Anisotropic clustering in the Baryon Oscillation Spectroscopic Survey

in collaboration with Martin White, Will Percival, Lado Samushia, BOSS galaxy clustering working group

SDSS

Motivation for studying Redshift

 Space Distortions- Growth function $\mathrm{G}(\mathrm{a}): \delta(\mathbf{k}, \mathrm{a})=\mathrm{aG}(\mathrm{a}) \delta_{i}(\mathbf{k})$
- In General Relativity $\mathrm{G}(\mathrm{a})$ is determined once $H(a)$ is specified/measured; generically this relation is different in modified gravity models

BOSS Anistropic Clustering: $\xi\left(r_{\sigma}, r_{\pi}\right)$

sbssIII

WiggleZ.Anistropic Clustering: P($\left.\mathrm{k}_{\perp}, \mathrm{k}_{\mathrm{i}}\right)$

Outline

- Our basic model for galaxy cluistering
- Anisotropic galaxy clustering
- Alcock-Paczynski effect
- Redshift space distortions

First results from BOSS

- Error budget and future prospects
- Galaxy clustering lightning

theory review

- Theory I: underlying matter power spectrum (determined at $\mathrm{z}>\sim$ zcmb, neglecting V)
- Theory II: Expansion history $\mathrm{H}\left(0<z<z_{G A L}\right)$

Matter Power Spectrum

- Entire $P(k)$ (not just $B A O)$ acts as standard ruler determined by CMB
- We marginalize over the (negligible) uncertainty

Mpc
Mpc

sDSS

Theory II: geometry

- We measure θ, φ, and z for each galaxy, and use a cosmological model to convert to comoving coordinates

$$
\mathbf{Z}_{1}
$$

-Theory II:Alcock-Paczynski

- $\xi\left(r_{p}, \pi\right)$ appears anisotropic if you assume the wrong cosmological model (constrain $\eta_{A P}=D_{A}^{*} . H$)

$$
X(z)=0 \int^{z} \mathrm{c} d z^{\prime} / H\left(z^{\prime}\right)
$$

BAO in $\xi_{0}(\mathrm{~s})$-determines "geometric-mean" Dv. $\propto \cdot\left(\mathrm{DA}^{2} \mathrm{H}^{-1}\right)^{1 / 3}$

$x(z) * \Delta \theta$

SDSS
 - Redshift Space Distortions

θ, φ, redshift
depends on the geometry of the universe

$$
X(z)=X_{\text {true }}+v_{p} / a H(a)
$$

$$
X(z)=0 \int^{\prime} c d z^{\prime} / H\left(z^{\prime}\right)
$$

SDSS

Redshift Space Distortions (RSD)

real to redshift space separations

$$
\nabla \cdot \mathbf{v}_{\mathbf{p}}=-\mathrm{aHf} \delta_{\mathrm{m}}
$$

$$
\left|v_{p}\right| \sim d \sigma_{8} / d \ln a=\sigma_{8} * f
$$

isotropic
squashed along line of sight

$$
\mathrm{f}=\mathrm{d} \ln \sigma_{8} / \mathrm{d} \ln \mathrm{a} \approx \Omega_{\dot{\mathrm{m}}} \gamma
$$

RSD: linear theory (Kaiser 1987)

$$
\delta_{g}^{s}(k)=\left(b+f \mu_{k}^{2}\right) \delta_{m}^{r}(k)
$$

$$
\mu_{k}^{2}=k_{z}^{2} / k^{2}
$$

Legendre Polynomial moments: $\mathrm{P}(\mathrm{k})$

General Expansion :

$$
P\left(k, \mu_{k}\right)=\sum_{\ell} P_{\ell}(k) L_{\ell}\left(\mu_{k}\right)
$$

Linear theory prediction

$$
\left(\begin{array}{l}
P_{0}(k) \\
P_{2}(k) \\
P_{4}(k)
\end{array}\right)=P_{m}^{r}(k)\left(\begin{array}{c}
b^{2}+\frac{2}{3} b f+\frac{1}{5} f^{2} \\
\frac{4}{3} b f+\frac{4}{7} f^{2} \\
\frac{8}{35} f^{2}
\end{array}\right)
$$

Legendre Polynomial moments: $\boldsymbol{\xi}(r)$

General Expansion :

$$
\xi\left(s, \mu_{s}\right)=\sum_{\ell} \xi_{\ell}(s) L_{\ell}\left(\mu_{s}\right)
$$

Relation to $\mathrm{P} \ell(\mathrm{k})$

$$
\xi_{\ell}(s)=i^{\ell} \int \frac{k^{2} d k}{2 \pi^{2}} P_{\ell}(k) j_{\ell}(k s)
$$

sbss
 Modeling RSD: Reid and White 2011 (arXiv: I 105.4165)

ξ_{0}, ξ_{2} sufficient to constrain $\mathrm{bo}_{8}, \mathrm{fo}_{8} ;$ MOST of 2d clustering information retained

sDSS

Fitting to 2d clustering

- Use full model of $\xi_{0,2}\left(s \geq 25 \mathrm{~h}^{-1} \mathrm{Mpc}\right)$ to constraiñ:
- growth of structure (fo_{8})
- $\mathrm{Dv}_{\mathrm{v}} \times\left(\mathrm{D}^{2} / \mathrm{H}\right)^{1 / 3}$
- Alcock-Pacżynski $\left(\eta_{A P} \propto D_{A}\left(z_{\text {eff }}\right) * H\left(Z_{\text {eff }}\right)\right)$
- marginalizing over shape of underlying linear $P(k), b \sigma_{8}, \sigma^{2} \mathrm{FOG}$

Alcock-Paczynski in multipoles

"DR9 spectroscopic results:

preliminary!

- DR9 data final (public July 2012), clustering/ covariances \sim final, cosmological constraints preliminary
- Current uncertainties reported, not central values

BOSS "CMASS" (Zeff $=0.57$) galaxy sample in perspective

Eisenstein et al. arXiv:IIO1.1529

Sbss

BAO fits in $P(k) / \xi(r)$ consistent

- 2-3\% uncertainty on BAO position in angle-averaged $P(k) / \zeta(r)$
- Constrains
$\mathrm{Dv} \propto\left(\mathrm{DA}^{2} / / /\right)^{1 / 3}$

sDSS

The CMASS measurements

- 26 log bins in s for ξ_{0} and $\xi_{2}=52$ DOF

Measurement of ξ_{0} / ξ_{2} was here

sDSS

Model Fits

- We test the LCDM hypothesis in 4 models, always marginalizing over $\mathrm{P}(\mathrm{k})$ shape and $\mathrm{\sigma}^{2} \mathrm{FOG}$:
- LCDM (bor
- LCDM $^{+f \sigma_{8}: ~}\left(\mathrm{~b} \mathrm{\sigma}_{8}, \mathrm{fo}_{8}\right)$
- LCDM + geometry: (bG ${ }_{8}, \mathrm{Dv}_{\mathrm{v}}, \mathrm{DA}_{\mathrm{A}}{ }^{*} \mathrm{H}$)
- LCDM++: (b $\left.\sigma_{8}, \mathrm{fo}_{8}, \mathrm{Dv}_{\mathrm{V}}, \mathrm{DA}_{\mathrm{A}}{ }^{*} \mathrm{H}\right)$

Current status

- $D_{v / D} / D_{\text {fid }}=x \pm 0.019$ (i.e., minimal information gain on Dv compared to BAO only!)
- Geometry LCDM: $\mathrm{fo}_{8}=x \mathrm{x} \pm 0.03$ (7\%) [WMAP7 LCDM: $0.45 \pm 0.025]$
- fo_{8} LCDM: $\mathfrak{\eta}=\mathrm{xx} \pm 0.04(4 \%)$ [WMAP7 LCDM: 1.00 ± 0.012]

Fit both: $\mathrm{fo}_{8}^{-}=\mathrm{xx} \pm 0.07, \eta=\mathrm{xx} \pm 0.07$

Testing alternative models with amplitude of peculiar velocities

Expansion rate at $\mathbf{z = 0 . 5 7}$

Error Budget/Future Prospects

Error Budget/Future Prospects

Summary/Conclusions

- DR9 CMASS results:
- high significance detection of $B A O$ in $\xi o(r), ~ P o(k)$ ($\sim 2 \%$ constraint on $\mathrm{Dv}_{\alpha} \propto \mathrm{D}_{\mathrm{A}}{ }^{2} / \mathrm{H}$)
- $7 \%(4 \%)$ measurement of $\mathrm{fO}_{8}\left(\mathrm{DA}_{\mathrm{A}}^{*} \mathrm{H}\right)$ at $\mathrm{z}=0.57$
- Two "easy" ways to improve our precision:
- use information on small scales to constrain σ^{2} FOG:
- Push modeling of halo clustering to smaller scales

