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INTRODUCTION TO POLYAKOV'S STRING THEORY

Daniel FRIEDAN*
Enrico Fermi Instituie and Department of Physics, University of Chicago,
Chicago, IL 60637, U751,

1. Polyakov's description of the string
A one-dimensional string in its classical motion sweeps out a surface in
space-time, This world-surface, in & dimensions, is described by a

function x*(&). ¢ =1... “depending on two real parameters & = (&', 27),

We build a relativistic quantum theory of the string by making an
integral

Grxe A9, (1.1)

surfaces
over all space-time trajeciories. The main requirement js that the
integral be invariant under reparametrization I — y({); the physical
properties of the string should not depend on the parameter labels we
assign to the space-time events in its history.
Polyakov's proposal is to write the integral over surfaces using a
Riemanman merric

ds® = g,,()dE S
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on the parameter space as an auxiliary variable;

Zge M % xe ~Alg s (1.2)
merrics surfaces
d* - cva
.1,_ AQ. ..f.v = HHM % -w...m. /\\Qﬁﬁ v .Q_:_wfm vﬁ..‘:.ﬁtﬁ.&uf.:u nﬂuw
Alg) = up | 4% /g(&). (1.4)

Here ,
2 Vi) = d* V detlg ,(E))

ey

is the covariant area element. g*()g, (&) = 6* and ¢, = C/e3".
The metric g,,{¢) defines the formal volume element % x through the
inner product

]

(6x. dx), = d%¢ /g dx(&)dx,(3) (1.5)

on infinitesimal variations of x*(Z), in the same way that the finite
dimensional volume element d°¢ | o is determined by the inner product
Jup($)10¢43% on variations of & The volume element 7y on the space of
metrics is similarly determined by the inner product

(09, 8g), = | d22 /g g3 ) 00,ed ) Ol E). (1.6}

The action and volume elements are covariantly defined. so the integral
t1.2) over surfaces is at least formally invariant under reparametrization.

The particular choices (1. 3-6) for the volume elemenis and the m.nmon
can be singled out by their symmetries and by their scaling properties in
parameter space. Everything is included which is: (i) relativistically
invariant, {ii} covariant under repurametrization, (iii) polynomial in the
parameter derivatives and {iv) of naive scaling dimension = 0. Nothing
else would be relevant to the continuum limit in paramerer space.

The functional integral (1.2) characterizes the string’s propagation
locally in the parameters. To describe a particular kind of string (open,
say, or closed) undergoing a particular process (propagation, interaction)
it is necessary to specify the boundaries and other global topologicai
properties of the surface and then to include boundary terms in the
functional integral. We will not do that here, limiting attention to the
local structure of the string. The technical apparatus we use can be
adapted to account for the boundary and other topological mmmna.. .

It is helpful, on the other hand. to have in mind an example. This will

Introduction o Polyakor's string ileory 341

be the complex upper half plane
H=1{e"" —x<t<x, 0<o<n
which is the surface used to describe the open swring. All other surlaces
of interest are obtained from the upper half plane by identifying points.
We want to use the integral {1.2) over surfaces to calculate

expectation values for the string to occupy an arbitrary set of points in
space-time;

n

Glxp...x) =( T] I () —x,) ) (1.7)
k=1

whose Fourier transform is

" a

Glpioap ) = [T |d¥E gl ein v ). (1.8)
A=1
The covariant integration over <1--» & ensures that the expectation

values are of reparametrization invariant quantities. We learn spectral
information from the space-time asymptotics of G(x, ... X, Its Fourier
transform has poles in the squared momenta (P +...+p )* at the
physical masses of the particle states of the E:.:mh. the residues at the
poles are the scattering amplitudes. Again. we will be interested here
only in {ocal properties of the operators ./ ¢} elr e,

2. Gauge fixing

The functionaf integral (1.2) contains an overail infinite factor due to
invariance under the local gauge group of reparametrizations. This
factor. which drops out of expectation values, is effectively removed by
resiricting the integral o a gauge slice: a subspace of metrics which
meets each orbit of the local gauge group exactly once.

We will use without proof a basic fact of two-dimensional geometry:
given any metric g,(Z) there is always a reparametrization I — »{<)
which at least locally makes the metric conformally Euclidean:

9up(E)E7dE" = p(n)d,, didy’.

Moreover, any further reparametrization i — #'{n) which preserves the
conformally Euclidean form of the metric cannot be local, where locai
means equaling the identity » =5 outside some arbitrarily smail
neighborhooed.

Thus a good gauge slice consists of all the metrics which are
conformal to a given Euclidean metric J.dn®dy®. A more general gauge
slice is the conformal class [¢] of metrics conformal to some oot
necessarily Euclidean metric g,
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(9] = {ga(é) = e*9g,,(E)}. {2.1)

Al of these conformal classes uare iocally equivalent under
reparametrization, but global topology usually prevents the existence of
an everywhere Euclidean metric: then the gauge slice must be a non-
Euclidean conformal class. Moreover, one conformal class is usually not
enough to make a global gauge slice: also to be integrated over are a
linite number of variables m, ...m,, called the moduli, which parametrize
the inequivalent conformal ciasses [g(m, ...my)]. The upper half plane
has no moduli. We leave aside the global problem of integrating over
the moduli.

The integration over all metrics is now replaced with an integral over
some conformal class:

g = | Zplig) (2.2)
all mesrics WL
where J(y) is 0 Faddeev-Popov determinant needed to take account of
the variuble valume of the orbits of the IePArimeLrization group.

3. Complex tensor calcuius

It will be convenient to continue the investigation of the integral over
surfaces using mathematical language based on a single complex
parameter in place of two real ones. Once we have singled out a
cotformal class [¢] of metrics on parameter space. we cun limit
ourselves to a special class of local parametrizations. the conformal
parametrizations: those in which the metric is conformally Euclidean.

Then we replace the two real parameters {Z!, 2} with 7 = ELid? A
metric in [§] now takes the form
Fup(€)dE*dE" = p(z, D)dz) (3.1)

Il ¢~ (&) is any conformal reparametrization then w = pl+int is
either an analytic [unction of =z, dav = 0, or an anti-analvtic function,
3 0. The complex derivatives are

od.w
;=30 —id,) 8 =13, +id,). {3.2)

|

j=i]

Conversely, if w=n'+ip® is (anti-) analytic in - then E—n(&) is a
conformal reparametrization. Thus choosing a conformal class [4] of
metrics is exactly equivalent to choosing a collection of local complex
parametrizations, all {anti-) analytically related to each other.
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Given such an analytic structure we can define classes of one
component tensor fields, of the form

fo. 2 Adz P Tz (3.3)

for arbitrary integers » and m. Clearly this form is not changed under
conflormal reparametrization. if anti-analytic reparametrization s
accompanied by complex conjugation. The indices = and 7 in 2q. (3.3)
euch range over only one value, since there is only one complex
parameter, but they are useful to write in order to keep tract of
transformation properties. A tensor with —n subscripts is written with
+n supercirpis: e.g. 5(dz) " 3(dF) "L

It is not hard to verify that any real tensor field on the parameter
surface can be written as a linear combination of complex tensors of the
form (3.3). In particular, a metric g, = PO, in [g]'is written

= gad-di+g. dide, {34
G=: = ys = ip. {3.3)

The other possible complex components of a real symmetric tensor
vinish

Yoo = gz= = 0. {3.6)
The components of the inverse metric are

gT =gt =270, (3.7

gF=gT =0 {3.8)

A metric is useful for contracting - und 7 indices in pairs. so that. given a
particular metric, uny complex tensor of the form (3.3} can be rewritten
in the more special form

1 qdz)" 13.9)
with

L= (g=)" = . (3.10)

We will say that tensors of the form {3.9) have rank n.

This complex »tensor language makes it very easy to describe the
covariant derivatives for the metric g... In the 7 direction the covariant
derivative is just the partial derivative. Clearly

Vi, = g¥ia. =gV, (3.11)

transforms as it stands as a tensor of rank #—1 under conformal
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repurametrization. The covariant derivative in the z direction is derived
from that in the 7 direction by a series of complex conjugations. raisings
and lowerings:

ANHH“.. A.Qllpu h_: mhﬁp.n\nm H: Hn..g

= (d.—no_ logphi. . {3.12)

il

The covariant definition guarantees that V.e. transforms as a tensor of
rank n+1.
The curvarure tensor is the commutator of covariant derivatives -

[V 9]t = 2 Re, . (3.13)
All tensors are one component objects, so all curvature is scalar. From
eqs. (3.11) and (3.12) we calculate

R =p " —ddé.d:logp). (3.14)

IIl' we write the metric g, in terms of a background metric G
a0

Yup = €. then we can relate the covariunt derivatives and curvatures
of the 1wo metrics:

V= e "Y3 13.15)
V.= V.=ni¢p, {3.16}
R = e P =2V g+ R, (3.17)

4. Faddeev—Popov fields

The determinant arising from the gauge fixing in eq. (2.2) is to be
represented as a Grassmannian integral over anti-commuting Faddeev—
Popov lields, We need to lind which operator to take the determinant of,

An infinitesimal repurametrization is u vector field. or rank — | tensor.

oz = r*(z, 2). It induces a variztion of the metric by
Gub T 09, )" = ,p(E + 331 + 52"+ 5E7). (4.1)
Expanding to first order in the variations, we find
0g.: = (V.* + Vari)g. ., (4.2)
dy.. = 2V, 0., {4.3)

The variations dg.: und dg.. are clearly orthogonal in the inner product
{Lb)
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Now we have two sets of variables to describe the metrics

infinitesimally close to g, = e’d,0 (1) arbitrary orthogonul vurintions

0.z dg..: and (2) variations g along the gavge slice and infinitesimaul

reparametrizations ¢°. In the first set of variables the volume element Zy
is

¥g = Yg_.Ty.. Ty (4.4}

In the second variables this becomes

Clgon Gz gs2)

Ly =7 77 T det S 4.3)
4 o ¢ 4P e, 17, 1f)
where & ¢ is based on the inner product
(0. o), = |23 gdd(10(F) (4.6)
[
and &% 1 is bused on
tr.r), = a“.w(.m,cai.,;.v. (.7)
We cun simplify (4.5) by noting that
C v
.. = 0, T o = 0
1) et
and that (*/7d)y.: is essentially the identity operator. We get
Gy = U =T 5 pldet]: Oy &
Ty = Y7 7T pldet| =7 (+.8)

Now we would like to drop the factor 2 4°% 07 as being the volume
element on the reparametrization group. But this is slightly problematic,
since the inner product (4.7) which defines this volume element retiing
some dependence on ¢. This implies that the volume of the gauge group
is not a4 constant along the gauge slice. in which case it does not simply
factor out of the functional integral. Assuming that the ¢ dependence of
Z 7% 07 can be absorbed into Zgp we can go ahead to write the
Faddeev-Popov determinant;

Jg) = det(V*)det(v3), (4.9)

where V© acts from rank —1 tensors to rank —2 tensors and V© is its
complex conjugate,
We introduce Faddeev-Popov ghost fields: ¢*(z, 3} and its complex
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conjugate, to represent the infinitesimal reparametrizations: and h,,(z. 7)
and its complex conjugate. to represent infinitesimal variations
perpendicular to the gauge slice. These fields anti-commute. The

Faddeev-Popov determinant is

Jg)= | DD beHebe (4.10)
g~
.\.:.Q. ?« hu = i..u.m /\\m\ﬁ.munnﬂnﬁ.l +C.C.), AL\HHV
with  Grassmannian volume elements & ,c = Y0700 and Zb =
2,b. % b:- derived from the inner products
(c,c), = |d*ggcict, (4.12)
(h.b), = {433 gl P h_b... (4.13)

5. The free field integrals

The integral over surfaces now takes the form

rot — Aig) Cp iy e dlgable) (7 o Alg.x)
@ e b e . G xe .

conformal [aclors F.P. ghosts surfueces

(5.1)

The actions ((1.3) and (4.11)) for x* b.. and ¢ are quadratic in the
fields. so these ure free {lelds on the purameter space. Moreover. their
actions are conformally invariant:

Ale?g, ) = A(g. x),
Ale?d, by = Alg, b, ¢). (3.2)

The corresponding field equations

fe" =0, @b =0, (5.4)

are consequently independent of ¢. Thus the conformal field $(&)
decouples from the excitations of the free fields. But it does not
necessarily decouple from the quanium fluctuations in the ground state
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of the free fields. because the volume elements GG bD e are not
independent of ¢. ,

Define Sig) to be the ground state action of the free fields in the
metric g,

g3 — gt n@m@.@.un @cknl.h.:..._.u_n_l..xm.i. Am.mv
Then eq. (5.1) can be rewritten in the form

g~ ...ﬁ_@mén:e.é St ...@%@mn@aam|.ﬁ.¢.ka.:,.»..,._ . (5.6)

Sereldy ©) = S(e)—S{(g). {3.7)

representing the integral over surfaces as three completely decoupled
field theories on the parameter space, in a common background metric
Gun(Eh

The strategy now is to find an explicit formula for S.ld. ) by making
a systematic study ol how the [ree feld integrals over x". h__ and ¢°
depend on the clussical metric g,,. N

We use the standurd machinerv of functional integration. Iatroduce a
source z,(<) for ¥ and anti-commuting sources . for ¢F and 7 for h__:

.

. x) = au..(...‘,.mw__z:. (5.9)
(B.b) = |d*= /g (=D +ec), (5.9)
(y.c) = au.,..<\m:...n“ FCe (3.10)

o

The generating functionul for connected diagrams is

fal
wo_ 3 t o e TGO = g X ) LB 5
a2 = Mmuumﬁ__h@.a?m (9. boel = By, X, T (b)Y -+ e nu.—Hv

Explicitly,

Exa

. ' d*z —diw
Wig.z. 7)== —Slgh+ @ﬁf\&u 5 SN

I X (0 )y = B, 0 (3.12)
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where the Green's functions satisfy
l

— (= M (W) = FS o), (3.13
2 T

t_!ﬁm...xﬁ.uv_..s.v = § (z—w) (5,143
o™ -

We will only need to know the singular parts at short distance:
Maixwiy ~ — ot loglz—wi. (5.15)

l

I—w

(3.16)

by ~

The effective action (g, x.b.c) is obtained by the Legendre sransform

F+W = (g, xb+ (8.1 (7,00, {3.17)
2 31 3; 315 Iz oW B .

X o= hlmn Wmu h,, = Lﬂ.ﬁﬁ ,.im-. o = — A {3.18}
N N ofi N

Note that we are relying on context to distinguish the effective fields x*.
h.. und ¢* of eq. (3.18) from the integration variables x*. b, and * of eg.
(311

Since the fields are free. we just wer buck as effective action the
classical action plus the ground state contribution:

Clg.x bocy= Slgl+ Alg. b o)+ Alg. x). {3.19)
The inverse Legendre translorm is

fa= .mm = 27V 4 (5.20)
VA

. N H (5.21)

h <m ab__ '

—2r & z

Ve = — mm = —Vh__ {5.22)
v Ut

6. Renormalization of the free field integrals

oooand ¢ 15 the
renormalization of S{g). We will indicate here that this can be done in a
reparametrization invariant way, but then we will actually calculate the

The only undefined step in the integration over x* b.
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renormalized  S{y)  directly, using only scaling arguments  and
reparametrization  invariance, independent  of any  particular
renormatization scheme,

One way to renormalize S(y) while maintaining reparametrization
invariance is 10 introduce a small distance cutoff ¢ in parameter space,
using the metric g,,(¢) to define what is meant by the distance e. The
standard power counting argument for two-dimensional field theory
gives that the divergent part of S(g) takes the form

4

Slglay = 1d*EGgts 24 L, +e7 A +loged,) {6.1)
where /g4, is a local expression in the metric, of dimension k. The
dimension of an expression A is  if 4 — «*4 when the metric is scaled
by g, — 27 %g,, By the reparametrization invariance of the cutoff, the
A, must be covariant scalars, The only such expressions are 4_, = ¢,,
Aoy =0 Ay =R with ¢, , constants. Thus Slg) is renormalized by
including in the bare action Aly) eq. (1.4} for the metric a local cutoff
dependent counter-term

— d¥ Jyie 2, +c.loge R) {6.2)

w

and taking the limit & — 0. Note that the term x\..mx in Adig} is a toral
divergence {see eq. (3.14)), so plays no role in the locai structure,

7. Yariational formulas

In order to write Ward identities expressing the reparametrization
invariance of the eflfective action (5.19) we will need some variztional
formulus. First we list them. then give derivations.

Suppose the metric y..d=dZ+c.c. is varied by

0g = (0¢pg.-d=dZ +dy_dzdz)+cec.. (7.0

The corresponding variation of covariant derivatives on rank n tensors
and of scalar curvature will be

OV = — 3¢ V° +4dy~V_ + mﬂa@j_, (7.2)

0V, = —nV_(5¢)—Ldg.. 3

G-V + mauﬁ_%L. (7.3)
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dR = (—2V7V. ~ R+ VVdy.. — V.V.0g, (7.4)
where
dg™ = — (g% ) dy== (7.3)

varies the inverse metric. These formulas apply to an arbitrary variation
of the metric,
Next consider variations induced by an infinitesimal reparametrization

éz = ¢z, 5). (7.6)

The variation of the metric will be eg. (7.1} with

dp = V. o* + Vp_, (7.7)

dy.. =2V, dg* = — 2V {1.8)
A rank n tensor changes by

. = Vi, +rVa. +aVat (7.9}
In particuiar,

OX* == PV P 4+ 07V, (7.1

gt = TV + 07Vt — Vs, (7.11)

Ob.. = V. b+ Vb + 2V b _, (7.12)

The remainder of this section contains the derivations.

We face an obstacle to studying a general variation (7.1) of the metric
using the language of complex tensors becuuse the chunge dg.. = 0 of
the conformal class of the metric changes what it means to be o compiex
tensor field of runk #. We need, therefore. a linear transformation we can
use to convert rank n iensor fields for the conformal class of the new
metric back into rank n tensor felds for the conformal ciass of the
origina] metric,

First we look for a complex conformal parameter z+dz(= 3) for the
new metric (7.1}, It must satisfy, for some p,

plz Dz +02)1* = (1 + 00 )g.d=d? + Sg_d=d=) +cc.. (7.13)
which is equivalent to the condition
8:0z) = ~1g_5g%. (7.14)

Now we transform a tensor 1. (d=)", of rank # for the original conformal
class, to

{(1=né. oz, [d(z+62)]" (7.13)

duraduction to Polvakor's sering theory §5]
Using eq. (7.14) we can write this as the infinitesimal transformation

Ot (d2)" = — £ (g.dg7 e, (d=p™ 1z (7.16)
Note that the transformation is covariantly defined, by eq..(7.16), and
gives a rank n tensor for the conformal class of the new metric, by eq.
(7.15). Also note that the scalars, the rank 0 tensors, are unaffected.
Now we are in a position to describe how tensor fields vary under a
reparametrization (7.6). A rank » tensor field ¢, (dz)* goes to

t. {z+02, 2+ 65 [diz+6z)]", (717

ot {dz)" = (r*V_+ V. 4+ nV.e7), (dz )"
+a{Va7 ). (dz)tdE (7.18)

The result is a rank » tensor for the new conformal class [¢+dg] but not
lor [¢]. The formula (7.18) applied to the metric ¢.-dzd= gives eqs. (7.1).
(7.7} and {7.8} as the new metric g+0g. To see the variation of [as
usell o rank n tensor for [y] we use the inverse of eq. (7.18) on eq. (7.18).
The resuls is eq. (7.9).

Next we [ind the corresponding variations of the covariant derivatives.
using eq. {7.9) in

(VE+0ViNr, +dr, ) = Vo, +5(Vr. )

(V.+0V.)r, 401, )= V.o, +48(V.r. ). {7.t1)

This gives egs. (7.2) and {7.3), at least when the variations of the metric
are of the form (7.7} and (7.8). But directly from eqs. {3.15) and (3.16) we
know that the coniribution due to Jd¢ in eqs. {7.2} and {7.3) is valid for
any o¢. The validity of the terms involving dg,. and d¢°, for general dg...
and dg™. then follows, because any tensor dg_. can be represented locally
in the form (7.8}, and the covariant derivates are locally defined objects.
Finally. the variation (7.4) of the scalar curvature is calculated by
substituting eqs. (7.2) and (7.3) in eq. (3.13).

8. The free field stress—energy tensor

We make the stress—energy tensor by varying the effective action with
respect to the metric:

—dn ST 4p S
O, =& _F o (8.1}

[

/\.‘m wm b«un .(...,.Q_ %.Q--
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—d4n af 4 W .
O = wmr == = —= 5 Tsource lerms. (8.2
/\.., o D.ﬁ .f\..,n\. ¢,

The classicul purt Afg. x)+A(g. b.c) in I is independent of ¢, so
B = g {8.3)

That is, the trace of the stress-energy tensor is due entirely 10 quantum
effects in the ground s:ate,

The traceless part. @_., of the stress-energy tensor has contributions
from both the ground state and the excitations. Using the variationul
formulas (7.2) and (7.3) in eq. (8.1} we find that

O.. = O+ O, (8.4)
where the ground state contributes
@9, = lxm 3 (3.3)
vy T
and the excitations
O = —V.x"V.ox,—2b..V.* =V h_ o (8.6)

Note that @ does not depend on ¢. Using equations (8.2} for G as
a variation of W we can write

0., = (&%
= A@.u.,.wnvc + @.M_n. (8.7}

using the integral (5.11) over x*. b and ¢: while ¢ - Yo Meuns expectation
value with no sources present. ie.. ground state m%mnr:_o: value, The
©:2¢ within brackets in eq. (8.7) is the nxu«rmm_o: (8.6} in the integration
variables: the @3 outsides brackets is the same expression in the
effective fields. To derive eq. (8.7) we use the fact that the volume
clements » h& ¢ x are unchunged under a traceless variation dg,,
of the Em:_r

Using eq. (8.7). we can calculate the traceless part of the ground state

stress—energy tensor from the singular behavior of the Green’s functions:

08, = ~ V.V, (D], o= 2V, + V) o™ e (8.8)

The bracket <+ indicutes expectation value in the presence of sources.

To make sense of this we need a covariant regularization of the
singularities at = = s, but the result will be finite. To see this. consider a

Iprenbuciion o Polvakor's serimg theery 5

T

e

change of scale g, — % g, This has no effect on the covariant
dersvarives and Green's functions in eq. (8.8). so it is equivitlent o
scaling the shore distance cutolf by & — z& Thus a divergence in eq. {8.5)
would have 10 be u Jocal covariunt expression in the metric. a rank ?
tensor. of dimension £ 0. The lowest dimension candidate. V.V_R. has
dimension +2. We conclude that ©.. is finite and dimensionléss. ie.
scale invariant.

We might remurk that eq. {8.8) for @Y. offers a route towards
calculating the background action S{g(m, ...m,)) in the full integral over
surfaces (5.6) when the surface has nontrivial topology and there are
inequivalent conformal classes [g(m,...m,)] parametrized by moduli
M. . A variation om; of the moduli can be represented as a variation
d;47° ol the background metric. Then. by eq. (8.5).

08 ..T- - dg**

_u~_~%

_
Ia QQ--Q:;,EEE_.\-.T. Aw.@_
20 A am T

with @4 calculuted vin eq. (8.8) in terms of the free field Green's
functions on the surfuce. Integrating eq. (8.9 gives S(gim, ... m, ). up 1o u
constunt,

9. Conservation of stress—energy: the Liouville action

A vovariant functional .# of the felds and the metric is invariant under
ariations (7.7 (7.8 (7I0)=(7.12) arising  from an  arbitrury
repuramerrization d- = (2, 3):

0 2 d
—-Vi— +V. o — | F = (9.1}
Q QQ-- .\ QQ xobe
wher
n o IS S S
M\_.mn_n_m = A\.\.n./.t Lﬁ T + _Nﬂun.u+ﬁ.nﬂuvi ey +_ﬂ.un.n.|__h =
v g ox /....\.Q o0 ./.‘....Q o
R 2n J
— (Vb +26.V.) = — + Vb T —. (9.2
T Vo 0 7Ty by
Simifarly any covariant functionai % of the sources and the metric
satisfies
_dx B I ¢ o ) \
i +V.—= ob E il G- 9.3)
vy v 9 £y
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T BN R )
& SoRTEEs A ./\...n.I\ D.N_: = u./.\..,ml mﬂu Lu./..‘.,x.s... »m..._.u
r 4§ Y S
BV =277, ) — + V5 19.4)
NEEL Ty OF

By applying eq. (9.1) to [ we get the conservation law [or stress—energy:
V0. .+ V0. = 2, V.y* 0.V 4V _(307)
+ V. b -2V (7). (9.5)

We can easily verily eq. (9.5) for the excitation siress—energy. using egs.
(8.4), {5.20}-{5.22}. The new information is the conservation of stress—
energy in the ground state:
In S
Ve, +V, | s o )= 0, (9.6)
Y ae
Examining the expression {8.8) for ©4. we see thut V@Y, must be a
locut expression in the mertric. Since @Y. hus dimension 0. V@Y, has
dimension + 1. The only such runk ! tensor is V_R. Thus
. -
VEY, = .ilq R. (9.7}

where 4 is a number we have vet to determine.
By eq. (9.6),
a5 A~ .\
e e Sy (R0, (9.8)
op  dgg VYR v
where y° is an arbitrary integration constant. We cun integrate eq. {9.8)
using eq. (3.17) for R to find
A fdrE

2x

/._..,Q_ A ‘_.,mw_:_r "

Suilg. ) = JBCyh+ Rep+ i e? — 1), {9.9)
This is the Liouville action, providing (in egs. (5.6) and {5.7)) the
effective classical dynamics for the ¢ field.

The censervation of stress—energy now reads

Ve = M'Mqux.vﬂmocﬂnm terms), (9.10)
(source terms) = y,V.x* +3. V.7 +V_(3.05)+ f=(V,b..) -2 V.(57h..).
{9.141)
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10. Ward identities and operator product expansions: i = 26— ¢

The conservation law, eqs. (9.10) and (9.11), as un expression in the
metric and the sources, generates Ward identities for products of ®.§

and the fields. For example, differentiating once with respect Lo the
source gives

U e
= VO (W), = Tz w)V x*, {10.1)
2
Eiﬂ Oy, = V. wie £ 1z, w)V o™, (10.2)
1
— VD e = =2V 1z wib,. +T(z. W)V B (10.3)
Iz
where
Tizow) =y~ V353 o —w), (10.4)
is the covariant delta function. The expressions (@~ denote

connected expectation values in the presence of sources. arising when eq.
(8.2) is differentinted with respect to the sources. in writing egs. (101 )
(10.3) the sources are in the end set to zero in neighborhoods of = and w.
but ure lelt arbitrary elsewhere. This means that eqs. (10.14(10.3) should
be interpreted as a set of operator identities. The distant sources make
the arbitrary state in which the identities hold.
Each Ward ideatity is equivalent to an operator product expansion
(OPE). The basic lact we use is that
! !

|_uh u
2n I W

-

= 0-{z—w), {10.5%

which is proved by an integration by parts. To put eq. (10.3) into a
covariant form. define

K =(z—w) " + flzow), (10.6)

where K@ is a rank 2 tensor in - and a rank —1 tensor in w and Fizw)
is regular and m:m?_m_n n both variables for = near w. It is easily aﬂmm_mma
that the singular part of K. . keeps its form under conformal
reparametrization. The non-singular part will not matter in OPEs. Now
eq. (10.3) becomes

|ﬂ K ="1(=w). (10.7)
n
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We will also need the distributions

it

~ L;[r.i.?:|l|_l‘lo::it:_l:_._ A_Smw
{z—w)
satisfying

VAVLKD) = (= 1) V™ Tz w) (10.9)

For example. if y_. = 1p. then. in coordinate form.

! 1
VoKL ~ e+ ——ee 0 log o, {10.10)
B {z—wy I—w

Now we can rewrite the Ward identities (10.1{10.3) us the OPEs:

[
(O, ~ —— X", (1011
I—w
s ehe —1 | , .
RIS o~ g e w | ¢ (10.12)
" {2 —w)” I—w
2 1
xhe - nd 2
COZD e ~ | e A e O B (10.13)
(z—w)" o=

We cun easily conlirm (10.11-(10.13) using the explicit form (8.6} for
@3 and knowing the singular parts of the Green's functions 15.15) and
{(53.16). For exumple,

—2b_ VT Vb cF e, = 2 e e o, (10.14)

gives eq. (10.12).
Next we look ai the Ward identity for (OE@e | We vary the
conservation law. egs. (9.10) and (9.11) with a variation dy™ of the

metric, keeping the sources fixed. using the variational formulas (7.2
(7.4). This vields

wapr

— Qi@ﬂ;@:ﬁ/ = ﬂ\u Vo) +{ =2V, T w1z wiv, ] @

(10.15)
The equivalent OPE is

—4

(@EOTD, ~ iiﬁ_ KL +0Q2V KL+KEV,)8,,. (10.16}

For the moment look only ai the leading singularity

Imtrodnetion 1o Polvakar's sering the 2 -

(@@ 2T (10.17)

We can find the same singularity by a direct Feynman diagram
calculation of the OPE;

(@O, ~ [0, ‘__._A.,._;_u./.,,;_Z“

4 Lo eth,

[ b0 L e7h ey 2 e W]
+0 b ™y E Leth

(2
?1|.WI,L. i10.18}

(z—w)?

w ..-\

u\-——

Thus £ = 26— %, which finishes the calculalion of the effective Liouville
action (9.9) for ¢{3).
The full OPE (10.16) can be rewritten in the simple form

-5 2 |

@@u@C 5 - JE L aJ @w :m i —Q_Gv

wuwe s P A w

T.I:.ﬁ fz—w)" {z—w)

il we deline
-
@i =t - ml.malm.._om pilagp+ 200, log p. (10.20)

From eq. (10.16) we know that the rhs of eq. (10.19) is analytic in = for
7 =w. 50 in both variables by symmetry, therefore

F OV = (10.21)

which can be confirmed by direct calculation using egs. (9.7) and (3.14).

I1. Hilbert space interpretation: the Virasoro algebra
When the parameter surface is the upper half plane
H={=e¢"" —x<t<xn 0<0<xl, (111

the functional integral (5.1} can be interpreted us a theory of field
operators in Hilbert space, expectation values becoming the matrix
elements of t-ordered products. To do this carefully requires taking
account of boundary conditions and zero modes. Here we will only
sketch the basic structure and examine the commutation relations of the
free fields and the stress-energy tensor.
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Start by defining
af = cxt et =0 (11.2)
The equation of motion holds il there are no sources neur =, which is to
say it holds for all matrix elemenis of a*.
Next. double the parameter surface ic include the lower half E,:F
H. The doubled surface is the punctured plane € — {0}. Define o in H
by

at = k. (1.3

Generate operiators by

d=
W= QoG for ief =0, (114)

ab = N Tl k= a2 (11.3)

The contour C, in eqg. ([Ld4) is any simple contour circling

counterclockwise once uround the origin. We use the OPE (5.13)
Caluiy ~ =40z —w)p? {11.6)

to caleulate the commutation relations:

e oaE Cdz [ ds )
L[ fToally = Pz A TTIR (11.7)
hvl..:[ H.H.C
g an |af.w_:
i aw] = @ o f(z)—n 1.8
[T/ ) ] NEL_H :ulz;.. (11.8)
C.
= =10, (11.9)
_”nnz.: n__«,au_ = |W_::mﬂ_ﬁm3+=.a. AﬂHHOv

In eq. (11.7) the contour C,,, contains 0 and w while Cy contains 0 but
not w; t-ordering is used to produce the commutator. To get eq. (11.8),
the contour C,,—C, is deformed to a curve C, around w,
asymprotically close.

{ntroduction to Pofvakocs sirmg theory K3

The same arguments work for the Faddeev-Popov ghost fields. They
are extended to H by

= b, = b (11.11)
They sartisfy

0" =0, d:b.=0 {11.12)
and give operators according Lo

"~

fSt=P-=5. ford:S..=0. (11.13)
Co
n.u — M.. ....:.r_ﬁ.:. ﬁ.: — ﬁ_ﬁniaxuu. :_T:
hi] = Il_. *h.. foréa” =0, (11.15)
Jxl
b= S ozt = b (11.16}

H= =T

The OPE (5.16)

by ~ —— (11.17)

=W

leads. by deforming contours, to the anti-commutation relutions

Mﬁ._ﬂ.m.u_, mw:‘z.u - = M:;..: — — M—mw
(O Dals = 30 e (11.19)
The same procedure applies to (@Y. (10.20):
(O = (@Y% in A (11.20)
8Oy =0, (11.21)
o] = b (@ for o7 = 0 (11.22)
2 : '
Ca



b1l D Fricdun
O%= Y =L for L, = @[], (11.23)

The OPEs (10.111~(10.13) and the contour deformution argument give
the commutation relustions

[O[e]. al] = ("¢ 4 0 ™ )b, (11.24)
[Ofr]. "] o (11.23)
[O1t] b.] = (7C,+20 0™, (11.26)

Thus the operutors O[] represent the infinitesimal conformal
reparametrizations. In particular. L, generates translation in the 1-
direction,

From the OPE {10.19) for (&%, were COMe the commutation relations
.
o). e @t - i3

= :.: ...

e (11.27)

Wiy

which s equivalent to

(L..L,]= (=L, _, + A

—

v__:::-x:: (11.28)

MJ :.i:.:.

The lxtter are the commutation relations of the Virasoro algebra,
We see that the coefficients —/ of the anomalous central term in the

Virasoro commutation relations {11.28) is exuctly the sume thing as the

coeflicient of the conformai anomaty (9.8). They arise from the same

short distunce effect. since both ure calculuted [rom the sime leading

singularicy in the OPE (10.17).

Transformation properties of Jger T

We will fook at the properties of e (or o fixed metric Yap The effective
operator is

(el 3(3)) = el ¥(E)pyele (12,1
To renormalize e~ we need to remove the divergence in

(@4 (ED = expl —1p,p SMONIED = ) (12.2)
From eq. (5.15) we know that. with cutoff &,

CHENNE D] sme ~ —Ld%loge. (12.3)
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Therefore a renormulized operator is defined by

7 pin o= limde —iptlogapip vy {124

Seutalle
i}

Because the renormalization is covariant. the operutor satisfies

& 1 a ) -
av- !MH s |Qu|'.| - ez W) :. Am:q.‘f.:lvo =10, (12.3}
vy g N oty
or
V- . | ) e q e
= (OEET N w)y, = | V.= e 2T (2 w0V | 2P 5 (w)y. (12.6)
2 e. dipiz)
But u direct Feynman dingram calculation gives
V. —p* . .
S= NN P Y (), = Lf.;«._m‘i V 3oow)+ Tz w)V, [ ¥ (w g,
27
Thus
I ) /N . 5
0=Vl — i I B AT Cetl )y, (i2.8)
Ly oy owi 4

We know from eq. (12.2) that (e *(w)> cunnot depend on #(z) fur from
w. Therefore. writing g,, = ¢”g,,, we can make the ¢ dependence
explicit:

4 mc. p_._:. u\ . =g _c Sc,_\m__: ,?_. _

129y

4 c..

This meuans that to calculate expectation values of €y e M) i the
original integral over ~* and ¢,,, we should use the operator

/Q?mu w__ i 1] ﬂ:_.a_.u
mn the integral (5.6) over x*, b..,¢™ und ¢ with background metric g,
13. The stress—energy tensor of the classical Liouville model

The Liouville model is given by the functional integral over meirics
Pas = €%, in the background metric g,,:

e~ | G he—Saldd), (L3
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Sl ) = Sty —S(4)

AfdrE o
= 5113 -4 m.cnﬁii._wﬁib.fxs 1_-_:-m.__|.:-u_. (!
I_ ...5..

(8

Q)

This interacting quantum field theory must be solved to complete the
integral (5.6) over surfaces. Here we will discuss properties of the
classical Liouville model, ieaving out the corrections due to quantum
fluctuations.

The Euler-Lagrange equation 6S/8¢p = 0. ie. R = —1* (see eq. {9.8)),
Is satisfied in the absence of sources for b, theretore the trace of the full
stress-energy tensor (8.3) vanishes. The full traceless siress—energy tensor
{8.1} can be split up

@.. = 0¥+ @4, + o (13.3)

into the excitation and ground state stress-energies of the free fields in
the background metric g,,, and the classical stress—energy of the ¢ field,
The [ull stress-energy is conserved. because (19.6). 9.8))
= |\“. b}
V. =5 VR =0 (13.4)
by the equation of motion R = —u° for ¢.

The vanishing of the trace .. means that the full mtegral (3.6) over
surfuces depends only on the conformal cluss of d. The conservation
{13.4) of the fult stress—energy tensor means that {3.6) is invariant under
changes of g, by reparametrization.

Let us now rewrite the conservation law (9.6} in terms of G and o
without assuming the equution of motion for d:

The conservation law for stress—energy [egs. (9.6). (9.8)] in the buack-
ground metric g, is

A

= xbe i |
@ Aaun Jlm..umquH - - 24

V.R + (source terms). (13.6)

Putting together (13.3), (3.6) we aet

VoLt = — VR+(V.p-—V.) = = {13.7)

Introduction to Polvekor's sirimy theory N4

which is the conservation faw for the Liouville model in the presence of

the source (2r/./y)(8S5/6¢) for . The form of the source term comes
from the variational formula for ¢ under reparametrization:

o = (°¢.p+V.o7)+cc 113.8)

which follows from /gy = e?. /4.

The anomaious conservation law (13.7) for @%° implies that the
Virasoro operators in the classical Liouville model satisfy anomalous
commutation relations, as in eq. (11.31), with coefficient + .. Note that
the reparametrization invariance of the full functional integral can be
seen as a cancellation ol anomalies between the free fields x*. b__, 7 and
the classical Liouville field.

We can also use the decomposition (13.3) in eq. (11.8) to get the Ward
identities

-

..tvms /Q.Mw,..mi.i:.vvn = H...n_.l”.@n.m_‘_n.:;.mlfn.:.v@:.
X {2 w)y, 113.9)
L@ e r ey, = Aﬁl v@;._u.ii_u. WV,
iF S ¢ 4 IRE
¢ el =0 W)y, (13.10)

which state precisely the cuncellation of the anomatous weight of e~
against e =P e,

Finally, we give an explicit formula for @%°. This can be derived in
two equivalent ways: (1) by making a variation dg™ in eq. {13.2) using
the variational formulas (7.2)}-(7.4); and (2} by using the covariance of
©.. to calculate V_(§/¢¢)@_.. In either case the result is

@ = w (— b p+2V.0.0). (13.11)

14. Conclusions

The string thepry, which began as a free scalar field x*(Z) on parameter
space, quantized in a fluctuating metric g,(&), has become three
decoupled fields in a common background metric g,,(¢). The original x*
field and the Faddeev-Popov ghosts b, ¢ are free; while the fieid (&),
which contains the conformal degrees of freedom of the merric
Jap = 2%, is governed by the Liouville action S.id, 4}, eq. (9.9). We
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have seen thut the Liouville action can be derived ussuming oaly
reparametrization invariance in (he gauge fixing and in the free field
quuntization. along with elementury scaling behuvior of the frec fields.
It remains 1o quantize and solve (he Licuville model. Here we will
only remark on some conditions which will need to be satisfied in the
quanatization of the Liouville model. Essentially these state thutr the
quantization shouid not modily any of the conlormal properties of the
classical Liouville model. In particular, there should be no quantum
contribution to the truce of the stress-energy tensor. the Virasoro
operators of the quantum Liouville model should satisly the same
commutation relutions us in the clussical model HI3TY ¢11310):

, e—r 5
Mﬁw.“z_:. ﬁw._ ::Q = {m— "_h_w_: “_....w__ + 12 2 mim= — | ruEJ:. U ( Hh1 }

and the operators el! =744 shouid satisfy the classical Ward identities
(13,101
We cun derive these conditions from the requirement that the ful
string theory be independent of the choice of buckground metric Jun The
quantization of the Liouville model js summarized by writing the
etfective quantum action
M._HA.Q. h) = Soeld. )+ A8{g. ). {14.2)

which includes the quuntum corrections  AS5{g. ). The siress-energy
tensor for the full string theory (with buckground metric g, understood )
is

@,::: — @wqr_un_l@:...;a:, :n_'wu
where the quantum Liouville stress—energy

G = @bl @ {14.4)

also includes a quantum correction 407,
The first thing to note is that the background metric Hen 15 only an

arbitrary choice of origin in the gauge slice [¢7 = le*y,,!. Shifting
GalE) = (1 + J{ENG,41E)

should muke no dilference (o the theory. Thus we should have
@uat (), (14.5)

We already have two of the contributions to @ (see £qs. (9.8) and
(9.9)):

fhtreduction o Pofvakoc's siving theory K3
Ol = .Jw (R + 1) (14.6)
@% = Wﬁu (R+ 12 ). (147}
which cancel each other., essentially by construction -
Seeeld. #) = Sig)—Sig). (14.8)
We therefore have the condition
407 =0, (14.9)

that there be no quantum correction to the trace of the stress-energy
tensor in the Liouville model.

This condition (14.9) implies that the quantum correction to the
elfective uction does not depend separately on g and  but only on the
combination ¢ = ¢%j. so thar

Symld. ) = Slg)+ A8ty )—S(g). {14.10)

[tis eusy to work out that eq. (14.10} is the same us eq. (14.9) once we
note that @.; should be cafculated by varving

Yoz = g2+ dy:
while ut the sume time sending
b — d—gig.e

This is because the variation of ¢-: should take place with the lield held
fixed. In the Liouville model the field appearing in correlation functions

is actually the combination log /'y = ¢ +log /4.

Next we show that the quantum correction AS{g) in eq. (14.10} must
be a covariant lunctional of the metric daplS). For the full theory to be
reparametrization invariant we need the conservation law

VAR + VIO = source terms. (14.11)

But in the previous section we saw that eq. (14.11) is satisfied using only

the classical Liouville stress—energy. again essentially by construction,

The quantum torrections should therefore contribute equally to both

sides of eq. (14.11):

s 2w 4S8

H—=V.)— —,
Vi o

F {14.12%

VHAOL) = (¥
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When rewritten. eq. (14.12) becomes the sialement that AS(g) is
reparametrization invariang:
{2 348 [ 38
0=V |-= 0] -V, {—"

WOE J I ath

. {14.13)

From eqs. (14.12) and {13.7) we get that the anomalous conservation law
for the traceless stress-energy tensor of the quantum Liouville model :

Vit am Mmd,,..m +source terms, (1d.14)
is identical to that for the classical model. By the discussion of sections
10 and I, eq. (14.14) implies the Virasoro commutation relations {[.1).
In exactly the same way we can argue that the operators Aem...m g?)t -
must keep their classical transformation properties (13.10) even after
quantization. in order that the observables [d*Z /e~ remain
reparametrization nvariant.

These conditions on the quantization of the Liouville model are
concerned with the short distance properties of the model: they are
constraints  on certain numbers appeuring {n  operator product
expansions.  The Liouville model has the appearance of a
superrenormalizable two-dimensional scalar field theory. But such a
theory, canonicully quantized. will always have quantum conformaul
anomalies at short distance. We expect. then, thar the correct
quantization will give u new kind of two-dimensional quantum field
theory.
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