Free field theories
A theory is said to be free when the action is quadratic in variables.
e.s. n real variables $\phi=\left(\phi_{1}, \cdots, \phi_{n}\right)$

$$
\begin{gathered}
S_{E}(\phi)=\frac{1}{2} \sum_{i, j=1}^{n} \phi_{i} A_{i j} \phi_{j} \quad A_{i j}=A_{j i} \text { symmetric, } \\
d^{n} \phi=d \phi_{1} \cdots d \phi_{n} \\
Z=\int d^{n} \phi e^{-S_{E}(\phi)}=\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}} \\
\left\langle\phi_{i_{1}} \cdots \phi_{i s}\right\rangle=\frac{1}{Z} \int d^{n} \phi e^{-S_{E}(\phi)} \phi_{i_{1}} \ldots \phi_{i s}=?
\end{gathered}
$$

A trick:

$$
\begin{aligned}
& f(A, J):=\int d^{n} \phi e^{-S_{E}(\phi)+\sum_{i=1}^{n} J_{i} \phi_{i}} \\
& \frac{\partial}{\partial J_{i}} \cdots \frac{\partial}{\partial J_{i s}} f(A, J)=\int d^{n} \phi e^{-S_{E}(\phi)+\sum_{i} J_{i} \phi_{i}} \phi_{i,} \cdots \phi_{i s} \\
& \xrightarrow{J} \rightarrow 0 \\
&\left.Z \phi_{i}, \cdots \phi_{i s}\right\rangle
\end{aligned}
$$

But $f(A, J)$ can be computed as

$$
\begin{aligned}
f(A, J) & =\int d^{n} \phi e^{-\frac{1}{2}\left(\phi-A^{-1} J\right) \cdot A\left(\phi-A^{-1} J\right)+\frac{1}{2} J \cdot A^{-1} J} \\
& =\sqrt{\frac{(2 \pi)^{n}}{\operatorname{det} A}} e^{\frac{1}{2} J \cdot A^{-1} J}=z \cdot e^{\frac{1}{2} J \cdot A^{-1} J} \\
\therefore\left\langle\phi_{i_{1}} \cdots \phi_{i s}\right\rangle & =\left.\underbrace{\frac{1}{z} \frac{\partial}{\partial J_{i 1}} \cdots \frac{\partial}{\partial J_{i s}} f(A, J)}\right|_{J=0} \\
& =\left.\underbrace{\frac{\partial}{\partial J_{i 1}} \cdots \underbrace{\frac{\partial}{\partial J}}_{i s} e^{\frac{1}{2} J \cdot A^{-1} J}}\right|_{J=0}
\end{aligned}
$$

\rightarrow Terms where $\frac{\partial}{\partial J}$ hits only one of the two J 's in $\frac{1}{2} J A^{-1} J$ vanish as $J=0$. Terms that survive are those where both J's in $\frac{1}{2} J A^{-1} J$ are hit by $\frac{\partial}{\partial J} s$.

Thus, the result is the sum of terms where the derivatives $\frac{\partial}{\partial J_{i 1}}, \cdots, \frac{\partial}{\partial J_{i s}}$ form pairs, which is possible Only when S is even, each pair $\left\{\frac{\partial}{\partial J_{i a}}, \frac{\partial}{\partial J_{i b}}\right\}$ producing
$\frac{\partial}{\partial J_{i a}} \frac{\partial}{\partial J_{i b}}\left(\frac{1}{2} J \cdot A^{-1} J\right)=A_{i a i b}^{-1}$. It is the sum of pairwise Contractions, called Wick contractions:

$$
\begin{aligned}
& \left\langle\phi_{i}\right\rangle=0, \\
& \begin{aligned}
&\left\langle\phi_{i} \phi_{j}\right\rangle=\phi_{i} \phi_{j}=A_{i j}^{-1} \\
&\left\langle\phi_{i} \phi_{j} \phi_{h}\right\rangle=0, \\
&\left(\phi_{i} \phi_{j} \phi_{h} \phi_{l}\right)=\Phi_{i} \phi_{j} \phi_{h} \phi_{l}+\sqrt[\phi_{i} \phi_{j} \phi_{h} \phi_{l}]{ }+\Phi_{i} \phi_{j} \phi_{h} \phi_{l} \\
&=\hat{A}_{i j} A_{h l}^{-1}+A_{i h}^{-1} A_{j l}^{-1}+A_{i l}^{-1} A_{j h}^{1}
\end{aligned}
\end{aligned}
$$

- We see that everything is determined by the two point function

$$
\left\langle\phi_{i} \phi_{j}\right\rangle=\overleftarrow{\phi_{i} \phi_{j}}=A_{i j}^{-1}
$$

- The logic holds also when $n=\infty$, ie. in QFT in dimension $d \geq 1$.

Complex scalar
A finite system:
Variables: $\phi=\left(\phi^{\prime}, \cdots, \phi^{n}\right) \in \mathbb{C}^{n}$
notation $\bar{\phi}=\left(\bar{\phi}_{1}, \cdots, \bar{\phi}_{n}\right):=\left(\phi^{1^{*}}, \cdots ; \phi^{n *}\right)$

$$
S_{E}(\phi)=\sum_{i, j=1}^{n} \bar{\phi}_{i} A_{j}^{i} \phi^{j}=; \bar{\phi} A \phi
$$

A hermitian, porítive eigenvalues

$$
\begin{aligned}
& d \bar{\phi}_{d \phi}=d \Phi_{1} d \phi^{\prime} \cdots d \bar{\phi}_{n} d \phi^{n}=d \bar{\phi}_{n} \cdots d \bar{\phi}_{1} d \phi^{\prime} \cdots d \phi^{n} \\
& Z=\int d \bar{\phi}_{d \phi} e^{-S_{E}(\phi)}=\frac{(2 \pi i)^{n}}{\operatorname{det} A} \\
& \left\langle\phi^{i i} \ldots \phi^{i s} \overline{\phi_{j 1}} \cdots \bar{\phi}_{j_{t}}\right\rangle=? \\
& f(A, \bar{J}, J):=\int d \bar{\phi} d \phi e^{-S_{E}(\phi)+\sum_{i}\left(\bar{J}_{i} \phi^{i}+\bar{\phi}_{i} J^{i}\right)} \\
& \frac{\partial}{\partial \bar{J}_{i 1}} \cdots \frac{\partial}{\partial \bar{J}_{i s}} \frac{\partial}{\partial J^{j 1}} \cdots \frac{\partial}{\partial J^{i t}} f(A, J) \\
& =\int d \bar{\phi} d \phi e^{-S_{E}(\phi)+\bar{J} \phi+\bar{\phi} J} \phi^{i} \ldots p^{i s} \bar{\phi}_{\hat{u}} \ldots \bar{\phi}_{j \in} \\
& \xrightarrow{\bar{J}}, \vec{J} \rightarrow 0 \quad Z\left(\phi_{\cdots}^{i!} \phi^{i s} \bar{\phi}_{j,} \cdots \bar{\phi}_{j k}\right\rangle
\end{aligned}
$$

$f(A, \bar{J}, J)$ can be computed:

$$
\begin{aligned}
& =\int d \bar{\phi} d \phi e^{-\left(\bar{\phi}-\bar{J} A^{-1}\right) A\left(\phi-A^{-1} J\right)+\bar{J} A^{-1} J}=z e^{\bar{J} A^{-1} J} \\
& \therefore\left\langle\phi^{i_{1}} \ldots \phi^{i s} \bar{\phi}_{j_{1}} \cdots \bar{\phi}_{j_{t}}\right\rangle=\underbrace{}_{\text {do this first }\left.^{\frac{\partial}{\partial \bar{J}_{i_{1}}} \cdots \frac{\partial}{\partial \bar{J}_{i s}}} \frac{\partial}{\partial J^{j_{1}}} \cdots \frac{\partial}{\partial J^{j_{t}}} e^{\bar{J} A^{-1} J}\right|_{J, \bar{J} \rightarrow 0}} \\
& =\left.\frac{\partial}{\partial J^{j 1}} \cdots \frac{\partial}{\partial J^{j t}}\left(A^{-1} J\right)^{i_{1}} \cdots\left(A^{-1} J\right)^{i_{s}} e^{\bar{J} A^{-1} J}\right|_{J, \bar{J} \rightarrow 0} \\
& =\left.\frac{\partial}{\partial J^{j i}} \cdots \frac{\partial}{\partial J^{j k}}\left(A^{-1} J\right)^{i 1} \cdots\left(A^{-1} J\right)^{i s}\right|_{J \rightarrow 0}
\end{aligned}
$$

- When $S \neq t$, this vanishes,
- When $s=t$, this is the sum of $i_{a}-j_{b}$ parings $1 \leqslant a, b \leq s$.
es.

$$
\begin{aligned}
& \left\langle\phi^{i} \bar{\phi}_{j}\right\rangle=\bar{\phi}^{i} \bar{\phi}_{j}=A_{j}^{-1 i} \\
& \left\langle\phi^{i} \phi^{\prime} \bar{\phi}_{k} \bar{\phi}_{l}\right\rangle=\phi^{i} \phi^{\prime} \bar{\phi}_{k} \bar{\phi}_{l}+\sqrt{\phi^{i} \bar{\phi}^{i} \bar{\phi}_{k}} \bar{\phi}_{l} \\
& =A^{-1 i} k A_{l}^{-1 j} e A_{e}^{-1} A^{\uparrow}{ }_{l}
\end{aligned}
$$

$$
\begin{aligned}
\left\langle\phi^{i_{1}} \phi^{i s}{\overline{D_{j i}} \cdots \bar{\phi}_{j s}}\right\rangle & =\phi^{i_{i} \cdots \phi^{i s}} \bar{\phi}_{j i}-\bar{\phi}_{j s}+\cdots \\
& =\sum_{\sigma \in G_{r}} A_{\sigma_{\sigma(1)}^{-1 i_{1}}}-A^{-1 i_{s}} j_{\sigma(s)} .
\end{aligned}
$$

Free fermions
A finite system: n pairs of anticommuting variables

$$
\begin{aligned}
& \psi_{1}, \bar{\Psi}^{\prime}, \psi_{2}, \bar{\psi}^{2}, \cdots, \psi_{n}, \bar{\psi}^{n} \\
& S_{E}=\sum_{i, j} \bar{\psi}^{i} A_{i}^{j} \psi_{j} \\
& d \bar{\psi} d \psi=d \bar{\psi}^{n} \cdots d \bar{\psi}^{\prime} d \psi_{1} \cdots d \psi_{n}=d \bar{\Psi}^{\prime} d \psi_{1} \cdots d \bar{\psi}^{n} d \psi_{n}
\end{aligned}
$$

Partition function is

$$
Z=\int d \bar{\psi} d \psi e^{-\delta_{E}}=\operatorname{det} A
$$

To compare correlation functions, let us introduce

$$
f(A, \bar{\eta}, \eta):=\int d \bar{\psi} d \psi e^{-S_{E}+\sum_{i}\left(\bar{\eta}^{i} \psi_{i}+\bar{\psi}^{i} \eta_{i}\right)}
$$

Note

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{\eta}^{i}} \frac{\partial}{\partial \bar{\eta}^{i}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} e^{\bar{\eta} \psi+\bar{\psi} \eta} \stackrel{\leftarrow}{\frac{\partial}{\partial \eta_{j 1}} \frac{\partial}{\partial \eta_{j 2}} \cdots \frac{\zeta}{\partial \eta_{j t}}} \\
& \quad=e^{\bar{\eta} \psi} \psi_{i 1} \cdots \psi_{i s} \bar{\psi}^{j i} \ldots \bar{\psi}^{j t} e^{\bar{\psi} \eta}
\end{aligned}
$$

Thus,

$$
\begin{aligned}
& \frac{\partial}{\partial \bar{\eta}^{i 1}} \frac{\partial}{\partial \bar{\eta}^{i}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} f\left(A_{1} \bar{\eta}, \eta\right) \frac{\left.\stackrel{\zeta}{\partial \eta_{j 1}} \frac{\zeta}{\partial \eta_{j 2}} \cdots \frac{\tilde{\partial}}{\partial \eta_{j t}}\right|_{\bar{\eta}=\eta=0}}{\quad=z\left\langle\psi_{i 1} \cdots \psi_{i s} \bar{\psi}^{j i} \ldots \bar{\psi}^{j t}\right\rangle}
\end{aligned}
$$

$$
\begin{aligned}
& f(A, \bar{\eta}, \eta)=\int d \bar{\psi} d \psi e^{-\left(\bar{\psi}-\bar{\eta} A^{-1}\right) A\left(\psi-A^{-1} \eta\right)+\bar{\eta} A^{-1} \eta} \\
&=z e^{\bar{\eta} A^{-1} \eta} \\
& \therefore\left\langle\psi_{i 1} \cdots \psi_{i,} \bar{\psi}^{j_{1}} \cdots \bar{\psi}^{j_{t}}\right\rangle \\
&=\frac{\partial}{\partial \bar{\eta}^{i 1}} \frac{\partial}{\partial \bar{\eta}^{i_{2}}} \cdots \frac{\partial}{\partial \bar{\eta}^{i s}} e^{\bar{\eta} A^{-1} \eta} \frac{\leftarrow}{\left.\frac{\partial}{\eta_{j 1}} \frac{\partial}{\partial \eta_{j 2}} \cdots \frac{\partial}{\partial \eta_{j t}} \right\rvert\, \bar{\eta}=\eta=0} \\
& \quad=\left(A^{-1} \eta\right)_{i_{1}} \cdots\left(A^{-1 \eta}\right)_{i s} \frac{\leftarrow}{\left.\frac{\partial}{\eta_{j 1}} \frac{\zeta}{\partial \eta_{j 2}} \cdots \frac{\partial}{\partial \eta_{j t}}\right|_{\eta=0}}
\end{aligned}
$$

This is non-zero only if $s=t$.
e.g. $\left\langle\psi_{i} \bar{\psi}^{j}\right\rangle=\underbrace{\left(A^{-1} \eta\right)_{i}} \frac{\overleftarrow{\partial}}{\partial \eta_{j}}=A_{i}^{-1}$

$$
A_{i}^{-1} \eta_{h}
$$

$$
\begin{aligned}
\left\langle\psi_{i} \psi_{j} \bar{\psi}^{k} \Psi^{l}\right\rangle & =\left(A^{-1} \eta\right)_{i}\left(A^{-1} \eta\right)_{j} \frac{\varsigma}{\partial \eta_{k}} \frac{\delta}{\partial \eta_{l}} \\
& =A_{i}^{-1}{ }^{l} A_{j}^{-1}-A_{i}^{-1} A_{j}^{-1} l
\end{aligned}
$$

$\frac{\delta}{\partial \eta_{k}}$ parses through $\eta_{\text {in }}\left(A^{-1} \eta\right)_{j}$

The result can also be presented as the sum of Wick contractions, with the understanding that a (-1) is produced each time two fermionic objects are swapped:

$$
\begin{aligned}
\left\langle\psi_{i} \bar{\Psi}^{j}\right\rangle=\psi_{i} \bar{\Psi}^{j} & =A_{i}^{-j} \\
\left\langle\psi_{i} \psi_{j} \bar{\psi}^{k} \bar{\psi}^{l}\right\rangle & =\psi_{i} \overleftarrow{\psi}_{j} \bar{\psi}^{k} \bar{\psi}^{l}+\sqrt[\psi_{i} \psi_{j} \bar{\psi}^{k}]{\psi^{l}} \\
& =\psi_{i} \bar{\psi}^{l} \psi_{j} \bar{\psi}^{k}-\sqrt[\psi_{i}]{\psi^{k}} \overleftarrow{\psi}_{j} \bar{\psi}^{l} \\
& =A_{i}^{-1} A^{-1}{ }^{k}-A_{i}^{-1} A_{j}^{-1} l
\end{aligned}
$$

- We see that everything is determined by the two point functions

$$
\left\langle\psi_{i} \bar{\psi}^{j}\right\rangle=\bar{\psi}_{i} \bar{\Psi}^{j}=\vec{A}_{i}^{-}
$$

- The logic holds also when $n=\infty$, c.g. in QFT in dimension $d \geq 1$.

Unpaired fermions
We also encounter systems of unpaired fermions (egg. Majorana fermions)

$$
\psi_{1}, \cdots, \psi_{2 n}
$$

with action $S_{E}=\frac{1}{2} \sum_{i, j} \Psi_{i} A_{i j} \psi_{j}$ and measure $d \psi^{\prime}=d \psi_{1} \cdots d \psi_{2 n}$. By anti commutativity of ψ_{i} 's, we may assume antigmmery $A_{i j}=-A_{j i}$.

The partition function is

$$
Z=\int d \psi e^{-\delta_{E}}=\frac{1}{n!2^{n}} \epsilon^{i, j \ldots i_{n j n}} A_{i, j 1} \cdots A_{i_{n j n}}
$$

where $\epsilon^{k_{1} \cdots k_{2 n}}$ is totally antisymmetric and $\epsilon^{1 \cdots 2 n}=1$.
This is called the Pfattian of the antisymmetric matrix $A=\left(A_{i j}\right)$ and is denoted by Pf A.

$$
\therefore Z=P f A
$$

It has the property $(P f A)^{2}=\operatorname{det} A$.
Thus it is $\sqrt{\operatorname{det} A}$ with a specific sign.

For computation of correlation functions, we introduce

$$
f(A, \eta)=\int d \psi e^{-\delta_{E}+\sum_{i} \eta_{i} \psi_{i}}
$$

for anticommuting $\eta_{1}, \cdots, \eta_{2 n}$.
Since $\frac{\partial}{\partial \eta_{i,}} \cdots \frac{\partial}{\partial \eta_{i s}} e^{\sum_{i} \eta_{i} \psi_{i}}=e^{\sum_{i} \eta_{i} \psi_{i}} \psi_{i,} \cdots \psi_{i s}$,

$$
\left.\frac{\partial}{\partial \eta_{i 1}} \ldots \frac{\partial}{\partial \eta_{i s}} f(A, \eta)\right|_{\eta=0}=z\left\langle\psi_{i_{1}} \cdots \psi_{i_{s}}\right\rangle
$$

On the other hand

$$
\begin{aligned}
& f(A, \eta)=\int d \psi e^{-\frac{1}{2} \sum_{i, j} \psi_{i} A_{i j} \psi_{j}+\sum_{i} \eta_{i} \psi_{i}} \\
& =-\frac{1}{2} \sum_{i, j}\left(\psi_{i}-\sum_{k} A_{i k}^{-1} \eta_{k}\right) A_{i j}\left(\psi_{j}-\sum_{l} \bar{A}_{j l}^{-1} \eta_{l}\right) \\
& +\frac{1}{2} \underbrace{\sum_{i j, k, l} A_{i n}^{-1} \eta_{k} A_{i j} A_{j l}^{-1} \eta_{l}} \\
& \sum_{h, l} \eta_{k} A_{l l}^{-1} \eta_{l}=-\sum_{k, l} \eta_{k} A_{k l}^{-1} \eta_{l} \\
& =\int d \psi e^{-\frac{1}{2} \sum_{i, j}\left(\psi_{i}+\cdots\right) A_{i j}\left(\psi_{j}+\cdots\right)-\frac{1}{2} \sum_{h . l} \eta_{h} A_{h l}^{-1} \eta_{l}} \\
& =P F A \cdot e^{-\frac{1}{2} \eta^{\top} A^{-1} \eta}
\end{aligned}
$$

$$
\therefore\left\langle\psi_{i_{1}} \cdots \psi_{i s}\right\rangle=\left.\frac{\partial}{\partial \eta_{i 1}} \cdots \frac{\partial}{\partial \eta_{i s}} e^{-\frac{1}{2} \eta^{\top} A^{-1} \eta}\right|_{\eta=0}
$$

Here we proceed just as in the real boson case, though anticommutativity taken into account:
\rightarrow Terms where $\frac{\partial}{\partial \eta}$ hits only one of the two η 's in $-\frac{1}{2} \eta^{\top} A^{-1} \eta$ vanish as $\eta=0$. Terms that survive are those where both η 's in $-\frac{1}{2} \eta^{\top} A^{-1} \eta$ are hit by $\frac{\partial}{\partial \eta} s$.

Thus, the result is the sum of terms where the derivatives $\frac{\partial}{\partial \eta_{i,}}, \cdots, \frac{\partial}{\partial \eta_{i s}}$ form pairs, which is possible Only when S is even, each pair $\left\{\frac{\partial}{\partial \eta_{i a}}, \frac{\partial}{\partial \eta_{i b}}\right\}$ producing

$$
\frac{\partial}{\partial \eta_{i a}} \frac{\partial}{\partial \eta_{i b}}\left(-\frac{1}{2} \eta^{\top} A^{-1} \eta\right)=-\frac{1}{2} A_{i b i a}^{-1}+\frac{1}{2} A_{i a i b}^{-1}=A_{i a i b}^{-1}
$$

It is the sum of such Wick contractions.
But we should keep track of a sign (-1) that appears each time $\frac{\partial}{\partial \eta_{i}} \& \frac{\partial}{\partial \eta_{j}}$ are swapped.

For example,

$$
\begin{aligned}
& \left\langle\psi_{i}\right\rangle=0 \\
& \left\langle\psi_{i} \psi_{j}\right\rangle=\widetilde{\psi_{i} \psi_{j}}=A_{i j}^{-1} \\
& \left\langle\psi_{i} \psi_{j} \psi_{h}\right\rangle=0, \\
& \left\langle\psi_{i} \psi_{j} \psi_{h} \psi_{l}\right\rangle=\overleftarrow{\psi_{i} \psi_{j} \psi_{h} \psi_{l}+\sqrt[\psi_{i} \psi_{j} \psi_{h}]{\tau_{-l}}+\sqrt[\psi_{i} \psi_{j} \psi_{h} \psi_{2}]{+1}} \\
& \quad=A_{i j}^{-1} A_{h l}^{-1}-A_{i h}^{-1} A_{j l}^{-1}+A_{i l}^{-1} A_{j l}^{7},
\end{aligned}
$$

The free field theory (either bosonic or fermionic) in dimension $\geqslant 1$ can be considered also in Operator formalism.

Comparison of path-integral a operator formalism is done in Lecture 6 and 7 in QFTII along with the additional notes for them.

If you are interested, please have a look.

