
A Simple Harmonic Universe

Surjeet Rajendran
Stanford

Peter Graham
Bart Horn

Shamit Kachru
Gonzalo Torroba

with

arXiv:1109.0282

Friday, January 27, 2012



Outline

1. Motivation

2. An Oscillating Universe Model

3. Classical and Quantum Stability

4. Conclusions and Future Questions

Friday, January 27, 2012



Motivation

Friday, January 27, 2012



prediction
observation

(4He)

Concordance Cosmology

ΛCDM Cosmology and Inflation 
work extremely well

All observations explained 
with high precision

We really understand the last ~14 billion years well!
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Before Inflation?
We really understand the last ~14 billion years well!
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Before Inflation?
We really understand the last ~14 billion years well!

we have no direct evidence of  
T ≳ 100 MeV  (BBN)

even if inflation is near GUT scale 
1016 GeV (max possible) this is far 

below Planck scale 1019 GeV

No evidence for what came before 
our last ~ 60 e-folds of inflation
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Before Inflation?
We really understand the last ~14 billion years well!

we have no direct evidence of  
T ≳ 100 MeV  (BBN)

even if inflation is near GUT scale 
1016 GeV (max possible) this is far 

below Planck scale 1019 GeV

No evidence for what came before 
our last ~ 60 e-folds of inflation

Could there in fact have been no Big Bang?
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No Big Bang?

several problems, especially the Cosmological Constant, 
lead to speculations about the period before inflation

But even in an eternal inflation scenario there is an initial singularity
Borde, Guth, & Vilenkin (2001)

In general the singularity theorems of Penrose and Hawking would seem to rule this out
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Singularity Theorems
these theorems assume an energy condition, e.g.: Tµνvµvν ≥ 0 for a class of vectors vµ

and show that spacetime must be geodesically incomplete (“singular”)
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Singularity Theorems
these theorems assume an energy condition, e.g.: Tµνvµvν ≥ 0 for a class of vectors vµ

and show that spacetime must be geodesically incomplete (“singular”)

As an example, consider the FRW universes:

for k = 0 or -1 need only assume the Null Energy Condition (NEC)

ds2 = −dt2 + a(t)2
�

dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

�

that       is a future-pointing null vector fieldvµ

in FRW this is just the statement that ρ + p ≥ 0

this is reasonable, in agreement with everything known in our world, and 
generally allows avoidance of microphysical problems such as ghosts

(for           )or for p = wρ ρ (1 + w) ≥ 0 w ≥ −1this is just or ρ > 0
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Singularity Theorems
However for k = +1 need to assume the Strong Energy Condition (SEC)

This is violated by a cosmological constant (dark energy, inflation...)!

if       is a future-pointing timelike vector fieldvµ

�
Tµν −

1
2
Tgµν

�
vµvν ≥ 0

in FRW this requires ρ + 3p ≥ 0 ρ + p ≥ 0(and                   )
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However for k = +1 need to assume the Strong Energy Condition (SEC)

This is violated by a cosmological constant (dark energy, inflation...)!

if       is a future-pointing timelike vector fieldvµ

�
Tµν −

1
2
Tgµν

�
vµvν ≥ 0

in FRW this requires ρ + 3p ≥ 0 ρ + p ≥ 0(and                   )

Motivated by this, we will use positive curvature to attempt to construct 
eternal cosmologies without an initial (or final) singularity
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Singularity Theorems
However for k = +1 need to assume the Strong Energy Condition (SEC)

This is violated by a cosmological constant (dark energy, inflation...)!

if       is a future-pointing timelike vector fieldvµ

�
Tµν −

1
2
Tgµν

�
vµvν ≥ 0

in FRW this requires ρ + 3p ≥ 0 ρ + p ≥ 0(and                   )

Motivated by this, we will use positive curvature to attempt to construct 
eternal cosmologies without an initial (or final) singularity

We will make an oscillating (“bouncing”) cosmology
this has attracted interest even if not eternal (e.g. to replace inflation)

Creminelli, Luty, Nicolis, & Senatore (2006) NEC violating
Gasperini & Veneziano (2002)  Khoury, Ovrut, Steinhardt, & Turok (2001)

relies on as yet unknown high 
energy theory

Tolman (1931)   Lemaitre (1933) “Phoenix Universe”

and many more...
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An Oscillating Universe Model
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Conditions For Oscillation
FRW metric: ds2 = −dt2 + a(t)2

�
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

�

ȧ2

a2
=

8π

3
Gρ− k

a2

ä

a
= −4π

3
G (ρ + 3p)FRW equations:
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Conditions For Oscillation
FRW metric: ds2 = −dt2 + a(t)2

�
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

�

ȧ2

a2
=

8π

3
Gρ− k

a2

ä

a
= −4π

3
G (ρ + 3p)FRW equations:

ä < 0
ä > 0 at a−

at a+

conditions for oscillation: ȧ = 0 at two different scale factors: a+a−
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Conditions For Oscillation
FRW metric: ds2 = −dt2 + a(t)2

�
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

�

ȧ2

a2
=

8π

3
Gρ− k

a2

ä

a
= −4π

3
G (ρ + 3p)FRW equations:

ä < 0
ä > 0 at a−

at a+

conditions for oscillation: ȧ = 0 at two different scale factors: a+a−

a−⇒ need positive curvature (or NEC violation) at 

ä

a
− ȧ2

a2
= −4πG (ρ + p) +

k

a2
subtracting the FRW equations:
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Conditions For Oscillation
FRW metric: ds2 = −dt2 + a(t)2

�
dr2

1− kr2
+ r2(dθ2 + sin2(θ)dφ2)

�

ȧ2

a2
=

8π

3
Gρ− k

a2

ä

a
= −4π

3
G (ρ + 3p)FRW equations:

ä < 0
ä > 0 at a−

at a+

conditions for oscillation: ȧ = 0 at two different scale factors: a+a−

a−⇒ need positive curvature (or NEC violation) at 

ä

a
− ȧ2

a2
= −4πG (ρ + p) +

k

a2
subtracting the FRW equations:

⇒ need a negative CC at a+ so that ρ = 0ȧ = 0

We need a negative CC and positive curvature and a “matter” component 
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Minimal Oscillatory Model
We need a negative CC and positive curvature and a “matter” component 

can show that this creates an oscillating universe if and only if −1 < w < −1
3

ρ = Λ + ρ0 a−3(1+w)take k = +1and
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Minimal Oscillatory Model
We need a negative CC and positive curvature and a “matter” component 

can show that this creates an oscillating universe if and only if −1 < w < −1
3

ρ = Λ + ρ0 a−3(1+w)take k = +1and

can find two solutions for ȧ = 0ȧ2

a2
=

8π

3
Gρ− k

a2
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Minimal Oscillatory Model
We need a negative CC and positive curvature and a “matter” component 

can show that this creates an oscillating universe if and only if −1 < w < −1
3

ρ = Λ + ρ0 a−3(1+w)take k = +1and

can find two solutions for ȧ = 0ȧ2

a2
=

8π

3
Gρ− k

a2

FRW equations:
ä

a
+

�
1 + 3w

2

�
ȧ2

a2
= 4π (1 + w) GΛ−

�
1 + 3w

2

�
k

a2

This model will continually oscillate between two fixed scale factors, 
though not analytically solvable

a− ↔ a+

conditions for oscillation:
ä > 0 at a− ⇔ w < −1

3

ä < 0 at a+ ⇔ w > −1
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A Simple Harmonic Universe
In the special case of w = −2

3
it is analytically solvable

is just a (constrained) simple harmonic oscillator
ä

a
∼ Λ +

ρ0

a

ω ≡
�

8π

3
G|Λ| and a0 ≡

1
2|Λ|

�
3Λ

2πG
+ ρ2

0.where

the solution is a =
ρ0

2|Λ| + a0 cos (ωt + ψ)
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A Simple Harmonic Universe
In the special case of w = −2

3
it is analytically solvable

is just a (constrained) simple harmonic oscillator
ä

a
∼ Λ +

ρ0

a

ω ≡
�

8π

3
G|Λ| and a0 ≡

1
2|Λ|

�
3Λ

2πG
+ ρ2

0.where

the solution is a =
ρ0

2|Λ| + a0 cos (ωt + ψ)

ρ2
0 ≥

3
2π

|Λ|
G

this requires and when saturated, this is a static universe

unlike Einstein Static, this is not tuned, occurs in an open set of parameter space
small deviations from static just lead to small oscillations ⇒ greater stability
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A Simple Harmonic Universe
In the special case of w = −2

3
it is analytically solvable

is just a (constrained) simple harmonic oscillator
ä

a
∼ Λ +

ρ0

a

ω ≡
�

8π

3
G|Λ| and a0 ≡

1
2|Λ|

�
3Λ

2πG
+ ρ2

0.where

the solution is a =
ρ0

2|Λ| + a0 cos (ωt + ψ)

ρ2
0 ≥

3
2π

|Λ|
G

this requires and when saturated, this is a static universe

unlike Einstein Static, this is not tuned, occurs in an open set of parameter space
small deviations from static just lead to small oscillations ⇒ greater stability

dη2 = dt2/a(t)2 a(η) =
1
ω

√
γ

1−
√

1− γ cos(η)in conformal time:

where for small γγ ≡ 3|Λ|
2πGρ2

0
≈ 4

a−
a+

which is
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Classical and Quantum Stability
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Stability Equations

ds2 = a(η)2
�
−dη2 + (δij − hij) dxidxj

�
the gauge invariant description of tensor perturbations is

h��
ij + 2Hh�

ij −∇2
S3hij = 0

the equation of motion for the tensor perturbations is then:

H =
a�

a
where

expanding in spherical harmonics, the spectrum of the Laplacian is ∇2
S3 ∝ l(l + 2)
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Stability Equations

ds2 = a(η)2
�
−dη2 + (δij − hij) dxidxj

�
the gauge invariant description of tensor perturbations is

h��
ij + 2Hh�

ij −∇2
S3hij = 0

the equation of motion for the tensor perturbations is then:

H =
a�

a
where

we also consider adding a probe (massless) scalar field perturbation, 
which also describes a gas of relativistic particles

φ�� + 2Hφ� −∇2
S3φ = 0the equation of motion is:

expanding in spherical harmonics, the spectrum of the Laplacian is ∇2
S3 ∝ l(l + 2)
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Stability Equations

ds2 = a(η)2
�
−dη2 + (δij − hij) dxidxj

�
the gauge invariant description of tensor perturbations is

h��
ij + 2Hh�

ij −∇2
S3hij = 0

the equation of motion for the tensor perturbations is then:

H =
a�

a
where

we also consider adding a probe (massless) scalar field perturbation, 
which also describes a gas of relativistic particles

φ�� + 2Hφ� −∇2
S3φ = 0the equation of motion is:

expanding in spherical harmonics, the spectrum of the Laplacian is ∇2
S3 ∝ l(l + 2)

also consider general anisotropic perturbations ds2 = −dt2 +
3�

i=1

a2
i (t) σ2

i

σi are the Maurer-Cartan forms on S3 are functions of theβ± ai

β��
± + 2Hβ�

± + 8kβ± = 0
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Stability Equations

ds2 = a(η)2
�
−dη2 + (δij − hij) dxidxj

�
the gauge invariant description of tensor perturbations is

h��
ij + 2Hh�

ij −∇2
S3hij = 0

the equation of motion for the tensor perturbations is then:

H =
a�

a
where

we also consider adding a probe (massless) scalar field perturbation, 
which also describes a gas of relativistic particles

φ�� + 2Hφ� −∇2
S3φ = 0the equation of motion is:

expanding in spherical harmonics, the spectrum of the Laplacian is ∇2
S3 ∝ l(l + 2)

also consider general anisotropic perturbations ds2 = −dt2 +
3�

i=1

a2
i (t) σ2

i

σi are the Maurer-Cartan forms on S3 are functions of theβ± ai

β��
± + 2Hβ�

± + 8kβ± = 0 All these equations of motion are equivalent
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Scalar Perturbations

ds2 = a(η)2
�
−(1 + 2Φ(η, x))dη2 + (1− 2Ψ(η, x))dΩ2

3

�
the general description of scalar perturbations is

Φ =Ψ δp = c2
sδρfor perfect fluids:

Ψ�� + 3H(1 + c2
s)Ψ

� +
�
2H� + (1 + 3c2

s)(H
2 − k)

�
Ψ− c2

s∇2
S3Ψ = 0

the equation of motion is:
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Scalar Perturbations

ds2 = a(η)2
�
−(1 + 2Φ(η, x))dη2 + (1− 2Ψ(η, x))dΩ2

3

�
the general description of scalar perturbations is

Φ =Ψ δp = c2
sδρfor perfect fluids:

Ψ�� + 3H(1 + c2
s)Ψ

� +
�
2H� + (1 + 3c2

s)(H
2 − k)

�
Ψ− c2

s∇2
S3Ψ = 0

the equation of motion is:

c2
s < 0 ⇒  drastic high-momentum instability

don’t take a perfect fluid, use a “solid” with shear resistance, 
see e.g. Bucher & Spergel (1998) 

e.g. a frustrated network of domain walls gives                    butw = −2
3

c2
s > 0

solid could have microscopic dynamics leading to entropy production
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Scalar Perturbations

ds2 = a(η)2
�
−(1 + 2Φ(η, x))dη2 + (1− 2Ψ(η, x))dΩ2

3

�
the general description of scalar perturbations is

Φ =Ψ δp = c2
sδρfor perfect fluids:

Ψ�� + 3H(1 + c2
s)Ψ

� +
�
2H� + (1 + 3c2

s)(H
2 − k)

�
Ψ− c2

s∇2
S3Ψ = 0

the equation of motion is:

the scalar perturbation equation is qualitatively similar to the other 
perturbation equations in behavior, though not quantitatively the same

c2
s < 0 ⇒  drastic high-momentum instability

don’t take a perfect fluid, use a “solid” with shear resistance, 
see e.g. Bucher & Spergel (1998) 

e.g. a frustrated network of domain walls gives                    butw = −2
3

c2
s > 0

solid could have microscopic dynamics leading to entropy production
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Homogeneous Perturbations

10 20 30 40
Η

5.0�1011

1.0�1012

1.5�1012

2.0�1012

2.5�1012

Φ
homogeneous mode: l = 0

looks like an instability but actually is NOT

exhibits linear growth
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Homogeneous Perturbations

10 20 30 40
Η

5.0�1011

1.0�1012

1.5�1012

2.0�1012

2.5�1012

Φ
homogeneous mode: l = 0

looks like an instability but actually is NOT

a homogeneous perturbation just moves us to a different one of our family of solutions, 
since we have an open set (unlike Einstein Static) it is stable against linear perturbations

5 10 15 20

�1.0

�0.5

0.5

1.0

two cosines of slightly different 
periods differ linearly:

exhibits linear growth
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Intermediate Wavelengths

differentiate two cases:

intermediate wavelength modes:

2 ≤ l � 1
√

γ

10 20 30 40 50 60 70
Η

�20

�10

10

20

30

Φ

γ ∼ O(1) = O(1) oscillations1)

= large oscillationsγ � 12)

all these modes are stable

some of these modes are unstable, grow exponentially
the instability starts at the smallest l-modes
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Short Wavelengths
short wavelength modes:

These modes are stable for both small and large oscillations in the universe

l� 1
√

γ

1 2 3 4 5 6
Η

�60

�40

�20

20

40

60

Φ

these modes are much faster than frequency of universe’s oscillation, 
much smaller wavelength than size of universe,

should behave like normal Minkowski space modes

γ ∼ O(1) γ � 1and
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The l=1 Mode

Even when not, can project out by orbifolding the S3

Can show that the scalar l = 1 mode is always unstable

in our simple model it is not physical, just pure gauge, however in 
multi-fluid models a relative velocity between the fluids is physical

likely to be killed by non-gravitational damping which we have not included,
e.g. free streaming rate is larger than growth rate of mode for γ ~ O(1)
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The l=1 Mode

Even when not, can project out by orbifolding the S3

Can show that the scalar l = 1 mode is always unstable

in our simple model it is not physical, just pure gauge, however in 
multi-fluid models a relative velocity between the fluids is physical

likely to be killed by non-gravitational damping which we have not included,
e.g. free streaming rate is larger than growth rate of mode for γ ~ O(1)

γ > γc ∼ O(1)

γ < γc

Summary of entire stability analysis:

all modes can be made stable

there are unavoidable instabilities in certain low-l modes
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Gravitational Radiation - An Example

h��
ij + 2Hh�

ij −∇2
S3hij = 0

tensor perturbations decoupled at linear order:

Why don’t inhomogeneous perturbations radiate gravitational waves?
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Gravitational Radiation - An Example

h��
ij + 2Hh�

ij −∇2
S3hij = 0

tensor perturbations decoupled at linear order:

Why don’t inhomogeneous perturbations radiate gravitational waves?

of course, do radiate at higher order

+ ∼ sin(ωt)

this just drives modes of hij off-resonance,
they excite but don’t runaway because they’re gapped.

without a resonance, non-linear effects remain small

mode spectrum is ∇2
S3 ∝ −l(l + 2)
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Gravitational Radiation - An Example

h��
ij + 2Hh�

ij −∇2
S3hij = 0

tensor perturbations decoupled at linear order:

Why don’t inhomogeneous perturbations radiate gravitational waves?

of course, do radiate at higher order

+ ∼ sin(ωt)

this just drives modes of hij off-resonance,
they excite but don’t runaway because they’re gapped.

without a resonance, non-linear effects remain small

mode spectrum is ∇2
S3 ∝ −l(l + 2)

never in the far-field regime compared to wavelength of gravitational waves,
don’t have radiation modes at frequency ω available ⇒ no resonant excitation

size of universe is a ∼ ρ0

2|Λ| frequency of oscillation is ω =
�

8π

3
G|Λ|

for γ ~ O(1) the size of the universe is slightly larger than its period 
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Gravitational Radiation - An Example
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S3hij = 0

tensor perturbations decoupled at linear order:

Why don’t inhomogeneous perturbations radiate gravitational waves?
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they excite but don’t runaway because they’re gapped.

without a resonance, non-linear effects remain small

mode spectrum is ∇2
S3 ∝ −l(l + 2)

never in the far-field regime compared to wavelength of gravitational waves,
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2|Λ| frequency of oscillation is ω =
�

8π

3
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for γ ~ O(1) the size of the universe is slightly larger than its period 
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Quantum Particle Production

can classically tune initial amplitude of these modes to allow arbitrarily many bounces

however, quantum mechanically the growing modes mean particle production

growing modes are roughly number of 
bouncesφl(N) ∼ φ0 exp

�
c

�

1− l2

l2c
×N

�

have ⇒ mode exceeds background energy density at�φ2
0� > 0 Nc ∼ log

�
MP

φ0

�

for γ � 1 always have unstable modes 
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Quantum Particle Production

can classically tune initial amplitude of these modes to allow arbitrarily many bounces

however, quantum mechanically the growing modes mean particle production

growing modes are roughly number of 
bouncesφl(N) ∼ φ0 exp

�
c

�

1− l2

l2c
×N

�

have ⇒ mode exceeds background energy density at�φ2
0� > 0 Nc ∼ log

�
MP

φ0

�

for γ � 1 always have unstable modes 

a2φ2
0 ∼ 1

χ ≡ a(η)φcanonically normalizing:

[χ(θ), ∂ηχ(θ�)] = iδ(3)(θ − θ�)and quantizing:

a+ =
2

ω
√

γ
choosing the background associated to the maximal size of the universe:

is stable quantum mechanicallyγ ∼ O(1)

Nc ∼ log
�

MP

ω
√

γ

�
gives a bound: can be made parametrically long
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Conclusions and Future Questions
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Summary

1. Constructed a minimal model of an oscillating universe with positive 
curvature, negative CC, and a -1 < w < -1/3 matter

• avoids singularity theorems with positive curvature and SEC violation

• does not violate the NEC

• bounces under full control in low energy effective theory

• makes a “static” (on average) universe, very different from Einstein Static

2. Analyzed stability at the linear level with gravitational backreaction

• for γ ~ O(1) it appears all perturbations can be made stable

• for γ << 1 have unavoidable instabilities in low-l modes

• evidence (not proof) of stability at non-linear level
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Future Questions
1. Do microscopic dynamics of our solid produce entropy?

• would lead to singularity even in our seemingly eternal models

2. What does this actually have to do with our universe?

3. Can we tunnel out of this eternal phase to a realistic inflationary 
cosmology, thus removing the initial singularity in our universe?

4. Can our observed universe fit into the expansion phase of one oscillation?

• not necessarily eternal, but perhaps has many recurrences

• perhaps non-gravitational damping (e.g. free streaming) ameliorates the 
instabilities in such a large oscillation model?

• requires “Higgsing” light SM modes above a high energy scale so curvature can 
dominate

5. Can we prove a general quantum singularity theorem?
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