^3, y^3 \rangle, & (x, x, y^2, y^3z) = (x, x, y^3, y^3), \\
\langle x, y, xz, y^3 \rangle = \langle x, x, y^2z, y^3 \rangle, & (z, z, xz, xz) = -4\langle z, z, y^3, y^3 \rangle.
\end{cases}
$$

For other singularities of 3-variables, all the basic 4-point correlators are uniquely determined from the initial correlators in formula (1.1), by the same technique. However, the discussion is more tedious. For example, there are 21 of 4-point basic correlators for type $S_{12}$ singularity $W^T = x^2y + y^2z + z^3x$. We can write down 18 WDVV equations carefully to determine all the 21 basic correlators from 3 correlators in the formula (1.1). The details are skipped here. □

4.2. Mirror symmetry at higher genus. In Section 2, we already constructed the total ancestor FJRW potential $\alpha_{W}^{\text{FJRW}}$ for a pair $(W, G_W)$. Now we give the B-model total ancestor Saito-Givental potential $\alpha_{W}^{\text{SG}}$. Let $S$ be the universal unfolding of the isolated singularity $W^T$. For a semisimple point $s \in S$, Givental [18] constructed the following formula containing higher genus information of the Landau-Ginzburg B-model of $f$, (see [11][17][18] for more details)

$$
\alpha_{f}^{\text{SG}}(s) := \exp \left( -\frac{1}{48} \sum_{i=1}^{\mu} \log \Delta^i(s) \right) \tilde{\Psi}_s R_s(\mathcal{T}).
$$

Here $\mathcal{T}$ is the product of $\mu$-copies of Witten-Kontsevich $\tau$-function. $\Delta^i(s)$, $\tilde{\Psi}_s$ and $R_s$ are data coming from the Frobenius manifold. The operators $\sim$ are the so-called quantization operators. We call $\alpha_{f}^{\text{SG}}(s)$ the Saito-Givental potential for $f$ at point $s$. Teleman [48] proved that $\alpha_{f}^{\text{SG}}(s)$ is uniquely determined by the genus 0 data on the Frobenius manifold. By definition, the coefficients in each genus-$g$ generating function of $\alpha_{f}^{\text{SG}}(s)$ is just meromorphic near the non-semisimple point $s = 0$. Recently, using Eynard-Orantin recursion, Milanov [33] proved $\alpha_{W}^{\text{SG}}(t)$ extends holomorphically at $t = 0$. We denote such an extension by $\alpha_{W}^{\text{SG}}$ and the Corollary 1.4 follows from Theorem 1.3 and Teleman’s theorem.
4.3. **Alternative representatives and the other direction.** Although the theory of primitive forms depends only on the stable equivalence class of the singularity, the FJRW theory definitely depends on the choice of the polynomial together with the group. For the exceptional unimodular singularities, in the following we list all the additional invertible weighted homogeneous polynomial representatives without quadratic terms $x_k^2$ in additional variables $x_k$ as follows (up to permutation symmetry among variables):

\[
\begin{align*}
E_{14} & : x^3 + y^8, \\
W_{12} & : x^2 y + y^2 + z^5, \quad W_{13} : x^4 y + y^4; \\
Q_{12} & : x^2 y + y^5 + z^3, \quad Z_{13} : x^3 y + y^6, \\
U_{12} & : x^2 y + xy^2 + z^4.
\end{align*}
\]  

(4.8)

It is quite natural to investigate Conjecture 1.1 for all the weighted homogeneous polynomial representatives on the B-side.

**Theorem 4.3.** Conjecture 1.1 is true if $W_T$ is given by any weighted homogeneous polynomial representative of the exceptional unimodular singularities that $W_T$ is not $x^2 y + xy^2 + z^4$. That is, there exists a mirror map, such that

\[
\mathcal{A}_{FJRW}^{W_T} = \mathcal{A}_{SG}^{W_T}.
\]

**Sketch of the proof.** Thanks to Corollary 1.4, it remains to show the case when $W_T$ is given by (4.8). By Proposition 3.14, there is a unique good section. Let us specify a weighted homogeneous basis $\{\phi_1, \ldots, \phi_\mu\}$ of $\text{Jac}(W_T)$ as in Table 2 for each atomic type and take product of such bases for mixed types. Then we could obtain the four-point function by direct calculations (see the link in the appendix for precise output). An isomorphism $\Psi : \text{Jac}(W_T) \rightarrow H_W$ is chosen similarly as in Section 2. We compute the corresponding four-point FJRW correlators as in Proposition 2.8 by the same proof therein. If $W_T$ is not $x^2 y + xy^2 + z^4$, then the four-point FJRW correlators turn out to be the same as the B-side four-point correlator up to a sign. These invariants completely determine the full data of the generating function at all genera on both sides, by exactly the same reconstruction technique as in the previous two subsections. Therefore, we conclude the statement. □

**Remark 4.4.** If $W_T = x^2 y + xy^2 + z^4$, $H_W$ has broad ring generators $x1_{f^8}$ and $y1_{f^8}$. Our method does not apply to compute

\[
\langle x1_{f^8}, x1_{f^8}, y1_{f^8}, 1_{f^{15}} \rangle^W_0, \quad \langle y1_{f^8}, y1_{f^8}, x1_{f^8}, 1_{f^{15}} \rangle^W_0, \quad 1_{f^w} = 1_{f^{15}}.
\]

If $W_T = x^2 y + y^2 + z^5$, we may need a further rescaling on $\Psi(x)$ since we only know

\[
\left( \langle \Psi(x), \Psi(x), \Psi(y), \Psi(yz^3) \rangle^W_0 \right)^2 = 2 \langle \Psi(y), \Psi(y), \Psi(y), \Psi(y), \Psi(yz^3) \rangle^W_0 = \frac{1}{4}.
\]
The first equality is a consequence of the WDVV equation and the second equality is a consequence of the orbifold GRR calculation with codimension $D = 2$ (i.e., formula (2.15)).

The other direction. Among all the representatives $W$ on the A-side, there are in total three cases for which $W^T$ is no longer exceptional unimodular. The corresponding $W^T$ is given by $x^3 + xy^6$, $x^2 + xy^5 + z^3$, or $x^2 + xy^3 + z^4$. Let us end this section by the following remark, which gives a positive answer to Conjecture 1.1 for those representatives.

**Remark 4.5.**

1. For the remaining three cases, $W^T$ is no longer given by any one of the exceptional unimodular singularities.

2. A similar calculation as Proposition 3.14 shows that there exists a unique primitive form (up to a constant) for $x^2 + xy^5 + z^3$. However, for the other two cases $x^3 + xy^6$ and $x^2 + xy^3 + z^4$, there is a whole one-dimensional family of choices of primitive forms.

3. Let us specify a basis $\{\phi_1, \cdots, \phi_\mu\}$ of $\text{Jac}(W^T)$ following Table 1. It is easy to check that $\{[\phi_1d^\gamma x], \cdots, [\phi_\mu d^\gamma x]\}$ form a good basis and specifies a choice of primitive form. A similar calculation shows that the B-side four-point function coincides with the A-side one (up to a sign as before), and they completely determine the full data of the generating functions at all genera by the same reconstruction technique again.

**APPENDIX A.**

A.1. **The vector space isomorphism.** Here we list the vector space isomorphism $\Psi : \text{Jac}(W^T) \to (H_W)$ for the remaining cases of $W$ in Table 1.

1. **3-Fermat type.** $W = W^T = x^3 + y^3 + z^4 \in U_{12}$. We denote $1_{i,j,k} := 1 \in H_\gamma$ for $\gamma = (\exp(2\frac{\pi}{3}i), \exp(2\frac{\pi}{3}j), \exp(2\frac{\pi}{3}k)) \in G_W$. The isomorphism $\Psi$ is given by

   $$\Psi(x^{i-1}y^{j-1}z^{k-1}) = 1_{i,j,k}, \quad 1 \leq i \leq 3, 1 \leq j \leq 3, 1 \leq k \leq 4.$$

2. **Chain type.** Let $W = x^3 + xy^5$. The mirror $W^T$ is of type $Z_{11}$. Note $G_W \cong \mu_{15}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_j$</th>
<th>$1_{j1}$</th>
<th>$1_{j11}$</th>
<th>$1_{j10}$</th>
<th>$1_{j0}$</th>
<th>$\mp 5y^41_{j0}$</th>
<th>$1_j^2$</th>
<th>$1_j^3$</th>
<th>$1_{j3}$</th>
<th>$1_{j2}$</th>
<th>$1_{j14}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>y</td>
<td>x</td>
<td>$y^2$</td>
<td>xy</td>
<td>$x^2$</td>
<td>$y^3$</td>
<td>$xy^2$</td>
<td>$y^4$</td>
<td>$xy^3$</td>
<td>$xy^4$</td>
</tr>
</tbody>
</table>

Let $W = x^3y + y^5$. The mirror $W^T$ is of type $E_{13}$. Note $G_W \cong \mu_{15}$.

| $H_W$ | $1_j$ | $1_{j1}$ | $1_{j12}$ | $1_{j11}$ | $1_{j9}$ | $1_{j8}$ | $\mp 3y^21_{j0}$ | $1_j^2$ | $1_j^3$ | $1_{j3}$ | $1_{j2}$ | $1_{j14}$ |
|-------|-------|----------|-----------|-----------|--------|-----------------| -------| ------| -------| ------| --------|
| Jac($W^T$) | 1 | y | $y^2$ | x | $y^3$ | xy | $y^4$ | $xy^2$ | $x^2$ | $x^3$ | $x^2y$ | $x^2y^2$ | $x^2y^3$ |
Let $W = x^2y + y^3z + z^3$. The mirror $W^T$ is of type $Z_{13}$. Note $G_W \cong \mu_{18}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{j_{16}}$</th>
<th>$1_{j_{14}}$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{11}}$</th>
<th>$1_{j_{10}}$</th>
<th>$\mp 3y^21_{j_{9}}$</th>
<th>$1_{j_{8}}$</th>
<th>$1_{j_{7}}$</th>
<th>$1_{j_{4}}$</th>
<th>$1_{j_{3}}$</th>
<th>$1_{j_{2}}$</th>
<th>$1_{j_{17}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$y$</td>
<td>$z$</td>
<td>$y^2$</td>
<td>$yz$</td>
<td>$x$</td>
<td>$z^2$</td>
<td>$y^2z$</td>
<td>$xy$</td>
<td>$xz$</td>
<td>$xy^2$</td>
<td>$xyz$</td>
<td>$xy^2z$</td>
</tr>
</tbody>
</table>

Let $W = x^2y + y^2z + z^4$. The mirror $W^T$ is of type $W_{13}$. Note $G_W \cong \mu_{16}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{j_{14}}$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{11}}$</th>
<th>$1_{j_{10}}$</th>
<th>$1_{j_{9}}$</th>
<th>$\mp 2y1_{j_{8}}$</th>
<th>$1_{j_{7}}$</th>
<th>$1_{j_{6}}$</th>
<th>$1_{j_{5}}$</th>
<th>$1_{j_{3}}$</th>
<th>$1_{j_{2}}$</th>
<th>$1_{j_{15}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$z$</td>
<td>$y$</td>
<td>$z^2$</td>
<td>$yz$</td>
<td>$x$</td>
<td>$z^3$</td>
<td>$yz^2$</td>
<td>$xz$</td>
<td>$xy$</td>
<td>$xz^2$</td>
<td>$xyz$</td>
<td>$xyz^2$</td>
</tr>
</tbody>
</table>

(3) **Loop type.** There is one 2-Loop of type $Z_{12}$: $W = W^T = x^3y + xy^4$ with $G_W \cong \mu_{11}$.

| $H_W$ | $1_f$ | $1_{j_{8}}$ | $1_{j_{6}}$ | $1_{j_{4}}$ | $1_{j_{2}}$ | $x^21_{j_{9}}$ | $y^31_{j_{9}}$ | $1_{j_{9}}$ | $1_{j_{7}}$ | $1_{j_{6}}$ | $1_{j_{5}}$ | $1_{j_{4}}$ | $1_{j_{2}}$ | $1_{j_{10}}$ |
|-------|-------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Jac($W^T$) | 1 | $y$ | $x$ | $y^2$ | $xy$ | $x^2$ | $y^3$ | $xy^2$ | $x^2y$ | $x^2y^2$ | $x^2y^3$ |

There is one 3-Loop with $W^T$ of type $S_{12}$: $W = x^2z + xy^2 + yz^3$ with $G_W \cong \mu_{13}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{j_{10}}$</th>
<th>$1_{j_{9}}$</th>
<th>$1_{j_{8}}$</th>
<th>$1_{j_{7}}$</th>
<th>$1_{j_{6}}$</th>
<th>$1_{j_{5}}$</th>
<th>$1_{j_{4}}$</th>
<th>$1_{j_{3}}$</th>
<th>$1_{j_{2}}$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{12}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$z$</td>
<td>$x$</td>
<td>$y$</td>
<td>$z^2$</td>
<td>$xz$</td>
<td>$yz$</td>
<td>$xz^2$</td>
<td>$yz^2$</td>
<td>$xzy$</td>
<td>$xyz$</td>
<td>$xyz^2$</td>
</tr>
</tbody>
</table>

(4) **Mixed type.** Let $W = x^2 + xy^4 + z^3$. The mirror $W^T$ is of type $Q_{10}$. Note $G_W \cong \mu_{24}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{j_{19}}$</th>
<th>$1_{j_{17}}$</th>
<th>$\mp 4y^31_{j_{16}}$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{11}}$</th>
<th>$\mp 4y^31_{j_{8}}$</th>
<th>$1_{j_{7}}$</th>
<th>$1_{j_{5}}$</th>
<th>$1_{j_{3}}$</th>
<th>$1_{j_{23}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$y$</td>
<td>$z$</td>
<td>$x$</td>
<td>$y^2$</td>
<td>$yz$</td>
<td>$x^3$</td>
<td>$y^2z$</td>
<td>$y^3z$</td>
<td>$y^3z$</td>
<td></td>
</tr>
</tbody>
</table>

Let $W = x^2y + y^4 + z^3$. The mirror $W^T$ is of type $E_{14}$. Note $G_W \cong \mu_{24}$.

<table>
<thead>
<tr>
<th>$H_W$</th>
<th>$1_f$</th>
<th>$1_{j_{22}}$</th>
<th>$1_{j_{19}}$</th>
<th>$1_{j_{17}}$</th>
<th>$\mp 2y1_{j_{16}}$</th>
<th>$1_{j_{14}}$</th>
<th>$1_{j_{13}}$</th>
<th>$1_{j_{11}}$</th>
<th>$1_{j_{10}}$</th>
<th>$\mp 2y1_{j_{8}}$</th>
<th>$1_{j_{7}}$</th>
<th>$1_{j_{5}}$</th>
<th>$1_{j_{2}}$</th>
<th>$1_{j_{23}}$</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jac($W^T$)</td>
<td>1</td>
<td>$z$</td>
<td>$z^2$</td>
<td>$x$</td>
<td>$y^2$</td>
<td>$xz$</td>
<td>$x$</td>
<td>$y^2z$</td>
<td>$yz$</td>
<td>$y^2z$</td>
<td>$y^2z$</td>
<td>$x$</td>
<td>$xyz$</td>
<td>$xyz^2$</td>
</tr>
</tbody>
</table>
A.2. Four-point functions for exceptional unimodular singularities. In the following, we provide the four-point functions \( \mathcal{F}^{(4)}_0(t) \) of the Frobenius manifold structure associated to the primitive form \( \zeta \) for all the remaining 13 cases in Table[1]. We mark the terms that give the B-side four-point invariants corresponding to (1.1) by using boxes. We also provide the expression of \( \zeta \) up to order 3. We remind our readers of \( \mathcal{F}^{(4)}_0(t) = -\mathcal{F}^{(4)}_0(t) \) as discussed in section 4.1. We obtain the list with the help of a computer. The codes are written in mathematica 8, available at http://member.ipmu.jp/changzheng.li/index.htm

- \( \text{Type } E_{13}: f = x^3 + xy^5 \). \{ \phi_i \}_i = \{ 1, y, y^2, x, y^3, xy, y^4, y^2x, y^3x, x^2, y^2x, y^3x^2 \} .

\[
\zeta = 1 - \frac{4}{75}s_{12}s_{13} - \frac{1}{25}x^2s_{13} + O(s^4).
\]

\[
-\mathcal{F}^{(4)}_0 = -\frac{3}{10}t_0t_3^2 - \frac{6}{5}t_5t_0^2t_8 + \frac{1}{10}t_5t_3t_6^2 + \frac{3}{15}t_3t_6^2 + \frac{1}{90}t_3t_6t_7t_9 + \frac{2}{5}t_4t_7t_9 + \frac{1}{5}t_5t_8t_9
\]

\[
+ \frac{1}{15}t_4t_6t_8t_9 - \frac{1}{10}t_4t_5t_9^2 - \frac{1}{15}t_3t_6t_9^2 - \frac{1}{30}t_2t_8t_9^2 + \frac{1}{10}t_5t_8t_9^2
\]

\[
+ \frac{3}{10}t_2t_7t_9t_10 - \frac{3}{10}t_3t_6t_9 + \frac{1}{10}t_2t_7t_8t_9 + \frac{1}{10}t_2t_8t_9 + \frac{1}{10}t_3t_6t_9 + \frac{1}{10}t_5t_8t_9 + \frac{1}{10}t_5t_8t_9 + \frac{1}{10}t_5t_8t_9
\]

\[
\text{Type } E_{14}: f = x^2 + xy^3 + z^3 . \{ \phi_i \}_i = \{ 1, y, x, y^2, xy, y^3, xy^2, z, yz, xz, yz^2, xy, y^3z, xy^2z \} .
\]

\[
\zeta = 1 + \frac{1}{64}s_{12s_{14}} + \frac{1}{64}s_{10s_{14}} + \frac{1}{48}y^2s_{12s_{14}} + \frac{1}{192}y^3s_{12s_{14}} + O(s^4).
\]

\[
-\mathcal{F}^{(4)}_0 = -\frac{1}{16}t_0t_5t_9 + \frac{1}{8}t_5t_6 + \frac{1}{4}t_4t_5t_7 + \frac{1}{8}t_4t_6t_9 + \frac{1}{8}t_2t_7t_9 - \frac{1}{8}t_2t_4t_10 - \frac{1}{8}t_2t_5t_10
\]

\[
+ \frac{1}{2}t_4t_5t_10 + \frac{3}{8}t_5t_6t_9 + \frac{1}{8}t_2t_7t_10 + \frac{1}{4}t_2t_6t_7 + \frac{1}{6}t_8t_9t_10 - \frac{1}{24}t_3t_7t_11 + \frac{1}{24}t_4t_5t_11
\]

\[
+ \frac{1}{2}t_3t_5t_6t_11 + \frac{1}{4}t_4t_5t_6t_11 + \frac{1}{4}t_2t_5t_7t_11 - \frac{1}{4}t_5t_7t_11 + \frac{1}{6}t_7t_8t_9 - \frac{1}{6}t_8t_9 - 1/9t_8t_3
\]

\[
- \frac{1}{10}t_2t_3t_12 + \frac{1}{4}t_4t_5t_12 + \frac{1}{2}t_3t_4t_6t_12 + \frac{1}{4}t_2t_5t_6t_12 - \frac{1}{6}t_3t_12 - \frac{1}{4}t_4t_7t_12 + \frac{1}{6}t_8t_9t_12
\]
\[
\begin{align*}
&\frac{1}{2}t_3t_4t_5t_9 + \frac{1}{8}t_2^2t_9^2t_13 + \frac{3}{8}t_3^2t_9t_13 - \frac{1}{2}t_5^2t_9t_13 + \frac{1}{4}t_2t_3t_7t_13 - \frac{1}{9}t_3^2t_7t_13 - \frac{1}{6}t_5^2t_7t_13 + \frac{1}{15}t_9^2t_14 \\
&- \frac{2}{3}t_8t_9t_{11}t_{13} + \frac{1}{8}t_3^2t_9t_{14} + \frac{1}{4}t_3t_4t_5t_{14} + \frac{1}{4}t_2t_3t_6t_{14} - \frac{1}{4}t_4^2t_6t_{14} + \frac{1}{8}t_3^2t_7t_{14} - \frac{1}{2}t_4t_6t_7t_{13} \\
\end{align*}
\]

- Type $Z_{11}$: $f = x^3y + y^5$. \{\(\phi_i\)\} = \{1, y, x, x^2, xy, x^2y, xy^2, x^2y^2, x^3y^3, xy^4\}.

\[
\zeta = 1 + \frac{17}{675}s_{10}s_{11}^2 + \frac{2}{81}y^3s_{11} + O(s^4).
\]

- $F_0^{(4)} = -\frac{5}{18}t_5t_9^2 + \frac{1}{3}t_4t_5t_7 + \frac{1}{15}t_4t_5t_9 - \frac{1}{90}t_3^2t_7 + \frac{1}{18}t_3^2t_8 + \frac{2}{15}t_2^3t_7 + \frac{1}{3}t_3t_7t_8
\]

- Type $Z_{12}$: $f = x^3y + x^4y$. \{\(\phi_i\)\} = \{1, y, x, x^2, xy, x^3, xy^2, x^2y, xy^3, x^2y^2, x^3y^3\}.

\[
\zeta = 1 - \frac{6}{121}s_{11}s_{12} - \frac{5}{121}y^3s_{12} + \frac{29}{1331}s_{10}s_{12} + \frac{9}{1331}x^3s_{12} + O(s^4).
\]

- $F_0^{(4)} = -\frac{10}{33}t_5t_9^2 + \frac{5}{22}t_5t_7^2 + \frac{7}{22}t_5t_6t_7 - \frac{7}{22}t_5t_9^2 + \frac{3}{11}t_4t_5t_8 + \frac{4}{11}t_4t_6t_7t_8
\]

- $\ldots$
• Type $Z_{13}$: $f = x^2 + xy^3 + yz^3$. $\{\psi_i\} = \{1, y, z, yz, x, z^2, y^2z, xy, xz, xy^2, xyz, x^2y, x^2z\}$.

$\zeta = 1 + \frac{7}{486} s_{12}^2 s_{13} + \frac{7}{486} s_{13}^2 s_{13} + \frac{5}{243} y s_{12} s_{13}^2 + \frac{2}{729} y^2 s_{13}^3 + O(s^4)$.

$-\mathcal{F}_0^{(4)} = -\frac{1}{12} t_2^2 t_7^2 - \frac{1}{6} t_5 t_7^3 - \frac{5}{108} t_5^3 t_8 + \frac{1}{6} t_2^2 t_7^2 - \frac{1}{9} t_3 t_7^3 - \frac{1}{18} t_5 t_7 t_9 + \frac{1}{3} t_4 t_7 t_9 + \frac{4}{9} t_4 t_6 t_9$

$\quad + \frac{1}{3} t_3 t_7 t_8 t_9 + \frac{1}{9} t_2 t_5 t_9 + \frac{1}{36} t_3 t_6 t_9 + \frac{1}{6} t_2 t_8 t_9 + \frac{1}{18} t_3 t_7 t_9 - \frac{1}{6} t_4 t_6 t_9 - \frac{1}{6} t_3 t_6 t_9$

$\quad + \frac{1}{3} t_2 t_4 t_6 t_9 - \frac{1}{9} t_2 t_6 t_9 + \frac{1}{9} t_2 t_5 t_9 + \frac{1}{3} t_3 t_7 t_9 + \frac{2}{9} t_2 t_4 t_9 t_9$

$\quad + \frac{1}{3} t_2 t_2 t_11 t_9 - \frac{1}{24} t_3^2 t_10 + \frac{1}{6} t_3 t_5 t_12 + \frac{5}{18} t_2 t_6 t_12 - \frac{1}{12} t_2 t_2 t_12 + \frac{1}{3} t_3 t_4 t_7 t_12 + \frac{1}{2} t_2 t_4 t_12$

$\quad + \frac{1}{18} t_2 t_11 t_12 - \frac{2}{24} t_4 t_13 + \frac{1}{6} t_5 t_3 t_13 + \frac{1}{3} t_3 t_7 t_13 + \frac{1}{3} t_2 t_3 t_7 t_13 - \frac{1}{18} t_2 t_3 t_7 t_13 + \frac{2}{9} t_2 t_9 t_10$

• Type $W_{12}$: $f = x^4 + y^5$. $\{\psi_i\} = \{1, y, x, y^2, xy, x^2, y^3, xy^2, x^2y, x^3, y^3, x^2y^2, x^2z\}$.

$\zeta = 1 - \frac{1}{20} s_{11} s_{12} - \frac{1}{20} y s_{12}^2 + \frac{1}{10} y^2 s_{12} + O(s^4)$.

$-\mathcal{F}_0^{(4)} = \frac{1}{20} t_2^2 t_7^2 + \frac{1}{8} t_5 t_7^4 t_9 + \frac{1}{5} t_4 t_5 t_7 t_9 + \frac{1}{10} t_2 t_4 t_7 t_9 + \frac{1}{10} t_2 t_7 t_9$

$\quad + \frac{1}{10} t_4 t_7 t_9 + \frac{1}{10} t_2 t_7 t_9 + \frac{1}{4} t_3 t_6 t_9 + \frac{1}{8} t_3 t_5 t_9 + \frac{1}{10} t_2 t_7 t_9 + \frac{1}{8} t_3 t_5 t_9$

$\quad + \frac{1}{5} t_2 t_5 t_7 t_9 + \frac{1}{5} t_2 t_4 t_8 t_9 + \frac{1}{20} t_2^2 t_9^2 + \frac{1}{15} t_3 t_7 t_9 + \frac{1}{4} t_3 t_5 t_6 t_9$

$\quad + \frac{1}{5} t_2 t_4 t_7 t_11 + \frac{1}{8} t_2 t_7 t_11 + \frac{1}{10} t_2 t_7 t_12 - \frac{1}{5} t_3 t_4 t_7 t_12 + \frac{1}{10} t_2 t_7 t_12$

• Type $W_{13}$: $f = x^2 + xy^2 + yz^4$. $\{\psi_i\} = \{1, z, y, z^2, yz, x, z^3, y^2z, xy, xz, xy^2, xyz, x^2y, x^2z\}$.

$\zeta = 1 - \frac{5}{64} s_{11} s_{13} + \frac{15 s_{12} s_{13}}{1024} - \frac{y s_{13}^2}{128} + \frac{3 s_{12} s_{13}^2}{256} + \frac{11 s_{12} s_{13}^2}{512} + \frac{3 s_{12} s_{13}^2}{512} + O(s^4)$.

$-\mathcal{F}_0^{(4)} = -\frac{3}{32} t_2^2 t_7^2 - \frac{6}{8} t_5 t_7^3 - \frac{1}{16} t_2^2 t_7^2 - \frac{1}{4} t_2 t_7^2 t_9 - \frac{3}{32} t_5 t_7 t_9 - \frac{1}{4} t_4 t_7 t_9 + \frac{1}{4} t_4 t_5 t_9$

$\quad + \frac{1}{8} t_2^2 t_7^2 - \frac{1}{16} t_2^2 t_7^2 - \frac{1}{8} t_5 t_7^2 t_9 + \frac{1}{16} t_2 t_7^2 t_9 + \frac{1}{16} t_2 t_7^2 t_9 + \frac{1}{8} t_5 t_7 t_9 + \frac{1}{2} t_4 t_5 t_7 t_9$
\[
\begin{align*}
\text{Type } Q_4: & \quad t = 1 + \frac{3}{128} t_2 t_8 t_{10} + \frac{1}{8} t_3 t_6 t_{10} + \frac{1}{4} t_2 t_7 t_{10} + \frac{1}{8} t_3 t_5 t_{10} + \frac{1}{16} t_2 t_6 t_{10} \\
- \frac{1}{8} t_3 t_4 t_{10} & - \frac{1}{16} t_2 t_5 t_{10} + \frac{1}{16} t_4 t_5 t_{11} - \frac{1}{8} t_3 t_6 t_{11} - \frac{1}{8} t_2 t_6 t_{11} \\
+ \frac{1}{4} t_2 t_5 t_{11} & + \frac{1}{16} t_3 t_6 t_{11} - \frac{1}{32} t_2 t_7 t_{11} + \frac{1}{4} t_3 t_5 t_{12} + \frac{1}{4} t_3 t_5 t_{12} \\
+ \frac{1}{32} t_2 t_6 t_{12} & + \frac{1}{2} t_3 t_4 t_{12} + \frac{1}{4} t_2 t_5 t_{12} + \frac{1}{4} t_2 t_6 t_{12} + \frac{1}{8} t_2 t_10 t_{12} \\
+ \frac{1}{8} t_3 t_4 t_{13} & + \frac{1}{4} t_2 t_4 t_{13} + \frac{1}{16} t_2 t_6 t_{13} + \frac{1}{4} t_2 t_7 t_{13} + \frac{1}{8} t_2 t_8 t_{13}
\end{align*}
\]

• Type \( Q_{10} \): \( f = x^2 y + y^3 z + z^3 \). \( \{ \phi_i \} = \{ 1, y, z, x, y^2, yz, xz, y^3, y^2 z, y^3 z \} \).

\[
\zeta = 1 + \frac{3}{128} s_9 s_{10} + \frac{11}{384} y s_{10} + O(s^4).
\]

\[-\mathcal{F}_0^{(4)} = \frac{1}{24} t_5 t_6 + \frac{1}{18} t_3 t_6 + \frac{1}{4} t_4 t_5 t_7 - \frac{1}{3} t_3 t_7 + \frac{1}{4} t_2 t_6 t_8 + \frac{1}{8} t_2 t_5 t_8 + \frac{1}{2} t_2 t_4 t_7 t_8
\]

\[
+ \frac{1}{4} t_4 t_5 t_9 + \frac{1}{8} t_2 t_3 t_9 + \frac{1}{6} t_3 t_6 t_9 + \frac{1}{16} t_2 t_7 t_9 + \frac{1}{18} t_3 t_10 + \frac{1}{2} t_2 t_4 t_10 + \frac{1}{16} t_2 t_5 t_{10}
\]

• Type \( Q_{11} \): \( f = x^2 y + y^3 z + z^3 \). \( \{ \phi_i \} = \{ 1, y, z, x, y^2, yz, xz, y^3, y^2 z, y^3 z \} \).

\[
\zeta = 1 - \frac{5}{108} s_{10} s_{11} - \frac{1}{24} y s_{11} + \frac{13}{648} s^2 s_{11} + \frac{25}{1944} z s_{11} + O(s^4).
\]

\[-\mathcal{F}_0^{(4)} = \frac{1}{36} t_5 t_6 + \frac{1}{4} t_2 t_6 t_7 + \frac{1}{36} t_3 t_6 t_7 - \frac{1}{24} t_4 t_5 t_7 + \frac{1}{9} t_5 t_6 t_7 - \frac{1}{18} t_2 t_6 t_8
\]

\[-\frac{1}{6} t_3 t_4 t_8 - \frac{1}{4} t_3 t_6 t_9 + \frac{1}{12} t_2 t_6 t_9 + \frac{1}{36} t_2 t_7 t_9 + \frac{1}{6} t_2 t_5 t_7 t_9 + \frac{1}{4} t_6 t_7 t_9 + \frac{1}{4} t_3 t_6 t_{10} + \frac{1}{3} t_2 t_5 t_{10} + \frac{1}{12} t_3 t_6 t_{10}
\]

\[-\frac{1}{9} t_2 t_3 t_7 t_{10} + \frac{1}{12} t_2 t_9 t_{10} + \frac{1}{5} t_2 t_4 t_{11} + \frac{1}{5} t_2 t_3 t_{11} + \frac{1}{6} t_2 t_4 t_{11} + \frac{1}{16} t_2 t_6 t_{11}
\]

• Type \( Q_{12} \): \( f = x^2 y + xy^3 z^3 \). \( \{ \phi_i \} = \{ 1, x, y, xy, y^2, xy^2, z, xz, yz, xz, yz^2, xyz, xy^2 z, xy^2 z \} \).

\[
\zeta = 1 + \frac{1}{75} s_{10} s_{12} + \frac{1}{75} s_{10} s_{12} + \frac{1}{50} y s_{10} s_{12} + \frac{1}{25} s_{11} s_{12} + O(s^4).
\]

\[-\mathcal{F}_0^{(4)} = -\frac{3}{10} t_2 t_4 t_8 - \frac{1}{10} t_3 t_5 t_{10} + \frac{1}{5} t_2 t_4 t_5 t_8 + \frac{3}{10} t_4 t_5 t_{10} + \frac{2}{5} t_2 t_3 t_6 t_8 + \frac{1}{5} t_3 t_5 t_6 t_{10} + \frac{1}{10} t_2 t_4 t_{12}
\]

\[-\frac{1}{10} t_2 t_5 t_9 + \frac{1}{5} t_2 t_6 t_9 + \frac{1}{5} t_2 t_6 t_{10} + \frac{1}{5} t_2 t_6 t_{10} + \frac{1}{5} t_2 t_6 t_{10} - \frac{1}{5} t_2 t_6 t_9 + \frac{1}{5} t_2 t_6 t_9 - \frac{1}{36} t_9
\]
\[
\begin{align*}
&+ \frac{1}{5} t_{2t3t5t12} - \frac{1}{5} t_{2t3t4t10} + \frac{1}{10} t_{2t5t10} + \frac{2}{5} t_{3t4t5t10} + \frac{3}{10} t_{2t5t^2t10} - \frac{1}{5} t_{2t6t10} + \frac{1}{10} t_{2t6t10} \\
&- \frac{1}{10} t_{2t10} + \frac{1}{10} t_{2t4t11} + \frac{1}{5} t_{3t2t11} - \frac{3}{5} t_{2t4t5t11} - \frac{1}{5} t_{2t3t6t11} - \frac{2}{5} t_{3t5t6t11} \\
&+ \frac{1}{6} t_{2t8t11} - \frac{1}{3} t_{2t5t11} - \frac{1}{6} t_{2t5t11} + \frac{5}{3} t_{2t3t12} - \frac{1}{5} t_{3t5t12} + \frac{1}{18} t_{2t12} + \frac{1}{6} t_{2t9t10} - \frac{1}{4} t_{2t8}.
\end{align*}
\]

- **Type S11:** \( f = x^2y + y^2z + z^4 \). \( \{\phi_i\} = \{1, z, x, y, z^2, xz, yz, z^3, xz^2, yz^2, yz^3\} \).

\[
\zeta = 1 - \frac{3}{64} s_{10}s_{11} - \frac{7}{128} z_{s_{11}} + \frac{9}{512} s_{8}s_{11} + \frac{5}{1024} y_{s_{11}} + O(s^4).
\]

\[
-\mathcal{F}^{(4)}_0 = -\frac{5}{32} t_{2t5t12} + \frac{1}{48} t_{3t7} + \frac{1}{4} t_{4t5t7} + \frac{1}{4} t_{3t6t12} - \frac{1}{16} t_{4t5t8} - \frac{1}{8} t_{3t5t6t8}
\]

- **Type S12:** \( f = x^2y + y^2z + xz^2 \). \( \{\phi_i\} = \{1, z, x, y, z^2, xz, yz, xz^2, yz^2, yz, xz^2\} \).

\[
\zeta = 1 - \frac{12s_{10}s_{12}}{169} + \frac{30s_{7}s_{12}}{2197} + \frac{2xs_{7}^2}{169} + \frac{20s_{8}s_{12}}{2197} + \frac{93z_{8}s_{11}s_{12}}{4394} + \frac{9z^2s_{12}^2}{2197} + O(s^4).
\]

\[
-\mathcal{F}^{(4)}_0 = -\frac{5}{156} t_{6} + \frac{1}{13} t_{3t5t12} - \frac{1}{13} t_{3t5t12} - \frac{1}{26} t_{3t6t8} + \frac{5}{26} t_{2t6t8}
\]
• Type $U_{12}$: $f = x^3 + y^3 + z^4$.  \(\{\phi_i\}_i = \{1, z, x, y, z^2, xz, yx, xz^2, yz^2, xyz, xyz^2\}\).

\[
\zeta = 1 + \frac{1}{72}s_1^2s_2 + \frac{1}{72}s_1s_2^3 + \frac{1}{36}z^2s_1^3s_2 + \frac{1}{72}z^2s_3 + O(s^4). \\
-\mathcal{F}_0^{(4)} = \frac{1}{8}t_2^3t_6t_7 + \frac{1}{6}t_3t_2^2t_8 + \frac{1}{6}t_4t_2^2t_8 + \frac{1}{4}t_2t_5t_9 + \frac{1}{6}t_2t_5t_6t_10 + \frac{1}{6}t_4t_8t_10 \\
+ \frac{1}{8}t_2t_9t_10 + \frac{1}{6}t_2t_5t_11 + \frac{1}{6}t_2t_7t_11 + \frac{1}{6}t_4t_7t_11 + \frac{1}{18}t_3t_12 + \frac{1}{18}t_4t_12 + \frac{1}{6}t_5t_12.
\]

REFERENCES


[49] E. Witten, Algebraic geometry associated with matrix models of two-dimensional gravity, Topological methods in modern mathematics (Stony Brook, NY, 1991), Publish or Perish, Houston, TX, 1993, pp. 235–269.

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE (WPI), TODAI INSTITUTES FOR ADVANCED STUDY, THE UNIVERSITY OF TOKYO, 5-1-5 KASHIWA-NO-HA, KASHIWA CITY, CHIBA 277-8583, JAPAN

E-mail address: changzheng.li@ipmu.jp

DEPARTMENT OF MATHEMATICS AND STATISTICS, BOSTON UNIVERSITY, 111 CUMMINGTON MALL, BOSTON, U.S.A.

E-mail address: sili@math.bu.edu

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE (WPI), TODAI INSTITUTES FOR ADVANCED STUDY, THE UNIVERSITY OF TOKYO, 5-1-5 KASHIWA-NO-HA, KASHIWA CITY, CHIBA 277-8583, JAPAN

E-mail address: kyoji.saito@ipmu.jp

KAVLI INSTITUTE FOR THE PHYSICS AND MATHEMATICS OF THE UNIVERSE (WPI), TODAI INSTITUTES FOR ADVANCED STUDY, THE UNIVERSITY OF TOKYO, 5-1-5 KASHIWA-NO-HA, KASHIWA CITY, CHIBA 277-8583, JAPAN

E-mail address: yefeng.shen@ipmu.jp