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Thebehavior of the renormalization groupis investigated in the neighborhood of the fixed points
described by the “minimal” conformal theories M, with p» 1. In the leading approximation in

1/p afield theory is constructed which corresponds to the renormalization-group trajectory

connecting the fixed points M, and M, _

"1.INTRODUCTION

The critical behavior of statistical systems is directly
connected with fixed points of the renormalization group. 2

"'The field theory corresponding to a fixed point possesses

conformal invariance on all scales substantially exceeding
the ultraviolet cutoff.™* A full analysis of the critical point
should include, first, the construction of the conformally in-
variant fleld-theory solution corresponding to the fixed
point itseif, and, second, the calculation of the correspond-
ing universality class, i.c., in essence, the description of the
structure of the renormalization group in a certain neighbor-
hood of this point.? In two-dimensional theory (which is
discussed in the present article) the first of these problems
can be solved in many cases.’ Several infinite series of exact
solutions of two-dimensional conformal field theory are now
known,5 % and methods for constructing new solutions ex-

ist™!"'; there is even hope of finding a complete classifica-
tion of such solutions. In a number of cases it has proved
possible to relate such solutions to the eritical (or multicriti-
cal) points of two-dimensional models from statistical phys-
ics.*%!"'" However, the question of the “physical” interpre-
tation of conformally invariant solutions remains largely
Ope. :

If the solution correspondmg to the fixed point itself is
known exactly, the properties of the renormalization group
in the neighborhood of this point can, in principle, be calcu-
lated using perturbation theory. However, this approxima-
tion is useful only if the renormalization group exhibits topo-
logically nontrivial behavior (e.g., has other fixed points)
within a sufficiently small neighborhood! of the initial
point. Such a situation occurs if the given conformal field
theory contains spinless fields with anomalous dimensions 4
close to 2 (to &, in a %-dimensional theory), i.e.,
d =9 — 2g, |g| €. This well known circumstance serves as
the basis for the famous £-expansion method.? In our paper
we consider the analogous approximation directly in the
two-dimensional case.

In Sec. 2 we discuss the general properties of the renor-
malization group in two-dimensional field theory. In partic-
ular, it is shown that in a renormalizable theory that has o
coupling constants g = (g', £ . . . ,g") and satisfies the posi-
tivity condition,*'® the renormalization-group equations''®

dg'=p'(g)dt (L.1)

possess the following property. There exists a function r_'(g)
such that: a)

£—C=B (g)%r:(g)éﬂ, )
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where the stationary points of c(g) coincide with the fixeg
points of the renormalization group, i.e., the conditigns
Bl{gy =0and dc(g)/dg'= 0 are equivalent;

b) for each fixed point g = g. [B(g.) = 0] the valuee,
== c{g. ) coincides with the central charge of the Virasarg
algebra in the corresponding conformal field theory,?°

This “c-theorem™ has an obvious consequence. If twg
fixed points g.; and g., are linked by a renormalization.
group trajectory, i.e., there exists a solution g(¢) of (1.1)
satisfying the conditions g{ — @) =g., and g(w) = g4
(see the figure), then the values ¢; and ¢, of the “centra]
charge” in the conformal theories g., and g., obey the in-
equality

Cr>>¢y. : ‘ (1.3).

This statement makes it possible to give a renormalization-
group meaning to the “ordering” of the conformal field-the-
ory solutions by the magnitude of the central charge ¢.

In Sec. 3 we use perturbation theory to find the power
expansions of the B-functions {to order (g —g.) % and of
the function ¢(g) [to order (g — g.)*] about the fixed point
g., with the coefficients expressed in terms of the anomalous
dimensions and structure constants of the operator algebra
of the conformal theory g.. It is found that, up to the indicat-
ed order, the relation

B(6) =230 (&) a“(g)

(14)

is fulfilled, where G"/(g) is the symimetric positive-definite

matrix that specifies the metric in the space of the coupling
constants g.*
The simplest known series of exact conformally invar-
iant solutions are the “minimal models” A,, p=3, 4
. {(Refs. 5, 6, 15). The models M, are related to degen-
erate representations of the Vu'asoro algebra; the corre-
sponding values of the central charge are

ep=1—6/p{p+1). s

In Sec. 4 we consider perturbation theory about these solu-
tions in the case p» 1. An essential point is that in each of the

H*U . . +

\g*,

FIG. L. Renormalizatinn-group trajectory linking the fixed points g-n and
8oy
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models M, thereisafield p = @, 5, with anomalous dimen-
‘sion d” 5= 2.’.‘\.“ 1 = 2 — 2¢, where the quantity

con be regarded for p> 1 as a small parameter. In Sec. 4 we

thll

%=%(p)+%££ﬁ3, i(:i)_g_[ (P(; 1)(3)d'$' (1-7)
where 7"’ corresponds to the strictly conformal theory M,
that describes, obviously, the ultraviolet asymptatic form of
the theory (1.7). The renormalization-group method makes’
it possible to sum the perturbation-theory series in the region
O<gSe. It is found that for g> 0 the infrared asymptotic

iance, and is described by the model M, _,. In other words,
‘we shall construct the feld theory corresponding to the re-
" normalization-group trajectory that links the two fixed
points g.o and g., (see the figure), where g.q and g., corre-
' :sp'o_nc_l tothe conformal theories , and M, _, respectively.

5 2. THE HENORMALIZATION GROUPIN TWO DIMENSIONAL

5 FIELD THEORY :
© A field theory can be regarded as a set of correlation
'funcnons :

: (A (z)Ada(z) .. Ax{zx)?, (2.1)

'Where the local fields A4, (x) are elements of an infinite-di-
mensional vector space « and form a closed (associative
~and commutative) algebra under operator expan-
_sions.>**** Below, we consider a two-dimensional Euclid-
ean field theory, so that x = (x!, x*)eR%

- -+ The spatial symmetries of a homoge_neous and isotropic
- theory are guaranteed by the presence of a symmetric stress
'_-tensor T,, (x)es, satisfying the contlnmty equatlon

operators P and 5 acting in & Here, £, = —&,,, £5=1,

and the integrals are taken over a small contour surroundmg
the point x; in view of (2.2), these integrals do not'depend on '
the shape of the contour. The operator P coincides with the

derivative
1B (z)=0,4 (z), (2.4

. _ . . .
and the spectrum of the operator S in & consists of integers

that
S = & g,

. Ll ) Y S
In the Lagrangian formulation of the theory the corre-
latorsA(_Z. 1) are defined as averages of the form

| 1Dp14,(z)).. .4

Ssptor=sgg), (2.5) .

(2.6)

hi (IN) e—,‘if[lﬂr
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investigate the perturbation theory with the Euclidean ac-

- form of the theory (1.7) also possesses conformal invar- .

A, T=0, - {2.2)
' The expressions .
. iB,4(z) =P dy ey (W) A ), .
154 (z) =0 ay ehewo-xwwym(z)

(whereA 15 an arbxtrary element of &) serve to define the _

(for Bose fields) and half- odd—mtegers (for Femu ﬁeIds) 50

where @ is a certain set of “fundamental” fields (the nature
of which i3 not important here), the symbols .4, {x) denote
any local “composite™ fields, and % [@] is the Euclidean
action, which is an integral of the local density:

3‘6’[@} SH(cp(z) dup (2}, .

"We assume that in the definition of &° we have included a
constant (i.e., independent of @) term that ensures the nor-
malization of the distribution function, and so in (2.6) we

L) (2.7)

_ have not written the factor Z . In the given formalism the

components of the stress tensor T, describe the variations
of the density H{x) =H{p(x}, qp(x), . .. ) under infini-
tesimal coordinate transformanons X, —X, + 8x,. In par-
ticular, under the scale transformatlon

z,~+ (1+Y:dt) z, . {2.8)
we have ' '
H(z)—H(z) —dte(:r:), (2.9)
where we have introduced the notation B(x) = — T o).

As a rule; the correctidefinition of the functional mtegrals
(2.6) in the nonperturbative region encounters certain diffi-
culties. Nevertheless, we shall make use of certain general
properties of the expression (2.6).

We shall asume that there is an #-parameter family of
field theories, i.e., the correlation functions {2.1) depend on
the “coupling constants” g’ = (g'.¢% ....g" ). Then there
exist spinless” fields ®;ew/'” and linear operators

B 1/ . 7 such that
d
. -?E‘,Oll(:r,) AN(:(:N))—Z(B“A (z,) ... 4dx(zx)?
] g, ). A 0, (2.10)

whefe the operator ﬁ,-, « Acts on the ﬁeld A (x,). Aecording
to (2.6},

Q,—(z)=%ff(m),- B,A(z)=a;;‘4(z). (2.11)
The subspace ® C .o"'” spanned by the fields ¢, is associated
with the tangent space T, Q, where  is the “interaction
space” with coordinates g*

‘We shall assume that the field theories under considera-
tion are renormalizable, i.e., for a.ll geg the ﬁeld O lies in P.

We can then write

e(z)—Zia (6) 0.,

fomi

- (2.12)

where the coefficients A are calIed B-functions.
Since the field © can be represented in the divergence
form’ G(x) = —d, (x"T 1, thc re!atlon

PU(ERE.

o=l

dxt

ﬁg)altzf).'..AN(:cNO

— Py, (z).. Atz 0 (), (2.13)

is valid, where the operatofﬁ 2 ) o ©? describes varia-
tions of the fields de under the infinitesimal scale trans-
formations {2.8):
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: .:A (0)—+A (D) +dtDA(0). (2.14)

We note that the integralin the right-hand side of (2.13) can
1 diveres s v—x,. In this case the aperator 2 depends on the
: i-'-'.'_rc'utoﬁ: parameter Ry in such a way as to cancel this diver-
gence in {2.13), since by (2.1) we understand the “‘renor-

he natyr,
x) denote
Euclideap

oen

F _ malized” correlation functions, independent of Ry. This ap-
icluded a -:'-I*_,plies in equal measure to the relations (2.10) and the
sthenor- | gnerators B,

6) we ' Combining (2.10), (2.12), and (2.13), we can obtain

ﬂié Cailan—Symanzik equation

{Z(-—zu 2+ f (g))

Mamnl

- —Zs (&) ——} Au(z).... Ax(z)r=0,

2.8) (2.15)
fmy
:'2'9) __w_hgf& t]fe opfratc:r ,
: I‘=D+ﬂ‘B,=D+ﬂ‘? {2.16)

- is called the matrix of anomalous dimensions and does not
" “contain any dependence on R,. It follows from (2.15) that
the field theories corresponding to two points g{¢,) and
g(t; ) on the same integral curve of Eqs. (1.1) differ only by
ascale transformation x, —e" ™ “x,, . Compatibility of (2.9),
(2.11), {2.12), and (2.14) requires that the subspace ® be
invariant for the operator I, i.e.,

To.=v/(g) m,=(5( -a—f:;)m,.
B

This relation ensures the absence of renormalizations of the
components of the stress tensor:

Q= (Fet) T (T 1) T=0),

{2.17)

(I-1) (2.18)
where we have introduced for later convenience the notation

=TTt 2T e, T=T\—Ts—2

il =82, (2.19)

Information on the global topological properties of the
vector field Ag) is of special interest, since it permits us to
udge the phase structure of the field theory. Here we shall
ow that in a two-dimensional field theory satisfying the
sitivity condition®'® the renormalization-group flow de-
ibed by Eq. (1.1) has a “dissipative” character, i.e., we
all derive the inequality (1.2). For thIS we consider the
0- -point functions

(T(z, £)T(0, 0))=F(1)/z*, (2.20a)
(7, 1)8(0, 0)>=H(v)/*, (2.20b)
8(z, )0 (0, 0)>=G(1}/z*% (2.20c)

fi'brmu]as‘ {2.20) serve as definitions of the functions
H(7), and G(r) of the scalar argument 7 == log(z3),
e

=-fl'*ffIé' =z —~iz,.

:aﬁpns (2.2), which in the notation (2.19) have the

.0, 2:0=4.T, (2.22)

following relations for these functions:
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(2.21)

Fe=H—3H, H—H—(—-320, (2.23)

where the dot denotes the derivative with respect to + We
introduce the guantrity

c=2F+4H—6G. (2.24)
The equzition
=12, (2.25)

which is a simple consequence of (2.23), shows thatc{7) isa
monotonically decreasing function of 1, since G{r)>0 by
virtue of the positivity condition.'® If we fix = (say, set
7=10), then the quantities F, H, and G will depend only on
the coupling constants g; then, from (2.25) and the renor-
mahzatmn-group equations (2.15) and (2 18) we obtain

3 —C(g)—hisz;(g)B (g) ﬂ’(g). (2 26)

where the symmetric matrix

Ga(g)=Gu(0, ), Gult, 8)=(22) XDz, 7)d;(0, 0)>
(2.27)
is positive-definite because of the positivity condition adopt-
ed. We note that ds* = G;; (g)dg’dg/ canbe regarded as the
metric in Q.
The renormalization-group fixed points g., are deter-

mined by the conditions
Bi(g.)=0, i=1, 2,...,m,

where we have introduced the index / labeling the solutions
of Eqs. (2.28), For g = g., we have © =0, and conformal
symumeltry appears in the theory. Namely, with this condi-
tion it follows from (2.22) that

(2.28)

T=T(z), T=T(z). (2.29)

Therefore, in analogy with (2.3) we can introduce an infinite

set of operators L,,L,, n=0, + 1, +2, acting in & in
accordance with the formulas

L= at -1 0046,
LA(Ga2) =P af (f—2)"T(E)A(2,5),

with S = EG - fo and ?’E?’, + z'?’o =7 _,-The ope'ratorsf :
obey the commutation relations of the Virasoro algebra:

(23D

(2.30)

(L, o] ={n—1) Lusnt (e/12) (7~1) Sutm, o,

wherec, is a real number (thecentral charge) characterizing
the given conformal field theory.® The two-point function
(2.20a) with g = g., can be expressed in terms of the con-
stant ¢;:

(T(3)T(0)>=c/2:", (2.32)

Since for g = g., the functions & and G'in (2.20) vanish, we
obtain from (2.24)

elg.) =ec,. (2.33)

- There is some simplification of the formula (2.26) in
the “one-charge™ casen = 1, when without loss of generality
wecan set G, = 1 (G, is the only component of the matrix
G,;), since (for n = 1) this can always be achieved by a suit-
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- “gble replacemeﬁt g—2(g). With this choice we obtain from
. (2.26)

(_2.34.}

" Let g., and g., be fixed points, ie., different roots of the -

“equation A(g) = 0. Then the values c, and ¢, of the central
charge in the corresponding conformal theories are connect-
" ed by the relation

Cy—Co = j B(g)de. (2.35)

dnq

3.PERTURBATION THEORY NEAR A FIXED POINT

We shall conicentrate attention on the vicinity of a cer-
tain fixed point g.,€Q. It is convenient to assume that the
. coordinate origin in Q coincides with g., i.e., §.q = 0.

The structure of the conformal field theory {that arises
when g = g.o = 0) is described in Ref. 5. We recall the prin-
cipal facts. The space o for g = 0 contains a certain (possi-

* bly infinite) set of “primary” ﬁelds P €/, obeying the

equatlons

Ln‘Pu=L‘=nCP=”0 for n>0,
(3.1

En‘Pn""‘Auch ﬁu¢m Bu‘pm

] Here the parameters (Aa, A . ) characterize the ﬁeld qvu and
" are called conformal dimensions. In reality, s, = A, o 18
" the spin of the field @,,, whiled, = A, + A, commdes w1th
the scaling dimension. The fields ¢, are mutually orthogo-
" nal [with respect to the metric (2.26) 1, ie,

{Qalz, ) ga(0, 0)>=0aa(2) = (Z) "** (3.2)
The space .o can be represented as the sum a[g@, ], where
cach of the subspaces [@,] (“conformal classes™} is
spanned by all passible independent monomials of the form

~ ~ ~ . .

L—niL-—nl .”L— L—ml -...L—mHGDu

Ay

(3.3)

with n;, m; >0, and corresponds to an irreducible represen-
tation of the Virasoro algebra with central charge ¢,
= ¢(g.q ). The fields (3.3) (*descendants” of the field ¢, )
have dimensions

(.f_\g'*"y Ri, A +Z, m;)

yei

(3.4)

The fields constituting the space .« form a closed operator
algebra. For example, the product @, (x)g4 () can be rep-
resented in the form

Ta (2. 2) @3 {0, 0)

= ? Cazyz

e

where in the square brackets in the right-hand side we have
omitted the series in integer positive powers of z and Z that
describes the contribution of the “descendants” of the field
@.; the numerical coefficients in this series are completely
determined by the requirements of conformal invariance of
the operator algebra (3.5) (Ref. 5). The coefficients C.z, in
{3.5) (the structure constants of the operator algebra) are

Sy=da-ApzdvRaBa [ (0,0) 4. . ],

(3.5)

symmetric in the indices a, /3,  and are connected with the

- three-point functions by the relations

{pe 20, f|}fP-z,{3:. f:)fp.,,(m. 1) 2
ﬁCmuzm;11':':3|:L::h"’fliqfni'f:;", ] ( 3 6)
wherez,, =2, —z,, ete., A, = A, — AL — A, efe
We now consider the vicinity of the fixed point g = 0,
assuming that the functions B{g) [satisfying the condition
50} = 0] can be expanded in Taylor series in powers of g.
Of course, the linear part of this expansion is completely
determined by the spectrum of the anomalous dimensions of
the spinless (see footnote 3) fields in the conformal theory

,g=0. Wedenote ) =d,{, _,, Pl (%, where for g 540
" the fields &, are defined by the expressions (2.11). Itis con-

venient to choose the coordinate system in ¢ in such a way
that the fields ®,° possess well defined dimensions A, = A,

~and are orthonormal, i.e., G;;{0) = &,;. Then itis clear from

the expressions (3.2}, (3.6) and the similar formulas for the
correlation functions of the “‘descendants” thatfor g = 0 the
equations {2.15) with #'= 0 are fulfilled, and

F(0) @ =17 (0) D2, 14 (0)=As.. (3.7)

Taking into account the relation (2.17), we obtain the well
known expressions .

pg)=cg+0(g’},

wheree, =1 —A;.

The next terms of the expansmn (3.8) caft be calcuiat-
ed, in principle, by means of perturbation theory. Of course,
in the general case the first few terms of this expansiondo not
permit us to make a judgement on the global topological

-properties of the renormalization group. We shall consider,
however, the case when the dimensions A, of the fields &7 are
close to unity, i.e, .

(3.8}

{—A=g, |&]|~e<l. (3.9

In this case it may be expected that the nonlinear terms in
(3.8) become comparable to the linear part when gl—e.
Thus, the renormalization group possesses nontrivialbehav-
ior (i.e., can have other fixed points) in the region g; S £ in
which perturbation theory is applicable. We shall calculate
the next term of the expansion (3.8) in the case (3.9), as-

_suming that the ®,” are primary fields."

According to (2.10) we have

o QD) (0] [gmo

— (B (2) y(0) Y+ (2) (B} (0))

+ § o2 (@) 00 (0) 0,0 (1)), (3.10)

- where B9 = B, |, _ o. The integral in the right-hand side can

be represented in the form

(8 =Bl (00 (2) ©7 (1) 7D () (607) ()
(3.11

where the C, ;. are the structure constants, -

11 (A,—Aj—.'_\,;i”l)r (A;—-—A,-—f_\ﬁ"l}l‘ (2131._1)
PR=2A) T (A F+A,—ANT (A 440

[tjh = 28



ZHTER
(E te—e;) (gFe—e;)

‘the (1+0 (),

e terms with the operntor Evk appear i1n the cose of
ence of the integral; the form of the operator b, de-
on the method of cutoff, and is not important for us. It
enient to choose the 0perators B in such a way that
ression (3.10) vanishes for x% = 1; this corresponds
ecial choice of coordinate system in o:

g

{g)=064+0(g%), (3.12)
G,; is the “metric” (2.27). We then obtain -

2} 0,0} ] gmo

3y =88 Cy (T o[ (27} {2 Py {LHI.“

(3.13)
! ; i = 2“__ L) et

) (Il =)= €g+€r—e,-(l L0 (7)), (3.14)

aring (3.13) with (2.15), we have, - |

g) =08+ Cg 0 (g), (3.15)

= (€rtei—e;) T Can =L 0 (). (3.16)
s, according to (2.17),_

'f"ﬂ"( g)=eg'='.Cilg'e"+0(g%). (3.17)

Because of the symmetry of the coefficients C,, = Cp'
which holds for £ < 1, the vector #4g) in the approximation

fl"':(g)""—ln"tzcu“*‘l/ eg'g'—'1.LLung'g’e"t0(g'). . (3.18)

es with the expansion of the function e{g) defined in
Returning to an arbitrary coordinate system in @, we

_unal maodels of the the “main series” M,p=34,
whlch satisfy the positivity conchtlon 6 The value of

A, contains p(p—1)/2 spinless primary fields
»labelled by the twointegersn = 1,2, ...,p — land

.'_— 1p) == @1, == J coincides with the unit operator.
ensions of the fields @, ,; are equal to

;.._,— =1 ({p+1yn—pm)*—11/4p (p+1). - (4.1)

dce o = ea [gn(,,m,] forms a closed algebra, the

re of whxch is described in Ref. 5 and, in more detail,

s Py @iy =P —np -1 —m), and the

in Ref. 15. For the following it is important tlhat the subspace
&\ = & [, | C& is asubalgebra.

We shail consider 2 8zed point 4, With 0> | We noge
first of all that there are two series of primary fields @, , | 2
and @, ;. 3., Whose dimensions for n<p are close to unity,
Therefore, we may expect that the renormalization group
will display nentrivial behavior in a small (of size —~ ] /p)
neighborhood of the point Af,. In order to investigate thig
neighborhood, it is necessary to calculate the A-functiong
from the formula (3.17), using the fields® @, ,.,, and
P(a+2.m 88 the ®,. Since p>» 1 the dimension of the space O
in this case turns out to be very large (in fact, in the Ieading

" approximation it must be regarded as infinite). In its general

form this problem will be considered in another paper. Here
we shall investigate only the field theory that arises when the
model M, is perturbed by the operatoer @, 5, with dimension

Ao, y=1—e, e=3/(p+1). @

Since the field @,, 5, is the only field in the subalgebra &,
that has dimension close to unity, the corresponding renor-
malization group ca.n be constructed as a single-charge re-
normalization group.®

Let HP(x, g) be the density of the action of this per-.

turbed theory [H*"(x, 0) describes the fixed point M, ]:

0 (z, g)=aig H (z,g),  ®(z,0)= P, (43)

We shall assume that the *‘coordinate” g in { is chosen s0
that :

Gle)=<0(z, £)D(0, g))|om=1. SN CYS I
The field © = — T, can be written in the form .
O=p(g) 0. ' (4.5)

According to (3.17), the first terms of the exparision of the

function #(g) are 4 _
8(g)=eg—'(-(2nC)g*+0(g?), - (4.6)

where the structure constant C = C, 3y,,.3,13; can be ob-
tained from the general forrnulas
Cle)—= 4 (1—25) [ "('_H-E)
VS (1—e) (1—3e/2) - T{1+e/2) I {1—e)
I(1+3e/2) T T(1-2 4
x| Di8er) 17 TU—2) 2 {1-Zs0@). v
{1—3e/2) r(1+2e) ¥3 2. .
Thus,

-
&

5(§)—Eg—::i_(l_3_€)a: 4(27)7

q

a
1]

where we have written also the next term of the expansion of

the A-function, retaining only terms of order £ *for g~¢&. It

can be seen from (4.8) that there is a fixed po_int

tmg.=(V3[2e (1+e/2+0 (). CSD

Taking into account the posiitivity condition, which cannot
be violated in the perturbed theory, and the statement of Sec.
2 concerning the decay of the ¢-function, we can predict that
the fixed point (4.9) corresponds to a particular one of the
models M, with g <p. Calculation of the central charge at

S (4.8)°

e — o




the point g., using formula (2.35) gives

(g} ==Cp L

(4.10)
which, to the necessary accuracy, agrees with the expression

c(ge) =1=B/p(p=1) =cCp-1. (4.11)

Thus, the fixed point g., is described by the minimal ﬁmdei
M,_,.
The slope of the S-function at the fixed point deter-

Vmines the anomalous dimension of the field ${x, g., } in the

conformal theory g.,. From (4.8) we obtain
Bl e (4.12)
dg F=g,1 )

Therefdre, to the indicated accuracy, this anomalons
- dimension is equal to

A=ttetet+ . =[+2f(p—1). (4.13)

The latter expression coincides with the dimension A5, in
the model M, _ . Consequently, .

B0 =gin (@), O z.)=¢l (2),

" where the index (p} [(p — 1)] denotes that the correspond-
ing field belongs to the model M, (M, _ ).

Thus, the field theory constructed corresponds to the
renormalization-group trajectory linking the fixed points
M, and M, _, (therefore, weshallcallitthetheory M, ,_,),
and realizes a kind of “‘interpolation” between these two
conformal theories: In the ultraviolet region this theary ap-
proximates to M, while the infrared asymptotic forms of
this theory are described by the model 4{, _ . We note that,
in view of (4.14}, the theory M, ., can be regarded as the
model M, | perturbed by the field @ ;, -

. It is interesting to investigate the renormalizations of

the fields g, ,,, in the perturbed theory M, , _, and to estab-
lish the corrspondence between these fields in the “asympto-
tic” theories M, and M, _,.For thisitis necessary to calcu-
late the anomaious-dmens;on matrix F(g) In the
calculations it should be borne in mind that in the leading
order in £, as usual, only operators with close dimensions are
effectively mixed. The information that we need on the
structure of the operator algebra of the model M, is con-
tained in the symbolic formula

(4.14)

Fimmy P,
=C:::::; [‘p(n,m) ] +CE: :::-“ [(P(n m43y ] +C(: ‘:!‘l: [[p(n n—'l]]

{4.15)

where the square brackets denote the contribution of the
corresponding field and of its *descendants™; the depend-
ence on the coordinates, which is expressible by the standard
power factors, has been omitted in (4.15). The structure
constants CI5), = C{3) = Cayman in (4.15) are equal to

cgm = L= UED 4 g (nsim),
¥3{m—1)
T 1'—1
Gy’ = " et 0 (e,
8¥3
AR . '
el =(222)" + o) (nmm), (4.16)

am

(myni} (”-z‘”l) i

C(_n,n-—l} = +O(E)

dn

It is simplest of all to investigate the fields ‘D[,,.,,,.(:r,g):

Dy (20) = 70 ix) with #n<p, which. for g =0, have
the dimensions
n—1 ni—1 ( 3 )
A= - el1+—+0@)). (417
0 T apar) 16 g T 0D ) (4D

According to (4.15), the field @, ,, does not mix with other
fields, so that

‘r(g)q)(rs,n]=.{(n,n)(g)q)(n.n)| . P (4-18)
where
Tinun) (g)ﬂ’l(n.nl"'z“(:t(r::;)g +...
i bt
el 1(1 O e (4.19)
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we have assumed that the field @, ., is normalized by the
condition (@, (X}, ., (0})|z, =1 Thus, for
g = g-, (4.9) the anomalous dimension of the field D, ,, is
equal to

. 111—1( Je | ) ni—1
: 14 )=+ O,
U S Tr=aIe]

'{{ﬂ.ﬂ) (g' l} =
(4.20)

and, consequently, @, ,, (g, } =@ ¥ :)”(x). .

Next, we consider the fields @, , ¢, and ®7,,,_ |, that
go over, for g = 0, into @ &, _ |, and @ {#, _ |, and are nor-
malized by the condition

<‘Dtm(I)‘D(m(0)>|=‘=1=6¢ﬂ- (4.21)

For g = 0 these fields have the dimensions

I 2n+i

Muvy = o et (@),
b ]

FLYp— m‘i;+‘11 = et+0 (&%)
“E

1t follows from (4.15) that in the leading approximationit is
necessary to take into account the mixing of the fields
@ nn_y 230d Py, yy, SO that for each n we have a 2X2

matrix of anomalous dimensions:

]
{0 tm ) '
T (8) = ( )
= 0 "\(n, n—1)

n4-2 n? — 1)

2ng n - -
TV weon P R (4.22)
2n

i
/

1t is not difficult to check that for g = g.; (4.9) this matrix
has eigenvalues :

- 1 2nt+i -
Bi=—+ T e b0 (), (4.23)
- 1 2n—1
:=I’— i '—A:i—;n} ‘0(51)
Thus, for g =g., the fields ®,, ,.,, and ®,, _ ,, are linear

combinations of @ {251, and @ 571,



Finally, we consider the ficlds @, ., and ®(,,_,
orresponding to @, , . 5y and @, . _ in M. In this case

“8) ixing of the fields ®,, , _.,and ®, ., with the fald

turns out to be important. We normalize each trlple of ﬁelds -
Dy, D wrand @, -, by the condition (4.21). (thig
is why the factor (24, ;) ~"' was introduced in (4.24)7.

1Ay T . ; :
oy (0 €) 7 By (7, 0) = (24 (o)~ 2,059/ 5%, () (4.24)  Then the corresponding matrix of anomalous dimensions jg
17 = :
'5(11, n+2) 0 o
the 0 b A()l.ﬂ) o +
D g i“[n.n— )
e ] -1 (n-,—g),.'g o
18) o3 n-- B .
dng | n—1 7 aL2 4 a4l n—-—2)‘.": d :
VY3 | a1 ( n ) n¥— 1 n—1 n 1 (425)
n-1 f n—21\" n—3 e
0 n—1 ( n ) n—1
[
.19 i o R . : a .
here The OpErator g, 5, as a perturbation of the model 3f,, also has other
. specific properties. For example, such a perturbed theory possesses an
the | — n+i E+0 (E ), A = N, infinite set of commuting intepgrals of motion {a proof of this statement
for (m ) (n.n=2) in the framework of perturbation theory will be givenin another paper).
(4.26) . 'N. M. Bogolyubov and D. V. Shlrkov, Introduction to the T}xearja of
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e spectrinm of the anomalous dimensions of these models
for g = g., is described by the eigenvalues of the matnx
25), ie.,

1 _
Ao=t+met0(e), Ao=1-—

'),

20) 2l ero(e),

A=1+01(e%). (4.27)

nsequently, for g g-; this triple of fields is expanded in
ey, @ ®Y,, and 3.0;¢ . We note that for all

{(n4Za)r ()

£g<g~, the relation

that
10r1-

W21
2 0l
N ) (D[u,:l-i-:}"*“ 1—”_ Eﬁ(" "
2g {n— 8
= O T 4.2
rx ]_\ n ) (D(n,n—-} Ez(fl:-"l) _a (D( Ny ( 8)

valid. The renormalizations of the other fields &, ., in
emodel M, ,_, can be investigated in an analogous man-
r. This, and also a2 more complete investigation of the vi-
inity of the fixed point M, lie outside the scope of the pres-
L paper.

The author is grateful to V. A. Fateev and A. M. Polya-
ov for useful discussions.

The metric characteristics of the “interaction spece” * that are necessary

n order to give statements of this kind a precise meaning are considered
i Sec. 2.

A formula analogous to (1.4) was obizined earlier® in the two-loop
pproximation of perturbation theory in the general two-dimensional o~
model,

Here we consider only homogeneous and isotropic theories,

Generelly speaking, the condition {3.9) can elso be satisfied by fields of
he form ,9; ., where the @, are primary fields with dimensions A, <
.- This more general case is not needed here, and will be considered in
nother paper.

n fact, in order to ensure renormalizability it is necessary to include
ere the “secondary” fields 3.0:@, ., as well.
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