Anisotropic clustering in the Baryon Oscillation Spectroscopic Survey

Beth Reid Hubble Fellow Lawrence Berkeley National Lab

in collaboration with Martin White, Will Percival, Lado Samushia, BOSS galaxy clustering working group

SLOAN DIGITAL SKY, SURVEY I

Motivation for studying Redshift Space Distortions

Growth function G(a): δ(k, a) = aG(a)δ_i(k)
In General Relativity G(a) is determined once H(a) is specified/measured; generically this relation is different in modified gravity models

SDSS

Sold because the second secon

Wednesday, January 25, 2012

Φ

et al

nushia

Sar

et

eid

SDSSIII WiggleZAnistropic Clustering: $P(k_{\perp}, k_{\parallel})$

Wednesday, January 25, 2012

Outline

Our basic model for galaxy clustering

- Anisotropic galaxy clustering
 - Alcock-Paczynski effect
 - Redshift space distortions
- First results from BOSS
 - Error budget and future prospects

Galaxy clustering lightning theory review

 Theory I: underlying matter power spectrum (determined at z >~ z_{CMB}, neglecting V)

Theory II: Expansion history H(0 < z < z_{GAL})

LOAN DIGITAL SKY SURVEY II

Matter Power Spectrum

- Entire P(k) (not just BAO) acts as standard ruler determined by CMB
- We marginalize over the (negligible) uncertainty

SDSS

SLOAN DIGITAL SKY, SURVEY II

Z2

Theory II: geometry

We measure θ , ϕ , and z for each galaxy, and use a cosmological model to convert to comoving coordinates z_1

 Θ

$\chi(z)$ (or $D_A(z)$)

I/H(z)

SDSS

SDSSIII Theory II: Alcock-Paczynski

 $\xi(r_P, \pi)$ appears anisotropic if you assume the wrong cosmological model (constrain $\eta_{AP} = D_A * H$)

$\chi(z) =_0 \int^z c \, dz' / H(z')$

BAO in $\xi_0(s)$ determines "geometric mean" $D_V \propto (D_A^2 H^{-1})^{1/3}$

 $X(z)^*\Delta\theta$

SLOAN DIGITAL SKY, SURVEY II

Redshift Space Distortions

$\theta, \phi, redshift$

depends on the geometry of the universe

SDSS

 $\chi(z) = \chi_{true} + v_p/aH(a)$

 $\chi(z) =_0 \int^z c dz' / H(z')$

comoving coordinates: x, y, z

SDSSIII Redshift Space Distortions (RSD)

real to redshift space separations

 $\nabla \cdot \mathbf{v_p} = -aHf \, \delta_m$

$|v_P| \sim d \sigma_8/d \ln a = \sigma_8 * f$

isotropic squashed along line of sight

X

 $f=d\,\ln\,\sigma_8\,/d\,\ln\,a\,\approx\,\Omega_m{}^\gamma$

SDSSIII RSD: linear theory (Kaiser 1987)

 $\delta_g^s(k) = (b + f\mu_k^2)\delta_m^r(k)$

 $\mu_k^2 = k_z^2 / k^2$

SDSSIII Legendre Polynomial moments: P(k)

General Expansion

 $P(k,\mu_k) = \sum_{k} P_{\ell}(k)L_{\ell}(\mu_k)$

Linear theory prediction

 $\begin{pmatrix} P_0(k) \\ P_2(k) \\ P_4(k) \end{pmatrix} = P_m^r(k) \begin{pmatrix} b^2 + \frac{2}{3}bf + \frac{1}{5}f^2 \\ \frac{4}{3}bf + \frac{4}{7}f^2 \\ \frac{8}{35}f^2 \end{pmatrix}$

SDSSIII Legendre Polynomial moments: $\xi(r)$

General Expansion

$$\xi(s,\mu_s) = \sum_{\ell} \xi_{\ell}(s) L_{\ell}(\mu_s)$$

Relation to $P_{\ell}(k)$

$$\xi_{\ell}(s) = i^{\ell} \int \frac{k^2 dk}{2\pi^2} P_{\ell}(k) j_{\ell}(ks)$$

SDSSIII Modeling RSD: Reid and White 2011 (arXiv: 1105.4165)

 $\xi_0,\,\xi_2$ sufficient to constrain $b\sigma_8,\,f\sigma_8$; MOST of 2d clustering information retained

Wednesday, January 25, 2012

SDSSII

SLOAN DIGITAL SKY, SURVEY II

Fitting to 2d clustering

- Use full model of $\xi_{0,2}$ (s $\geq 25 \text{ h}^{-1} \text{ Mpc}$) to constrain:
- growth of structure (f σ_8)
- $D_V \propto (D_A^2/H)^{1/3}$
 - Alcock-Paczynski ($\eta_{AP} \propto D_A(z_{eff}) * H(z_{eff})$)
 - marginalizing over shape of underlying linear P(k), $b\sigma_8$, σ_{FOG}^2

SLOAN DIGITAL SKY, SURVEY II

Alcock-Paczynski in multipoles

Wednesday, January 25, 2012

SDSS

DR9 spectroscopic results: preliminary!

- DR9 data final (public July 2012), clustering/ covariances ~final, cosmological constraints preliminary
 - Current uncertainties reported, not central values

SDSSIII BOSS "CMASS" (z_{eff} = 0.57) galaxy sample in perspective

Eisenstein et al. arXiv:1101.1529

Wednesday, January 25, 2012

SDSSIII

SLOAN DIGITAL SKY, SURVEY II

BAO fits in $P(k)/\xi(r)$ consistent

X. Xu et al. (in prep; DR7) BOSS Galaxy Clustering (in prep.)

BAO fit plot was here

2-3% uncertainty on BAO position in angle-averaged $P(k)/\xi(r)$

Constrains $D_V \propto (D_A^2/H)^{1/3}$

The CMASS measurements

• 26 log bins in s for ξ_0 and $\xi_2 = 52$ DOF

Measurement of ξ_0/ξ_2 was here

Wednesday, January 25, 2012

SLOAN DIGITAL SKY, SURVEY II

Model Fits

• We test the LCDM hypothesis in 4 models, always marginalizing over P(k) shape and σ^{2}_{FOG} :

- LCDM (bσ₈)
- LCDM + fσ₈: (bσ₈, fσ₈)
 - LCDM + geometry: $(b\sigma_8, D_V, D_A*H)$
- LCDM++: $(b\sigma_8, f\sigma_8, D_V, D_A*H)$

SDSS

Current status

- $D_V/D_{V,fid} = x \pm 0.019$ (i.e., minimal information gain on D_V compared to BAO only!)
- Geometry LCDM: $f\sigma_8 = xx \pm 0.03$ (7%) [WMAP7 LCDM: 0.45 ± 0.025]
- $f\sigma_8 LCDM: \eta = xx \pm 0.04$ (4%) [WMAP7 LCDM: 1.00 ± 0.012]
 - Fit both: $f\sigma_8 = xx \pm 0.07$, $\eta = xx \pm 0.07$

SDSSIII Testing alternative models with amplitude of peculiar velocities

Wednesday, January 25, 2012

SDSS

Expansion rate at z=0.57

SLOAN DIGITAL SKY SURVEY III

SDSS

LOAN DIGITAL SKY SURVEY I

Error Budget/Future Prospects

s_{min} (Mpc/h)

SDSS

SLOAN DIGITAL SKY, SURVEY II

Error Budget/Future Prospects

s_{min} (Mpc/h)

SDSSII

SLOAN DIGITAL SKY SURVEY II

Summary/Conclusions

• DR9 CMASS results:

- high significance detection of BAO in $\xi_0(r)$, $P_0(k)$ (~2% constraint on $Dv \propto D_A^2/H$)
- 7% (4%) measurement of $f\sigma_8$ (D_A * H) at z=0.57
- Two "easy" ways to improve our precision:
 - use information on small scales to constrain σ^2_{FOG} .
 - Push modeling of halo clustering to smaller scales