Weighing the Giants : Weak Lensing and X-ray Studies of the most Massive Clusters

Anja von der Linden

KIPAC / Stanford

CL J2010+0628, June 30th 2010

Motivation

clusters of galaxies are excellent cosmological probes

Mantz et al. 2008, 2009; Vikhlinin et al. 2009; Rozo et al. 2010

- particularly sensitive to σ_8
- cluster count experiments require a mass-observable relation \rightarrow currently calibrated from hydrostatic mass estimates
- error budget on σ_8 dominated by possible biases in hydrostatic masses
- need to reduce mass calibration uncertainty to < 5% for future cluster count experiments
- ⇒ calibrate X-ray mass measurements (small scatter, possible bias) using weak lensing masses (large scatter, unbiased)

The Team

Optical: Anja von der Linden (KIPAC) Doug Applegate (KIPAC) Pat Kelly (KIPAC) Mark Allen (KIPAC) Maruša Bradač (UC Davis)

X-rays:

Steve Allen (KIPAC) Harald Ebeling (Hawaii) Glenn Morris (KIPAC)

Cosmology: Adam Mantz (KIPAC; Goddard) David Rapetti (KIPAC)

The Sample

- massive, X-ray selected clusters used in cosmology analysis of Mantz et al. 2010abc, Rapetti et al. 2010
- MAssive Cluster Survey (MACS) at z > 0.3 (Ebeling et al. 2001,2007,2010)
- Bright Cluster Sample (BCS) at z < 0.3 (Ebeling et al. 1998)
- REFLEX at z < 0.3 (Böhringer et al. 2004)
- optical multi-band imaging (\sim 50 clusters)
 - SuprimeCam @ Subaru (BVRIz)
 - MegaPrime @ CFHT (u)
- Chandra X-ray imaging (\sim 70 clusters)

Data challenges

- 5 generations of SuprimeCam configurations
- some of the issues:
- scattered light correction
- non-linearity
- unstable flat-fields
- stellar halos/ghosts (and other artifacts)
- parts of a chip astrometrically offset (???)
- limited dynamic range
- non-square pixels
- ghosting
- CTE

X-ray masses: gas mass

for massive clusters ($kT_{2500} > 5 \text{ keV}$):

• gas mass fraction (f_{gas}) is constant with mass and redshift

Allen et al. 2008

- $f_{\rm gas}$ has minimal scatter * relaxed clusters: observationally: scatter undetected < 5% Allen et al. 2008 simulations: gas mass unbiased (< 1%), scatter $\lesssim 3\%$ Nagai et al. 2007
 - \star in unrelaxed clusters: simulations: bias $\lesssim 6\%$, scatter $\lesssim 10\%$

• $M_{\rm gas}$ easier to measure than T, $Y_{\rm x} = M_{\rm gas} k T$

Nagai et al. 2007

Weak lensing: biases / scatter

- substructure, triaxiality:

 → cause scatter, but average mass unbiased
 Clowe et al. 2004, Corless & King 2007

 associated structures (two-halo term):

 → cause scatter, deviation from one-halo at r ≥ 5Mpc
 Johnston et al. 2007
- unassociated structures along line-of-sight:
 → cause scatter, but average mass unbiased

Hoekstra 2003

- shear estimates: \rightarrow can be calibrated from Shear TEsting Program $\sqrt{}$ Heymans et al. 2006, Massey et al. 2007
- redshifts of background sources: \rightarrow bias in p(z) leads to bias in mass \rightarrow not accounting for shape of p(z) also leads to bias

Method take-away points

- X-ray mass measures:
 - + (some) have very small scatter
 - may be biased at the 5-10% level
- weak lensing mass measures:
 - + unbiased (if done right)
 - large scatter
- ⇒ compare X-ray and weak lensing mass measurements of a large cluster sample
 CANNOT coloct on lensing properties

CANNOT select on lensing properties

- redshift (and mass) range of current and future cluster count experiments
- complementary to low-redshift studies (CCCP, LoCuSS)

"Issues with cluster mass measurements"

... for lensing by intermediate-redshift clusters

- lensing signal small
- redshift errors \rightarrow larger shear errors
- foreground contamination
- cluster area small \rightarrow fewer background sources

Photometric redshifts

- *uBVRIz* photometry; BPZ code (Benitez 2000)
- no training set (most clusters have little spectroscopic data)
- color calibration via stellar locus (High et al. 2009)

Photo-z probability distributions

- even gaussian p(z) are transformed to non-gaussian distributions of g(z)
- p(z) generally not gaussian
- simple averaging or χ^2 minimization lead to biased mass
- need to account for full $p(\boldsymbol{z})$ distribution

Photo-z probability distributions

So where's the plot?

- ($M_{\rm X}$ vs. $M_{\rm WL}$)
- "blind analysis":
 - several small effects (sources of bias) need to be included (e.g. error on $p(\boldsymbol{z})$)
 - develop mass estimation algorithm on mock clusters
 - not "de-blinded" yet
- stay tuned!

