Convention
$3+1$ dim Minkowski spacetime \mathbb{R}^{3+1}
coordinates $x^{\mu=0,1,2,3}, \quad x^{0}=t, \quad\left(x^{i=1,2,3}\right)=x$
metric $d s^{2}=d t^{2}-d x^{2}=\eta_{\mu \nu} d x^{\mu} d x^{\nu} \quad "(t---)^{\prime}$

$$
\{\text { [sometries }\}=\text { Poincaré group }=\mathbb{R}_{\uparrow}^{4} \nsim O(3,1)
$$

translations Lorentz transf.

$$
x^{\mu} \rightarrow \Lambda_{\nu}^{\mu} x^{\nu}+\xi^{\mu} ; \aleph_{\mu}^{\rho} \eta_{\rho \lambda} \Lambda_{\nu}^{\lambda}=\eta_{\mu \nu}
$$

(infinitesimally, $\delta x^{\mu}=\omega_{\nu}^{\mu} x^{\nu}+\delta \xi^{\mu} ; \omega_{\mu \nu}=-\omega_{\nu \mu}$)

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 \eta^{\mu \nu} \quad \text { Clifford algebra }
$$

$S \cong \mathbb{C}^{4}$ the irreducible representation
egg. $\gamma^{\mu}=\left(\begin{array}{cc}0 & \sigma^{\mu} \\ \bar{\sigma}^{\mu} & 0\end{array}\right) \quad \begin{aligned} & \sigma^{0}=\bar{\sigma}^{0}=-\mathbb{1}_{2} \\ & \sigma^{i}=-\bar{\sigma}^{i}=\sigma_{i} \quad i=1,2,3\end{aligned}$
$\sigma_{1}=\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right), \sigma_{2}=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right), \sigma_{3}=\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right)$ Pauli matrices
Inf. Lorentz $\delta \psi=\frac{1}{4} \omega_{\mu \nu} r^{\mu} \gamma^{\nu} \psi=\frac{1}{4} \omega_{\mu \nu} r^{\mu \nu} \psi$.

$$
{ }^{N} \frac{1}{2}\left[\gamma^{\mu}, r^{\nu}\right]
$$

S : representation of $S_{\text {pin }}(3,1) \xrightarrow{2: 1} S O(3,1)$

$$
\begin{aligned}
& \gamma_{S}:=i \gamma^{0} \gamma^{\prime} \gamma^{2} \gamma^{3} ; \gamma_{S} \gamma^{m}=-\gamma^{m} \gamma_{S},\left(\gamma_{S}\right)^{2}=1, \text { eigenvalues } \pm 1 \\
& S_{R}:=\left\{\gamma_{S}=+1 \text { spinors }\right\} \quad \text { "right handed" } \\
& S_{L}:=\left\{\gamma_{S}=-1 \text { spinors }\right\} \quad \text { "left handed" }
\end{aligned}
$$

(In the above basis, $\gamma_{S}=\left(\begin{array}{cc}\mathbb{1}_{2} & 0 \\ 0 & -\mathbb{1}_{2}\end{array}\right), S_{R} \ni\left(\begin{array}{l}* \\ * \\ 0 \\ j\end{array}\right), S_{L} \ni\left(\begin{array}{l}0 \\ 0 \\ * \\ *\end{array}\right)$.)

$$
S=S_{R}^{\Omega_{R} \oplus \overbrace{\gamma^{\mu}}^{S_{L n}(3,1)}}
$$

- Scalar product.

$$
\begin{aligned}
\psi_{1}, \psi_{2} \in S & \leadsto \bar{\psi}_{1} \psi_{2} \in \mathbb{C} \\
\text { sit. } \bar{c} \psi_{1} \psi_{2} & =\bar{c} \bar{\psi}_{1} \psi_{2}, \bar{\psi}_{1} c \psi_{2}=c \bar{\psi}_{1} \psi_{2}, c \in \mathbb{C} \\
\overline{\gamma^{\mu} \psi_{1}} \psi_{2} & =\bar{\psi}_{1} \gamma^{\mu} \psi_{2}
\end{aligned}
$$

(In the above basis, $\Psi_{1} \psi_{2}=\psi_{1}^{+} r^{0} \psi_{2}$.)

$$
\leadsto \overline{r_{5} \psi_{1}} \psi_{2}=-\bar{\psi}_{1} r_{5} \psi_{2}
$$

$\therefore \bar{\psi}_{1} \psi_{2}=0$ if $\psi_{1} \& \psi_{2}$ are both in S_{R} or in S_{L}.

Wick rotation
We obtain a theory on the Euclidean space \mathbb{R}_{E}^{4}

$$
\begin{aligned}
& d s_{E}^{2}=\sum_{\mu=1}^{4}\left(d x^{\mu}\right)^{2} \quad "(++++)^{\prime \prime} \\
& \text { by } x^{0} \rightarrow-i x^{4} \\
& e^{i S}=e^{i \int d^{4} x \mathcal{L}} \\
& \quad \rightarrow e^{i \int\left(-i d^{4} x_{E}\right) \mathcal{L}}=: e^{-\int d^{4} x_{E} \mathcal{L}_{E}}=: e^{-S_{E}} \\
& \therefore \quad \mathcal{L}_{E}=-\left.\mathcal{L}\right|_{x^{0} \rightarrow-i x^{4}} \\
& r^{0} \rightarrow-i \gamma^{4} \\
& \left\{\gamma^{\mu}, \gamma^{\nu}\right\}=-2 \delta^{\mu \nu} \quad 1 \leqslant \mu, 0 \leqslant 4 .
\end{aligned}
$$

Yang-Mills theory
... Specified by gauge group G : a compact Lie group
e.f. $U(N)=\{N \times N$ unitary matrix $\}$ unitary group $S U(N)=\{N \times N$ unitary, $d t=1\}$ special unitary group
$g=$ Lie (G) the Lie algebra of G "infinitesimal version of G^{\prime}
eeg. $G=U(N): g=\{N \times N$ antihemitian maNia $\}$

$$
\begin{aligned}
& G=U(1): g=i \mathbb{R} \cong \mathbb{R} \\
& G=S U(N): g=\{N \times N \text { ontihermítian, traceless }\}
\end{aligned}
$$

field variable $A_{\mu}(x)$: a vector potential with values in g field strength $F_{\mu \nu}=\partial_{\mu} A_{\nu}-\partial_{\nu} A_{r}+\left[A_{\mu}, A_{\nu}\right]$

$$
S[A]=\int-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu} d^{4} x \quad \text { Yang- Mills action }
$$

e: gauge coupling constant.
"." is a poritne defmite inner product on y which is invariant under the adjoint action of $G, \times \mapsto g \times g^{-1}$
(the infinitesional version of conjugation $g_{t} \mapsto g g_{t} g^{-1}$):

$$
g X g^{-1} \cdot g Y g^{-1}=X \cdot Y .
$$

egg. For $G=S U(N)$, a standard choice is $X \cdot Y=-2 \operatorname{Tr} X Y$.
c.g. $G=U(1)$: Maxwell theory

$$
\begin{aligned}
& F_{0 i}=\partial_{0} A_{i}-\partial_{i} A_{0} \text { electric field } \\
& F_{i j}=\partial_{i} A_{j}-\partial_{j} A_{i} \text { magnetic field }
\end{aligned}
$$

$S[A]$ is invariant under a huge symmetry group:
$g(x)$: G-valued function on spacetime

$$
\sim A_{\mu} \mapsto A_{\mu}^{g}=g^{-1} A_{\mu} S+g^{-1} \partial_{\mu} S
$$

Under this, the field strength transforms covariantly,

$$
F_{\mu \nu} \mapsto F_{\mu \nu}^{S}=\partial_{\mu} A_{\nu}^{S}-\partial_{\nu} A_{\mu}^{S}+\left[A_{\mu}^{S}, A_{\nu}^{g}\right]=g^{-1} F_{\mu \nu} g,
$$

and thus inched

$$
\begin{aligned}
S\left[A^{g}\right] & =\int-\frac{1}{4 e^{2}} g^{-1} F^{\mu \nu} g \cdot g^{-1} F_{\mu \nu} S d^{4} x \\
& =\int-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu} d^{4} x=S[A]
\end{aligned}
$$

This is a generalization of invariance of Maxwell action under the gauge transformation $A_{\mu} \mapsto A_{\mu}+\partial_{\mu} x$.
Indeed, for $G=U(1), \quad y=i \mathbb{R} \cong \mathbb{R}$ and for $g(x)=e^{i \lambda(x)}$,

$$
i A_{\mu}^{\lambda}=e^{-i \lambda} i A_{r} e^{i \lambda}+e^{-\lambda} \partial_{r} e^{i \lambda} \Rightarrow A_{r}^{\lambda}=A_{r}+\partial_{r} \lambda
$$

As in that case, we shall call

$$
A_{r} \longmapsto A_{r}^{g}=g^{-1} A_{\mu} g+g^{T} \partial_{\mu} g
$$

the gauge transformation of $A_{\mu}(x)$ by $g(x)$, and

$$
G:=\{g(x) \mid G \text {-valued function }\}
$$

the gauge transformation group. We'd like to regard A and A^{g} as physically equivalent for any $g \in \mathcal{G}$. T.e. we would like to physically identify them. If we put

$$
A:=\left\{A_{\mu}(x) \mid \text { og-valued vector potential }\right\}
$$

the space of physically inequivalent field configurations is the quotient space A / G.

A theory with such an identification of field variables is called a gauge theory.

Infinitesimal gauge transformations
A g-valued function $E(x)$ generates a one parameter group of gauge transformations: $g_{t}(x)=e^{t f(x)}$:

$$
A_{\mu} \mapsto A_{\mu}^{g_{t}}=g_{t}^{-1} A_{\mu} g+g_{t}^{-1} \partial_{\mu} g_{t}
$$

The infinitesimal transformation is

$$
\begin{aligned}
\delta_{\epsilon} A_{\mu} & =\left.\frac{d}{d \epsilon} A_{\mu}^{g_{t}}\right|_{t=0}=-\epsilon A_{\mu}+A_{\mu} \epsilon+\partial_{\mu} \epsilon \\
& =\partial_{\mu} \epsilon+\left[A_{\mu}, \epsilon\right]=: D_{\mu} \epsilon \quad \text { covariant derivative. }
\end{aligned}
$$

The space of such $G(x)$ may be regarded as the Lie algebra of the gauge transformation group,

$$
\{\epsilon(x) \mid \text { g-valued function }\}=\text { Lie }\left(\varrho_{g}\right) \text {. }
$$

Remark The G-invariaut inner product"." on of may not be unique. e.g. $G=S U\left(N_{1}\right) \times S U\left(N_{2}\right)$,

$$
\mathcal{L}=-\frac{1}{4 e_{1}^{2}} F_{1}^{\mu \nu} \cdot F_{1 \mu \nu}-\frac{1}{4 e_{2}^{2}} F_{2}^{\mu \nu} \cdot F_{2 \mu \nu}
$$

e_{1} and e_{2} can be different.

More generally,

$$
\begin{aligned}
& G=\underbrace{U(1) \times \cdots \times U(1)}_{h} \times \underbrace{G_{1} \times \cdots \times G_{\ell}}_{\text {"Simple" factors }} \text { /discrete subgroup } \\
& \mathcal{L}=\sum_{a, b=1}^{h}-\frac{1}{4 e_{a, b}^{2}} F_{a}^{\mu \nu} F_{b \mu \nu}+\sum_{[=1}^{\ell}-\frac{1}{4 e_{L}^{2}} F_{I}^{m \nu} \cdot F_{L \mu \nu}
\end{aligned}
$$

$\frac{k(h+1)}{2}+l$ gauge coupling constants.

Having this generality in mind, we just write

$$
\mathcal{L}=-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu}
$$

for simplicity.

Coupling to matter fields
A representation V of a group G is a vector space $/ \mathbb{C}$ or \mathbb{R} on which G acts linearly.
$\exists a \operatorname{map} G \times V \rightarrow V ;(g, v) \mapsto g v$

$$
\left.\begin{array}{ll}
\text { s.t. } \quad & g(h v)=(g h) v \\
\quad g(c v)=c g(v) \quad c \in \mathbb{C} \text { or } \mathbb{R} \\
-g(v+w)=g v+g w
\end{array}\right\} \text { linearity) }
$$

eeg. $V=\mathbb{C}^{N}$ for $G=U(N)$ or $S U(N)$ via matrix multiplication.
$V=o f$ for a general G via adjoint action
$V=$ sum of copies of such, $\mathbb{C}^{N} \oplus \cdots \oplus \mathbb{C}^{N} \oplus \mathscr{V}^{\infty} \oplus \oplus \mathcal{O}$.

A representation V of a Lie group G \leadsto a representation of its Lie algebra of $\exists a \operatorname{map} \quad \sigma \times V \rightarrow V ;(X, v) \longmapsto X v$ st. $X(Y \cup)-Y(X U)=[X, Y] v$, linearity.

- Scalars
$\phi(x):$ a scalar field with values a representation V of the gauge group G.
Gauge transformation by $g \in S$:

$$
A_{\mu} \mapsto A_{\mu}^{S}, \phi \longmapsto \phi^{j}=g^{-1} \phi .
$$

Infmifesimally, $\delta A_{\mu}=D_{\mu} \epsilon, \delta \phi=-\epsilon \phi$.
Covariant derivative $D_{\mu} \phi:=\lambda_{\mu} \phi+A_{\mu} \phi$
Its gauge transformation :

$$
\begin{aligned}
& D_{r} \phi \mapsto \partial_{\mu} \phi^{g}+A_{r}^{S} \phi^{g}=\partial_{\mu}\left(g^{-1} \phi\right)+\left(g^{-1} A_{r} S+g^{\top} \partial_{r} g\right) g^{\top} \phi \\
& -g^{-1} 2 \cos ^{-1} \phi+g^{-1} \partial_{r} \phi \\
& =g^{-1} \partial_{r} \phi+g^{-1} A_{\mu} \phi=g^{-1} D_{r} \phi \quad \text { "homogeneous" } \\
& \text { or "Covariant". }
\end{aligned}
$$

$\left(\phi_{1}, \phi_{2}\right) \mapsto \phi_{1}^{+} \phi_{2} \quad G$-invariant inner product on V

$$
\mathcal{L}=-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu}+\left(D^{\mu} \phi\right)^{+} D_{\mu} \phi-f\left(\phi^{\dagger} \phi\right)
$$

is gauge invariant.

- Fermions
$\psi(x):$ a Dirac fermion with values in a rep. V sf C. ie. an anticommuting function on \mathbb{R}^{3+1} with values in $S \otimes V \cong \mathbb{C}^{4} \otimes V$

$$
\psi(x)=\left(\psi_{a}^{a}(x)\right)_{\alpha=1,2,1,4}^{a=1, \cdots, \operatorname{dim} V} \text { in components }
$$

Gauge transformation: $A_{\mu} \mapsto A_{\mu}^{g}, \psi \longmapsto g^{-1} \psi$

$$
\begin{aligned}
& \varnothing_{A} \psi=\gamma^{\mu} D_{\mu} \psi=\gamma^{\mu}\left(\partial_{\mu} \psi+A_{\mu} \psi\right) \quad \text { Dirac operator } \\
& \quad\left(\varnothing_{A} \psi\right)_{\alpha}^{a}=\gamma_{\alpha}^{\mu \beta}\left(\partial_{\mu} \psi_{\beta}^{a}+A_{\mu}^{a} \psi_{\beta}^{b}\right) \text { in components } \\
& \mathcal{L}=-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu}+i \bar{\psi} \varnothing_{A} \psi-m \bar{\psi} \psi
\end{aligned}
$$

is gauge invariant.
e.g. $Q E D$ with elections of charge $Q_{1}, \cdots, \partial_{N_{t}}$:

$$
G=U(1), e^{i \lambda} i \psi_{i} \mapsto e^{i Q_{i} \lambda} \psi_{i} \quad\left(i=1,-, N_{f}\right)
$$

egg. $Q C D$ with color N_{c} and flavor N_{f} :

$$
G=S U\left(N_{c}\right), \quad V=\mathbb{C}^{N_{c}} \oplus \cdots \oplus \mathbb{C}^{N_{c}} \quad\left(N_{f} \text { copies }\right)
$$

- More generally, the representations for right-handed a left-handed fermions can be different:
ψ_{R} valued in $S_{R} \otimes V_{R}, \quad \psi_{L}$ valued in $S_{L} \otimes V_{L}$.
Then, $D_{A} \psi_{R}$ valued in $S_{L} \otimes V_{R}, \varnothing_{A} \psi_{L}$ valued in $S_{R} \otimes V_{L}$.

$$
\mathcal{L}=-\frac{1}{4 e^{2}} F^{\mu \nu} \cdot F_{\mu \nu}+i \bar{\psi}_{R} \varnothing_{A} \psi_{R}+i \bar{\psi}_{C} X_{A} \psi_{c}
$$

makes sense it is gauge invariant.
Such a theory is called "chiral"

- Suppose \exists a G-equivariant bilinear map

$$
\begin{gathered}
V_{B} \times V_{R} \rightarrow V_{L},\left(V_{B}, V_{R}\right) \mapsto V_{B} \cdot V_{R} \\
g V_{B} \cdot g V_{R}=g\left(V_{B} \cdot V_{R}\right) .
\end{gathered}
$$

Then, for a $V_{B \text {-valued scalar }} \phi$ \& a $S_{R, L} \otimes V_{R, L}$-valued fermion $\psi_{R, L}$, Yukawa coupling

$$
\bar{\psi}_{L} \phi \psi_{R}+\overline{\phi \cdot \psi_{R}} \psi_{L} \quad \text { makes sense }
$$

Quantization of gauge theory (path integral)
In a gauge theory, a field configuration (A, ϕ, ψ, \ldots) is identified with its gauge transtorn $\left(A^{5}, \phi^{9}, \psi^{\prime}, \cdots\right)$.
$M=$ the space of field configurations
$y=$ the gauge transformation group.
The path-integral is over the quotient space M / g

$$
\begin{aligned}
& Z=\int_{M / g} \text { measure } e^{-S_{E}[A, \phi, \psi, \cdots]} \\
&\left\langle O_{1} O_{2} O_{3} \cdots\right\rangle \\
&=\frac{1}{Z} \int_{M / g} \frac{\text { measure }}{} e^{-S_{E}[A, \phi, \psi, \cdots]} O_{1} O_{2} O_{3} \cdots
\end{aligned}
$$

How do we do this?
... Let us do it in a funite dimensional setting.

An answer:
Introduce of -valued scalar fields $\underbrace{C, \bar{C}}_{\text {fermionic }}, \underbrace{B}_{\text {bosonic }}$
and change the Lagrangian to $\tilde{\mathcal{L}_{E}}=\mathcal{L}_{E}+\mathcal{C}_{g, f}$.

$$
\mathcal{L}_{g \cdot f .}=\frac{e^{2} \xi}{2} B^{2}-i B \cdot \partial^{\mu} A_{\mu}+\bar{c} \cdot \partial^{\mu} D_{\mu} c
$$

Then, the partition/correlation functions are given by

$$
\begin{aligned}
& Z=\int D A D \phi D \psi \Delta C D \overline{C D B} e^{-\widetilde{\delta_{E}}[A, \phi, \psi, c, \bar{c}, B]} \\
&\left\langle O_{1} O_{2} \partial_{3} \cdots\right\rangle \\
&=\frac{1}{z} \int D A \cdots \Delta B e^{-\widetilde{S}_{E}(A, \cdots, B)} O_{1} O_{2} O_{3} \cdots
\end{aligned}
$$

Le. the measure in question is

$$
D A D \phi D \Psi \cdot \int D C D \bar{C} D B e^{-S_{S \cdot f} \cdot[A, C, \bar{C}, B]}
$$

$C, \bar{C}:$ Faddeev-Popov ghosts
$\xi>0$ is called the "Gauge parameter" ($\overline{>}>0$ also considered) physics should not depend on its value.
B is an auxiliary field without kinetic term
\rightarrow it can be integrated out. Then

$$
\mathcal{L}_{g \cdot f}=\frac{1}{2 e^{2} \xi}\left(\partial^{\mu} A_{\mu}\right)^{2}+\bar{C} \cdot \partial^{\mu} D_{\mu} c
$$

$C_{1} \bar{C}$-integration \rightarrow determinant of $\partial^{\mu} D_{\mu}$.

$$
\begin{array}{r}
\therefore \text { measure }=D A D \phi D \psi e^{-\int \frac{1}{2 e^{2} \xi}\left(\partial^{\mu} A_{\mu}\right)^{2} d^{4} x} \\
\times \operatorname{Det}\left(\partial^{m} D_{\mu}\right)
\end{array}
$$

$$
\xrightarrow{\text { گゝo }} \operatorname{DAD\phi D\psi } \delta\left(\partial^{\mu} A_{\mu}\right) \cdot \underbrace{\operatorname{Det}\left(\partial^{\mu} D_{\mu}\right)}_{\uparrow}
$$

Faddeev-Popov determinant

The extended system is called the gauge fixed system.
It no longer has a gauge symmetry. Instead, it has BRST symmetry

$$
\begin{aligned}
& \delta_{B} A_{\mu}=D_{\mu} C \\
& \delta_{B} \phi=-C \phi \\
& \delta_{B} \psi=-C \psi \\
& \delta_{B} C=-\frac{1}{2}[C, C] \\
& \delta_{B} \bar{C}=i B \\
& \delta_{B} B=0
\end{aligned}
$$

It is a fermionic symmetry: $\left\{\begin{array}{l}\delta_{B} \text { bosonic is fermionic } \\ \delta_{B} \text { fermionic is bosonic. }\end{array}\right.$

$$
\delta_{B}\left(\Theta_{1} \cdot \Theta_{2}\right)=\delta_{B} O_{1} \cdot \Theta_{2}+(-1)^{\left|O_{1}\right|} O_{1} \cdot \delta_{B} O_{2}
$$

It is nilpotent, $\quad \delta_{B} \cdot \delta_{B}=0$.
$\left(\mathcal{U}\right.$ is said to be $\left\{\begin{array}{l}\frac{\text { BRST closed }}{\text { BRST exact }} \text { when } \delta_{B} \mathcal{O}=0 \\ \underline{O}=\delta_{B}(-) .\end{array}\right.$
By $\delta_{0} \circ \delta_{B}=0, \quad B R S T$ exact $\Rightarrow B R S T$ closed.

This allows us to consider BRST cohomology:

$$
H_{B R S T}=\{B R S T \text { closed }\} /\{B R S T \text { exact }\}
$$

There is another symmetry: ghost number $N_{g^{h}}$

	P	B	\bar{C}	C
$N_{g h}$	0	0	-1	1

δ_{B} increases $N_{g^{n}}$ by $1, \quad\left[N_{g^{n}}, \delta_{B}\right]=1$

$$
\begin{aligned}
& \mathcal{f}^{i}=\left\{\text { observable of } N_{g h}=i\right\} \\
& \Rightarrow \delta_{B}: \mathcal{F}^{i} \rightarrow \mathcal{F}^{i+1} \\
& H_{B R S T}^{i}(\mathcal{F})=\operatorname{Ker}\left(\delta_{B}: \mathcal{F}^{i} \rightarrow \mathcal{F}^{i+1}\right) / \operatorname{Im}\left(\delta_{B}: \mathcal{F}^{i-1} \rightarrow \mathcal{F}^{i}\right) .
\end{aligned}
$$

The gauge fixed system may be used as a new starting point of quantization:
We may do reverse Wick rotation to real time, convert it to Hamiltonian formulation via Legendre, and then perform the operator quantization.

However Ap has wrong sign kinetic term (note $\xi>0$) $-\frac{1}{2 e^{-} \zeta}\left(\dot{A}_{0}\right)^{2}$ which yields negative norm states.

Also the ghosts with kinetic term $i \dot{\bar{C}} \dot{C}$ also yield zero \& negative norm states.

As the existence of such negative/zero norm states indicates, the gauge fixed system has a huge number of unphysical degrees of freedom.

This is the quantum counterpart of the huge gauge symmery in the classical system: the gauge transformations $\left.(A, P, \psi, \ldots) \mapsto\left(A^{9}, D^{9}, \psi\right),-\right)$ are regarded as unphysiscal change of field configurations.

A proposal:
Physical degrees of freedom are
BRST cohomology classes.

For example, the space of physicd stater is the BRST cohomslogy of states

$$
\mathscr{C}_{\text {phys }}:=H_{\text {ERST }}(\partial e)
$$

It is expected that this consists of positive norm states only.

