MOTIVATION

Some observational facts about the formation of S0s:

- The morphology-density relation at z=0: the fraction of S0s increases with density, while spirals become comparatively scarcer.
- Morphology evolution with z: at intermediate redshifts many spirals are found in clusters when compared with the local Universe, S0s show the inverse trend.
- A CDM structure formation scenario tells us many galaxies have undergone the transition from field to cluster environments.

HOW? Studying the relation between disk luminosity and maximum rotational velocity, i.e. the Tully Fisher relation (TFR, Tully & Fisher). In particular, comparing cluster and field TFRs (can we see SF enhancement?).

THE DATA

To construct the cluster vs. field Tully-Fisher diagram, we used a sub-set of the ESO Distant Cluster Survey (EDisCS) database for which we have:

- Deep multi-slit spectroscopy (FORS2/VLT)
- Deep optical and near-IR photometry (FORS2/VLT + SOFI/NTT)
- HST imaging for the highest z clusters

- We selected EDisCS emission-line galaxies from which we could fit a rotation curve. Galaxies with inclinations close to face-on were rejected.
- Total sample = 418 galaxies in clusters and the field.
- We then drew matched samples (in M_B and z) in order to make a fair comparison between cluster and field galaxies (see dashed boxes in the Figure →).

RESULTS

1. Rotation curve fitting

- We fitted 1038 emission lines from 428 galaxies.
- Typically there were 1-3 lines per galaxy ([OII], [OIII], Hj, H6, Hγ).

2. Quality of the fits: in the quest for disturbed kinematics

- We looked at every fit to ensure reliable Vrot. Measurements. 32% of the sample had “bad” rotation curve fits due to presumably disturbed kinematics in the galaxy.

3. The cluster vs. field TFR:

- To compare cluster and field Tully-Fisher relations we created matched sub-samples in M_B and z (See Figure in “The Data” Section).
- Then we compared the difference (∆M_B) between the M_B of our galaxies and the one given by the local relation (Pierce & Tully 1992).

4. Morphologies and surprises

- HST visual morphologies were available for 61% of the sample. Most galaxies show late type morphology (as expected) but there are also early-types in our sample:

- Kinematically-disturbed galaxies are much more abundant in clusters than in the field.

CONCLUSIONS:

- We find NO difference between the cluster and field Tully-Fisher relation. This suggests that if there is an initial enhancement of the star formation when galaxies fall into clusters, it must happen extremely quickly.
- Kinematically-disturbed galaxies are much more abundant in clusters.
- Most emission-line galaxies in our sample showed late type morphology. Nevertheless, we discovered 12 elliptical galaxies with an extended gas disk at z < 1.

We would like to thank the RAS for the support offered.