High metallicity of the X-ray gas up to the virial radius of a binary cluster of galaxies: evidence of galactic superwinds at high-redshift

Yutaka Fujita
(Osaka University)

Tawa, N., Hayashida, K., Takizawa, M., Matsumoto, H., Okabe, N., Reiprich, T.
Outline

- Metal Abundance of intracluster medium (ICM) in the outskirts of clusters
 - Suzaku observation of binary clusters A399/A401
 - Metal transfer from galaxies to the ICM
- Ionization equilibrium of the ICM
- Summary
Metal Transfer

- Metals in the ICM come from galaxies
- What transfers metals from the galaxies to the surrounding ICM?
 - Ram-pressure stripping
 - Galactic winds
- Which is the main mechanism?
Ram-pressure stripping

- Galaxies in a cluster are moving in the ICM (~1000 km s⁻¹)
- Metal-enriched gas in the galaxies are stripped by the ram-pressure from the ICM
- Effective in the central region of a cluster
 - Large velocities of galaxies
 - Large density of the ICM
 → Large ram-pressure

Quilis et al. (2000)

Yutaka Fujita, CL J2010
Galactic winds

- Winds from galaxies
 - Supernova explosions followed by starburst blow winds of metal-enriched gas from a galaxy
- Effective in the outskirt of a cluster or in an immature cluster
 - External pressure from the ICM, which prevents the development of the winds, is small
Outskirts of clusters

- Metal abundance of the ICM in the outskirts of clusters tells us which mechanism is important for metal transfer from galaxies to the ICM
 - Ram-pressure stripping
 - Almost no metals in the outskirts
 - Galactic winds
 - There should be some amount of metals in the outskirts
However …

- Suzaku has a low background
 - It is the best instrument to observe the dim outskirt
 - Temperature of the ICM around the virial radius has been measured for several clusters

- Even with Suzaku, measurement of the metal abundance at the outskirt of clusters is extremely difficult
 - Many photons are required
A399/A401

- Binary clusters with a projection distance of ~3 Mpc
 - Redshift
 - 0.0718 (A399)
 - 0.0737 (A401)
 - Temperatures in their central regions
 - 7.23 keV (A399)
 - 8.47 keV (A401)
 - Massive clusters
 - In the early stage of a cluster merger

ROSAT X-ray image. Dashed lines are the virial radii. Blue square is the Suzaku field.

Yutaka Fujita, CL J2010
We observed the link region between the two clusters.

The region is brighter than that is expected from simple superposition of the two clusters.

- The clusters are interacting.
- The ICM in the link region seems to be compressed.
- In spite of the distance from the cluster centers ($\gtrsim 1$ Mpc), the region is bright.

Surface brightness profiles along a 1-arcmin wide stripe that intersects the two cluster centers (Sakelliou & Ponman 2004).
We observed a region where the virial radii of the two clusters ($r = r_{\text{vir}}$) cross each other.

- Exposure time: 150 ks

ROSAT X-ray image. Dashed lines are the virial radii. Blue square is the Suzaku field.
Results

- Temperature and metal abundance
- Abundance in this region (close to the virial radii) is not much different from that at the cluster centers
 - $Z \sim 0.2 \, Z_\odot$
Cluster Merger

- Are A399/A401 have already passed each other?
 - The ICM has been mixed up and the metal abundance has become uniform up to the virial radii?
 - No!
Cluster Merger

- Simulations
 - At a collision, dark matter and galaxies can pass the other cluster because they are collision-less
 - The ICM cannot
 - The ICM is stripped from dark matter and galaxies
 - This not the case for A399/A401

Simulation of a cluster merger (gas distribution)

Takizawa (1999)

Yutaka Fujita, CL J2010
What do we know from the high metal abundance?

- Ram-pressure stripping (RPS) is not the main mechanism of metal transfer from galaxies to the ICM
 - RPS is not effective in the outskirts of a cluster
 - In the outskirt region, the ICM density is $\sim 3.4 \times 10^{-4}$ cm$^{-3}$
 - RPS requires $v_{\text{rel}} > 2000$ km s$^{-1}$, which is unlikely to be achieved in the region far from the cluster centers
 - RPS cannot explain the metal abundance we found

Yutaka Fujita, CL J2010
Condition of Ram-Pressure Stripping

\[\rho_{\text{ICM}} v_{\text{rel}}^2 \]

\[> \]

\[= \]

\[= 2.1 \times 10^{-11} \text{dyn cm}^{-2} \left(\frac{v_{\text{rot}}}{220 \text{ km s}^{-1}} \right)^2 \]

\[\times \left(\frac{R}{10 \text{ kpc}} \right)^{-1} \left(\frac{\Sigma_{\text{HI}}}{8 \times 10^{20} \text{ m}_\text{H} \text{ cm}^{-2}} \right), \]

\[\rho_{\text{ICM}} : \text{ICM} \]

\[v_{\text{rel}} : \text{galaxy velocity} \]

\[v_{\text{rot}} : \text{galaxy rotation velocity} \]

\[R : \text{radius of a galaxy} \]

\[\Sigma_{\text{HI}} : \text{column density of galaxy gas} \]

(Gunn & Gott 1972; Fujita & Nagashima 1999)

- Ram-pressure stripping is effective when
 - the galaxy is moving fast in the ICM
 - and/or the density of the ICM is large

Yutaka Fujita, CL J2010
Galactic winds?

- They are not effective mechanism at least recently \((z \sim 0)\) inside the clusters
 - Energy of a galactic wind: \(E_w \sim 10^{60}\) erg
 - The distance to which a wind can reach against the pressure from the surrounding ICM: \(d_w\)
 - \(E_w \sim (4 \pi/3) P d_w^3\)
 - \(P\) : ICM pressure, \(P = n k T\)
Galactic winds?

- For typical values of n and T inside a typical cluster

$$d_w \sim 86 \left(\frac{n}{10^{-3} \text{ cm}^{-3}} \right)^{-1/3} \left(\frac{T}{8 \text{ keV}} \right)^{-1/3} \left(\frac{E_w}{10^{60} \text{ erg}} \right)^{1/3} \text{kpc}$$

- Much smaller than the cluster size ($\sim 2 \text{ Mpc}$)
- Galaxies concentrated at the cluster centers ($\approx 0.5 r_{\text{vir}}$) at present cannot blow metals off to close to the virial radii
Theoretical Predictions

- Numerical simulations often predict centrally concentrated abundance distributions in comparison with observations.

Lines: theory
Dots: observations (average of 12 clusters)
(Tornatore et al. 2004)
Galactic Superwinds?

- The abundance profile becomes flatter, if winds blow before the clusters grow \((z \sim 1-2)\) and are strong enough.
 - Supernova explosions alone may not be enough?
 - Contribution of AGN activities?
 - So-called “superwinds” (e.g. Moll et al. 2007)
Caution

- We observed a special region around the clusters
 - Link region
- The observed abundance may reflect that of the cosmological filament that had connected the two clusters
 - The abundance may relate to preprocessing of galaxies in the filament (Fujita 2004)
Ionization equilibrium

- We assumed ionization equilibrium
- Gas density is very small in the outskirt of a cluster
 - $n \sim 10^{-4}$ cm$^{-3}$
- The timescale required to reach collisional ionization equilibrium for an ionizing plasma is long
 - \sim Gyr
 - Comparable to the timescale of a cluster merger
 - Non-ionization equilibrium?
Ionization equilibrium

- Numerical simulation
 - Two-temperature
 - Electron and ion temperatures can be different
 - The ICM is in non-equilibrium state only at passing shocks
 - It does not affect our Suzaku observations
 - Future shock observations would be interesting

The ratio of the Fe XXV fraction relative to that in the ionization equilibrium state (Akahori & Yoshikawa 2008)
Summary

- We observed the link region between A399 and A401 with Suzaku
 - The metal abundance of the ICM is not much different from that in their central regions ($Z \sim 0.2 \ Z_\odot$)
 - Ram-pressure stripping is not the main mechanism of metal transfer from galaxies to the ICM
 - Strong galactic winds (superwinds) might have blown at high-redshifts

Yutaka Fujita, CL J2010