科研費

渦状腕の線形摂動理論: 渦状腕分裂によるクランプ形成

Beyond Toomre's Q

MNRAS submitted arXiv: 1706.01895 (←昨日!!)

井上 茂樹 (CREST/SPPEXA fellow) カブリ数物連携宇宙研究機構 / 東京大学 w/ 吉田 直紀 (東京大学)

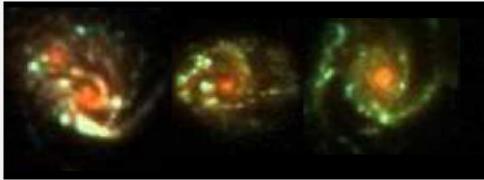
Spiral or Clumpy?

at low-z

- Spiral galaxies
 - Low redshifts
 - Gas-rich (f_{gas}~10%)

Toomre instability

at high-z



with HST Guo et al. (2014)

- Clumpy galaxies
 - Giant clumps
 - High redshifts (mainly)
 - Gas-rich (f_{gas}~30%)

Toomre instability

really...?

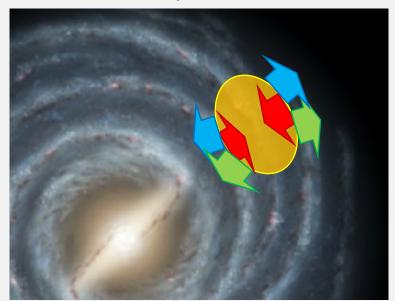
What was Toomre instability???

 From local and linear perturbation theory for axisymmetric perturbations in smooth discs,

Velocity dispersion or sound speed (pressure)

Epicyclic frequency (Coriolis force)

The stability condition:



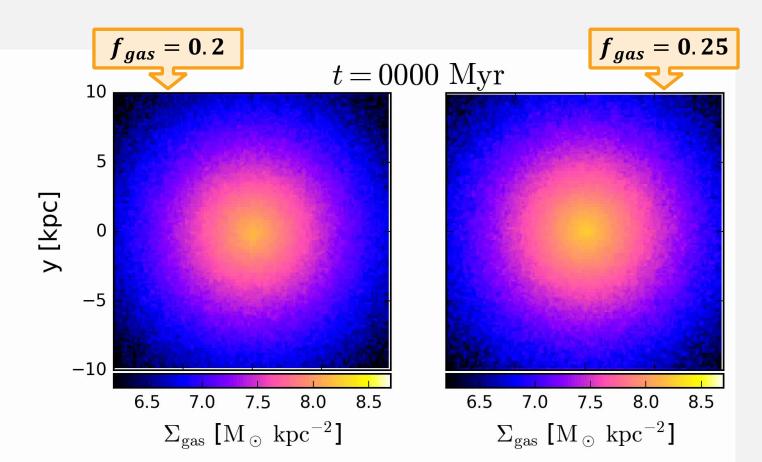
 $Q \equiv \frac{\sigma \kappa}{\pi G \Sigma} > 1$

Surface density (self-gravity)

If Q<1, the local region is gravitationally unstable, going to collapse.

Spiral or Clumpy?

- Isolated disc galaxy simulations
 - Gas + stellar discs
 - Isothermal gas (no star formation, no feedback)
 - Moving-mesh code: Arepo



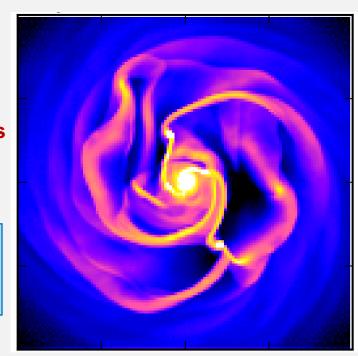
Spiral-arm fragmentation as a clump formation mechanism

- Spiral arms can fragment into clumps,
 - if a gas fraction is high and/or a disc is kinematically cold.
- Spiral-arm fragmentation is not Toomre instability!
- Spiral-arm fragmentation could be a possible mechanism of giant clump formation.

Beyond Toomre's Q

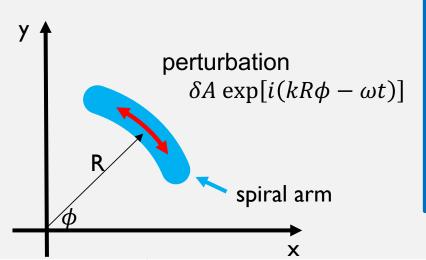
- The aims of this study:
 - How spiral-arm fragmentation occurs?
 - Derive an instability parameter and its criterion
 - Discuss if the fragmentation can form high-z clumps

Let's go to linear perturbation theory for a spiral arm!! (線形摂動理論)



Set-up for the linear perturbation theory

- Now considering...
 - Gravitational instability for <u>azimuthal</u> perturbations on an <u>axisymmetric</u> spiral (ring).



Assuming:

 The spiral has <u>a rigid rotation</u> since selfgravitating.

$$\Omega = -B$$

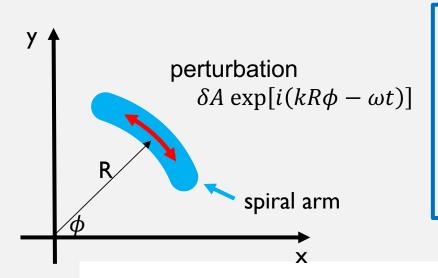
• Replace surface density Σ with line-mass $\Upsilon = 1.4W\Sigma$ (Gaussian).

continuity:
$$\frac{\partial}{\partial t}\delta\Sigma + \frac{1}{R}\frac{\partial}{\partial R}\left(R\Sigma_0\delta v_R\right) + \Omega\frac{\partial}{\partial \phi}\delta\Sigma + \frac{\Sigma_0}{R}\frac{\partial}{\partial \phi}\delta v_\phi = 0,$$

$$\text{R-momentum: } \left[\frac{\partial}{\partial t} \delta v_R + v_R \frac{\partial}{\partial R} \delta v_R + \Omega \frac{\partial}{\partial \phi} \delta v_R - 2\Omega \delta v_\phi = -\frac{\partial}{\partial R} \left(c_s^2 \frac{\delta \Sigma}{\Sigma_0} + \delta \Phi \right), \right]$$

Set-up for the linear perturbation theory

- Now considering...
 - Gravitational instability for <u>azimuthal</u> perturbations on an <u>axisymmetric</u> spiral (ring).



Assuming:

 The spiral has <u>a rigid rotation</u> since selfgravitating.

$$\Omega = -B$$

• Replace surface density Σ with line-mass $\Upsilon = 1.4W\Sigma$ (Gaussian).

continuity:
$$\omega\delta\Upsilon = k\Upsilon\delta v_{\phi}$$
,

R-momentum:
$$-i\omega\delta v_R=2\Omega\delta v_\phi,$$

ф-momentum:
$$-i\omega\delta v_\phi = -2\Omega\delta v_R - ik\frac{c_s^2}{\Upsilon}\delta\Upsilon - ik\delta\Phi.$$

A dispersion relation for a single-component model

One can obtain the dispersion relation for the perturbations,

$$\omega^2 = \left(c_s^2 + \frac{\Upsilon}{\delta \Upsilon} \delta \Phi\right) k^2 + 4\Omega^2.$$

The Poisson equation for the perturbations is

$$\delta\Phi = \int_{-W}^{W} -G\delta\Upsilon K_0(|kx|)/W\mathrm{d}x$$

$$= -\pi G\delta\Upsilon \left[K_0(kW)L_{-1}(kW) + K_1(kW)L_0(kW)\right]$$

$$f(kW) \qquad W \text{ : half width of arm}$$

A dispersion relation for a single-component model

One can obtain the dispersion relation for the perturbations,

$$\omega^2 = \left(c_s^2 - \pi G f(kW)\Upsilon\right) k^2 + 4\Omega^2.$$

(cf. Takahashi, Tsukamoto & Inutsuka 2016)

This can be transformed as

$$\frac{c_s^2k^2 + 4\Omega^2 - \omega^2}{\pi G f(kW)\Upsilon k^2} = 1.$$

- When $\omega^2 < 0$, the spiral is unstable.
- Hence, the new instability parameter and its criterion can be defined as

$$S \equiv \frac{c_s^2 k^2 + 4\Omega^2}{\pi G f(kW) \Upsilon k^2} < 1.$$

A dispersion relation for a two-component model

A galaxy usually has gas and stars. The dispersion relations of gas and stars are,

$$\omega^2 = \left(c_s^2 + \frac{\Upsilon_{\rm g}}{\delta\Upsilon_{\rm g}}\delta\Phi\right)k^2 + 4\Omega^2, \qquad \delta\Upsilon_{\rm g} = k^2\frac{\Upsilon_{\rm g}}{\omega^2 - 4\Omega^2 - c_s^2k^2}\delta\Phi,$$
 stars:
$$\omega^2 = \left(\sigma_\phi^2 + \frac{\Upsilon_{\rm s}}{\delta\Upsilon_{\rm s}}\delta\Phi\right)k^2 + 4\Omega^2, \qquad \delta\Upsilon_{\rm s} = k^2\frac{\Upsilon_{\rm g}}{\omega^2 - 4\Omega^2 - \sigma_\phi^2k^2}\delta\Phi,$$

 Because gas and stars interact only through gravity, they are connected in the Poisson eq.,

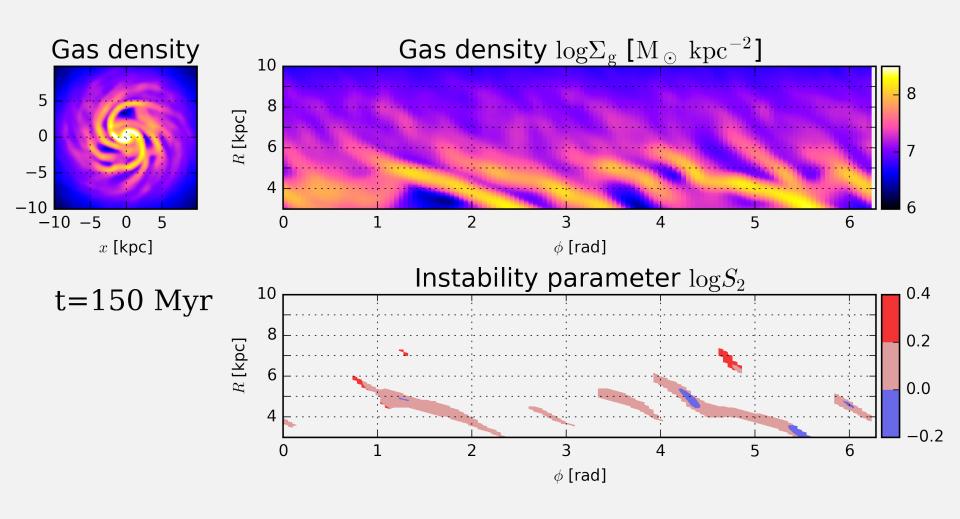
$$\delta \Phi = -\pi G \left[\delta \Upsilon_{g} f(kW_{g}) + \delta \Upsilon_{s} f(kW_{s}) \right]$$

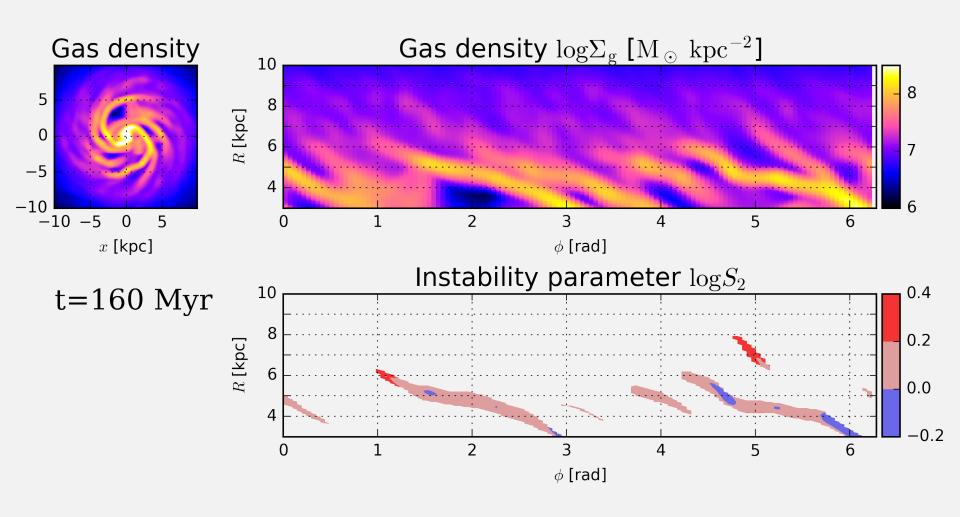
• Then, one can obtain the two-component dispersion relation,

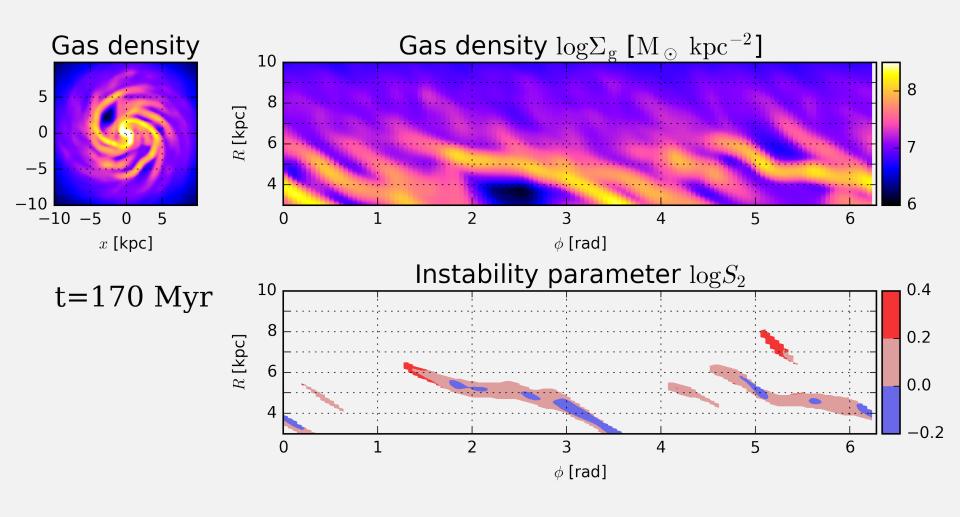
$$\left[\frac{\pi G k^2 \Upsilon_{\mathrm{g}} f(kW_{\mathrm{g}})}{c_s^2 k^2 + 4\Omega^2 - \omega^2} + \frac{\pi G k^2 \Upsilon_{\mathrm{s}} f(kW_{\mathrm{s}})}{\sigma_{\phi}^2 k^2 + 4\Omega^2 - \omega^2}\right] = 1,$$

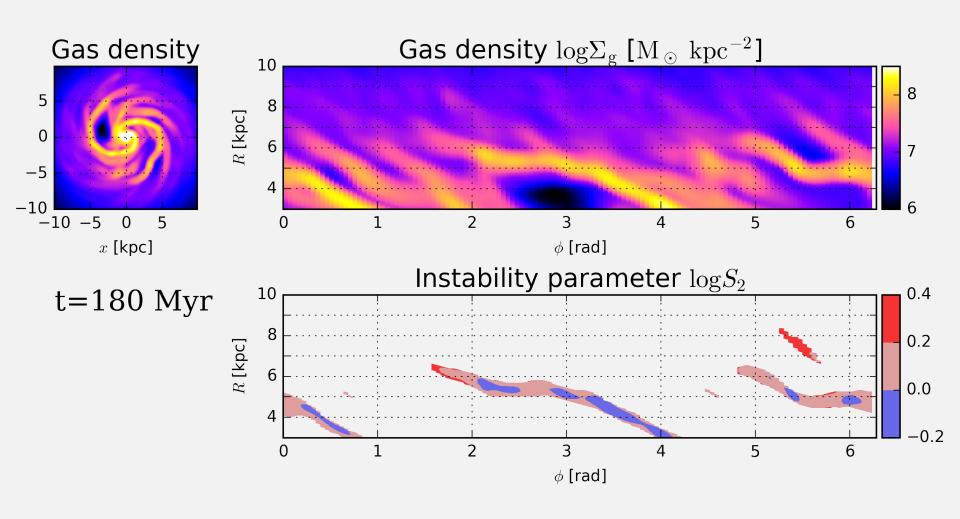
Finally, I obtain the new instability condition for 2-comp. models,

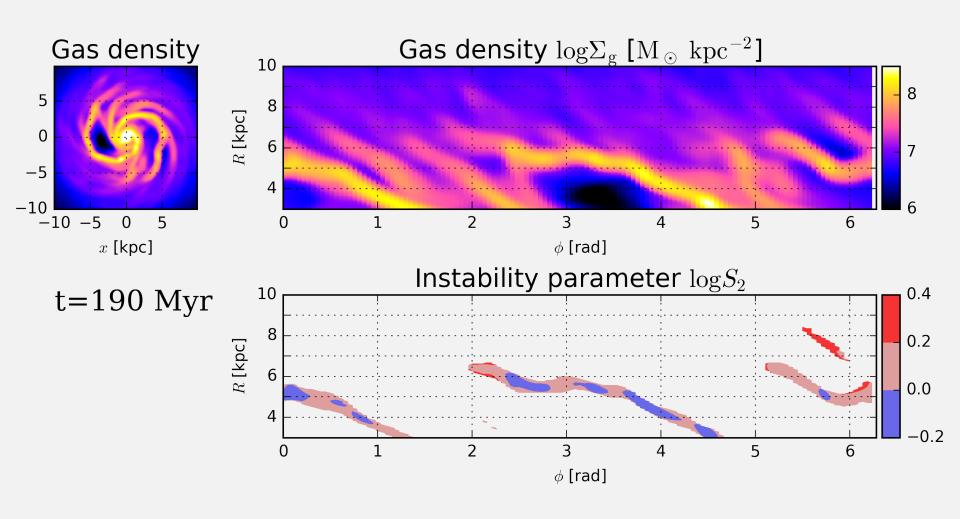
$$S = \frac{1}{\pi G k^2} \left[\frac{\Upsilon_{\rm g} f(kW_{\rm g})}{c_s^2 k^2 + 4\Omega_{\rm g}^2} + \frac{\Upsilon_{\rm s} f(kW_{\rm s})}{\sigma_{\phi}^2 k^2 + 4\Omega_{\rm s}^2} \right]^{-1} < 1.$$

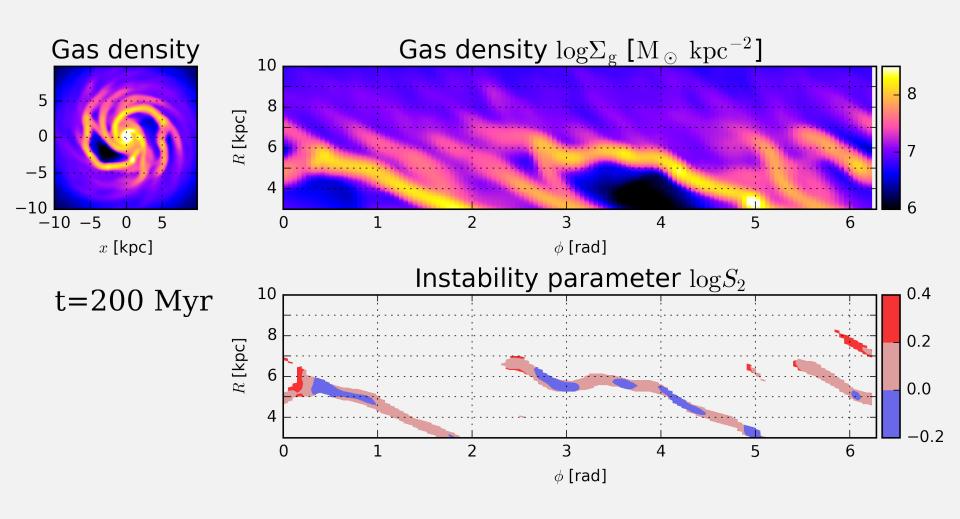


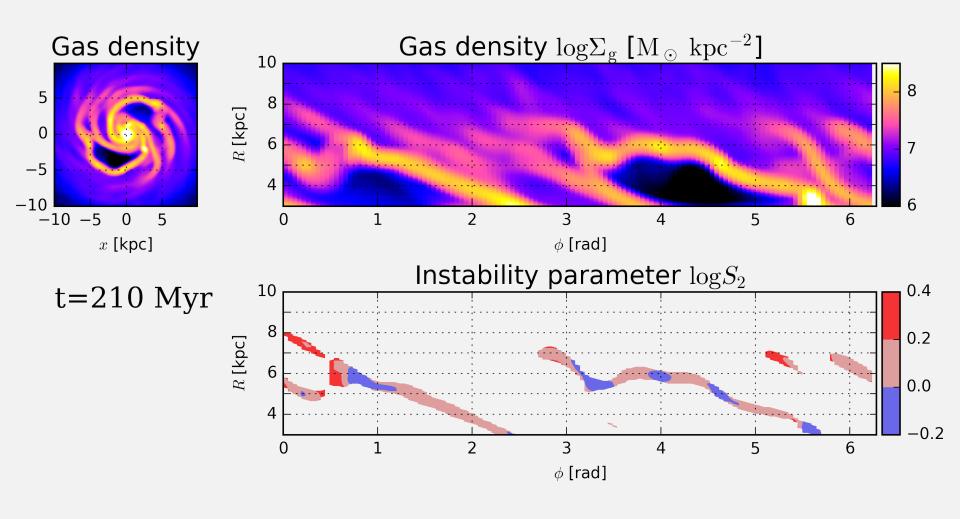


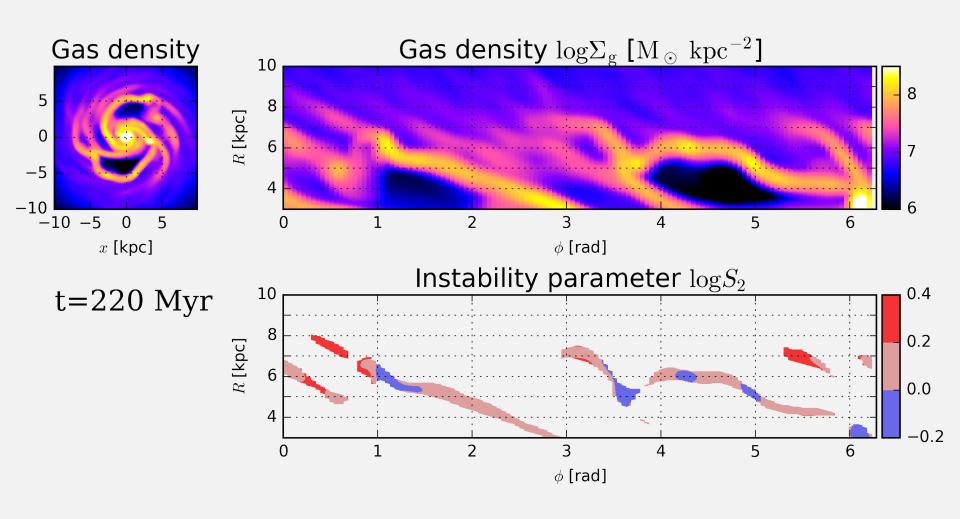


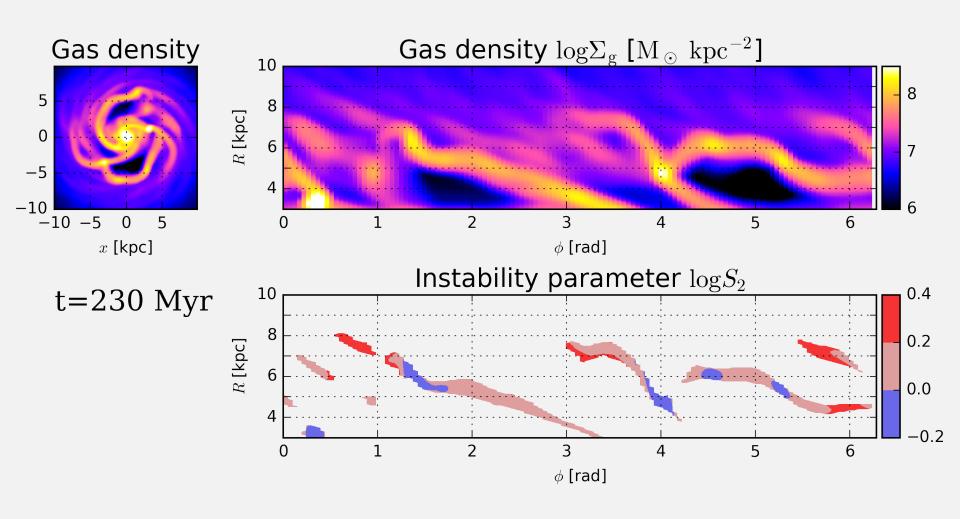


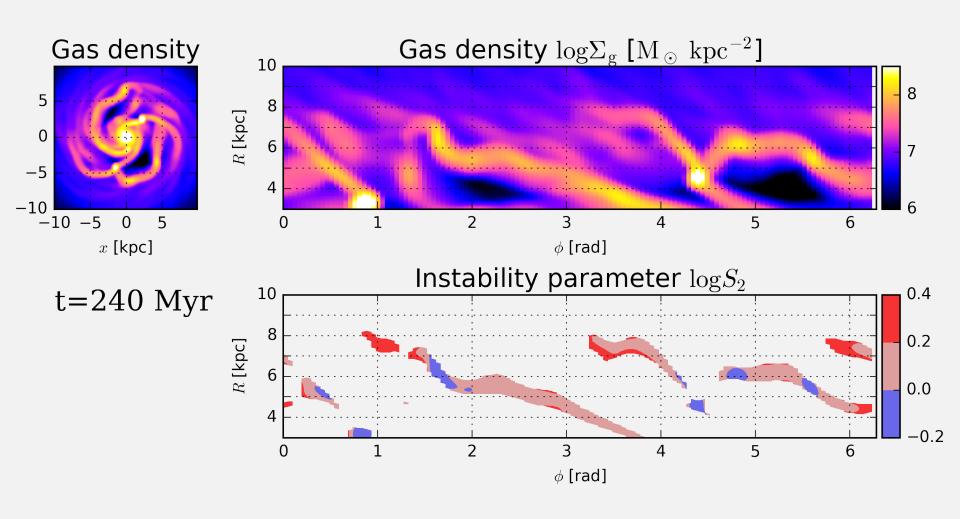


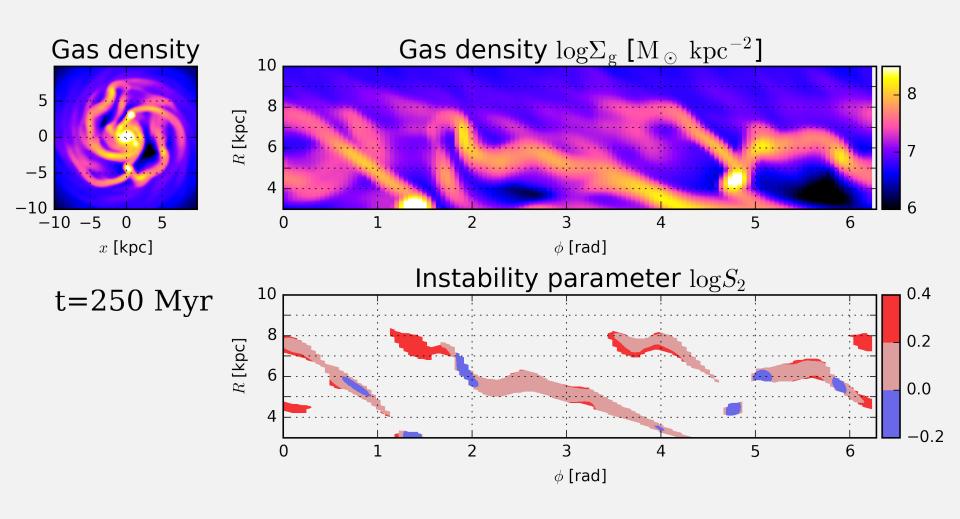


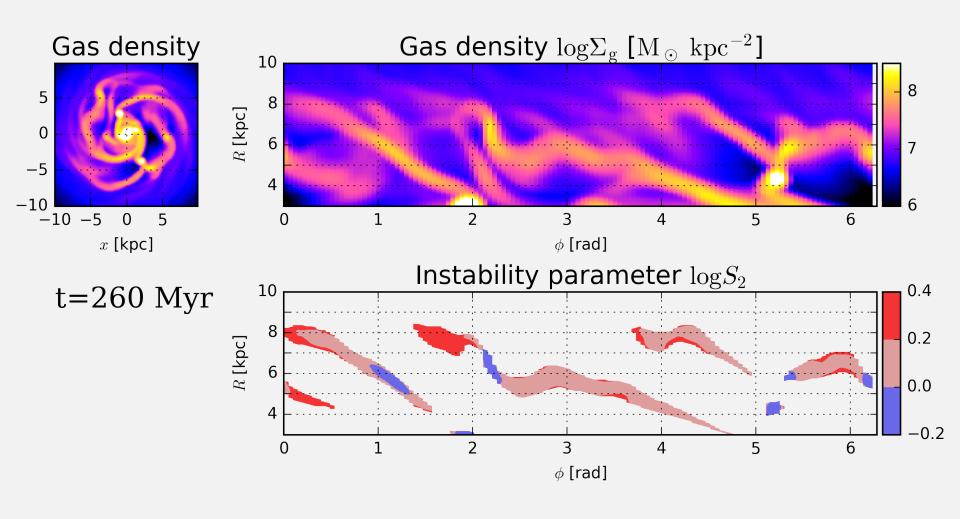


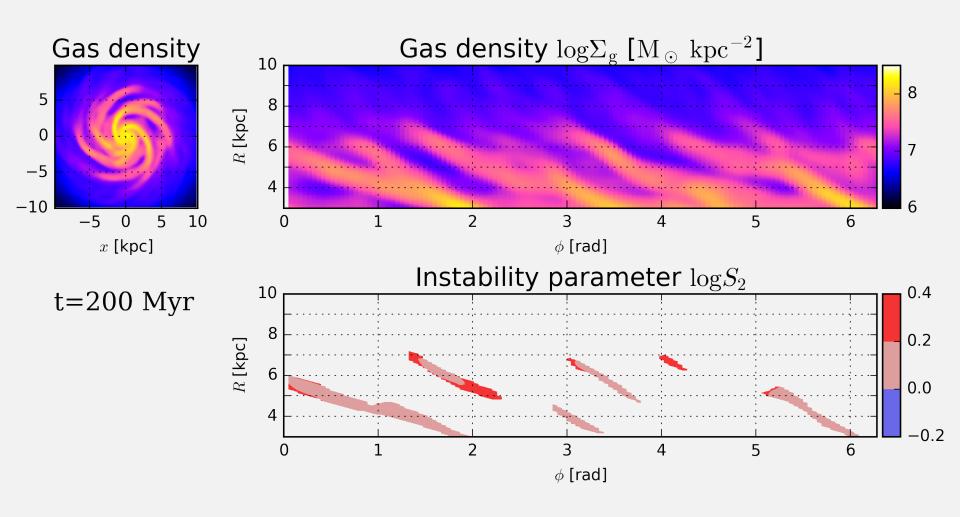


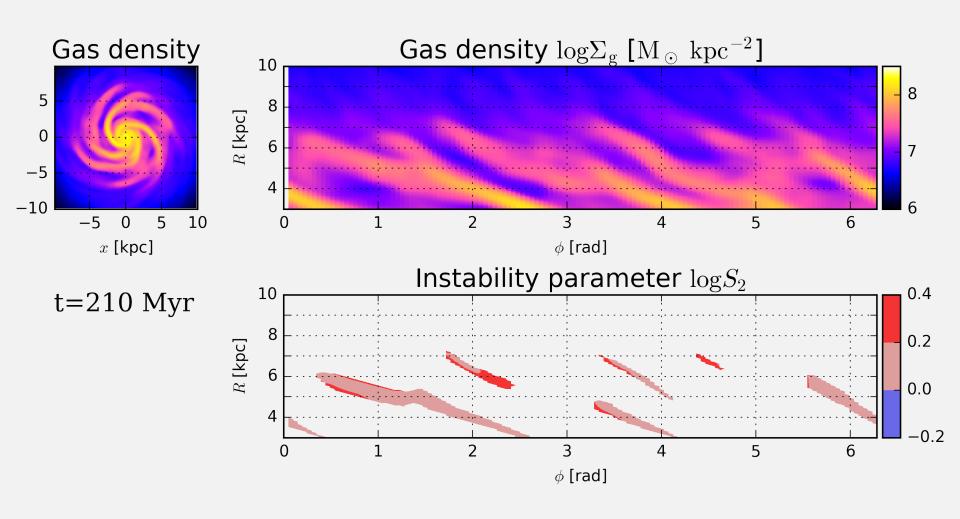


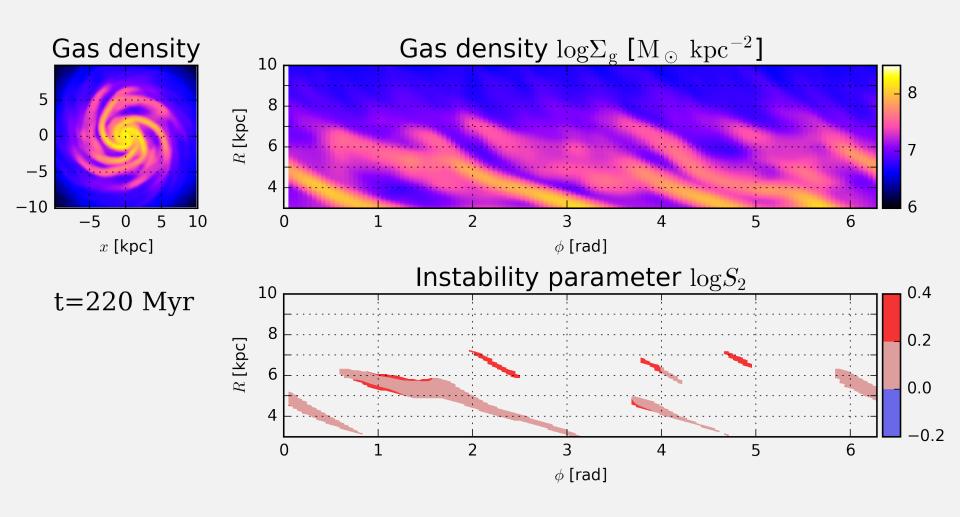


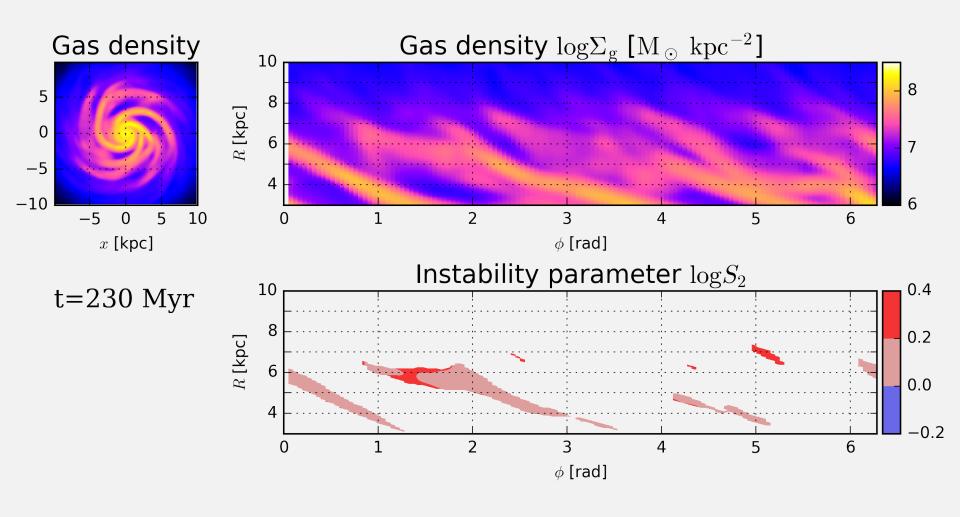


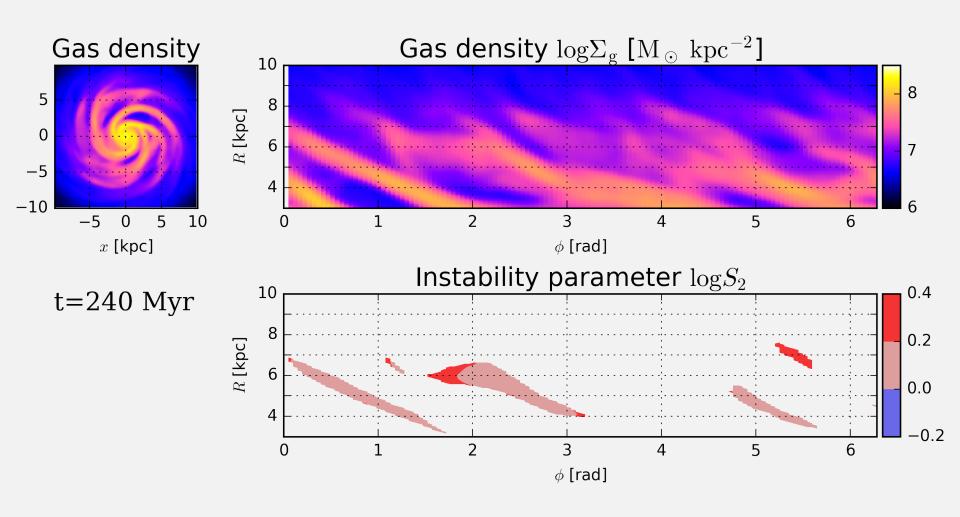


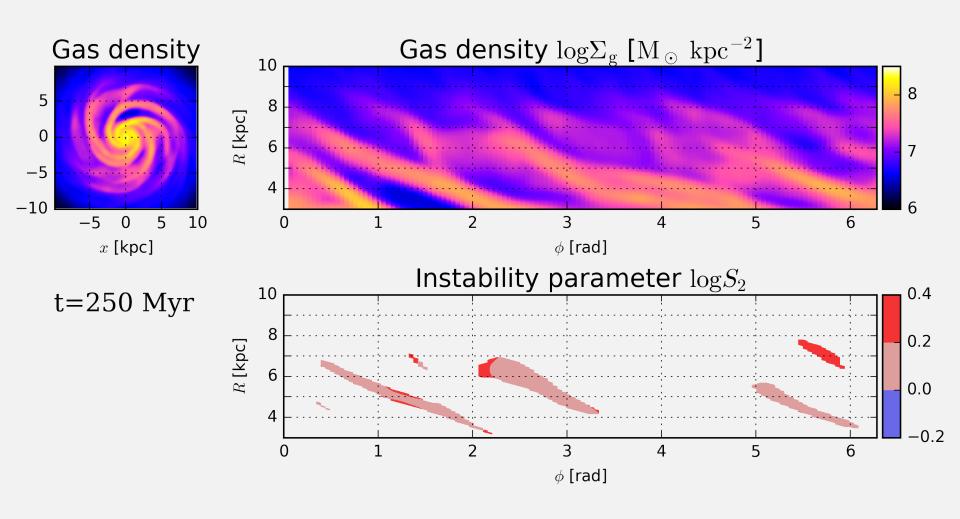


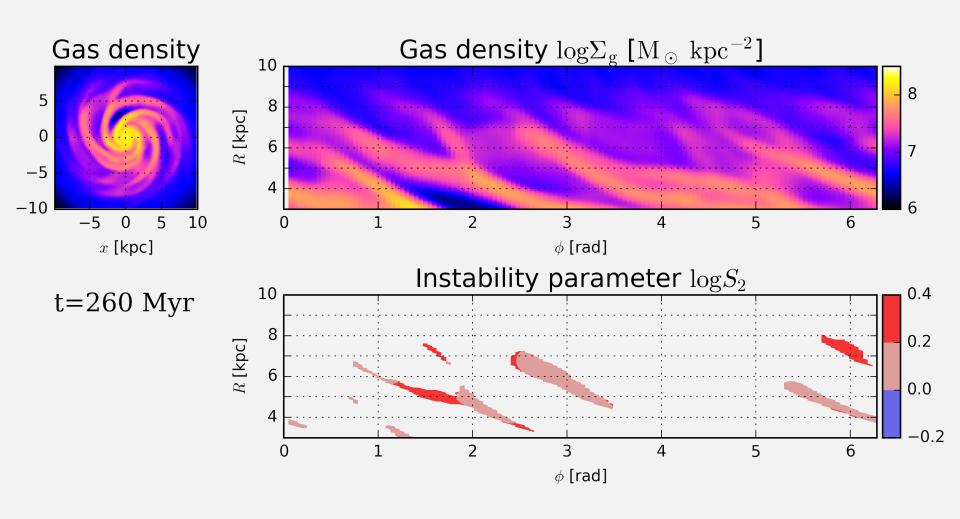


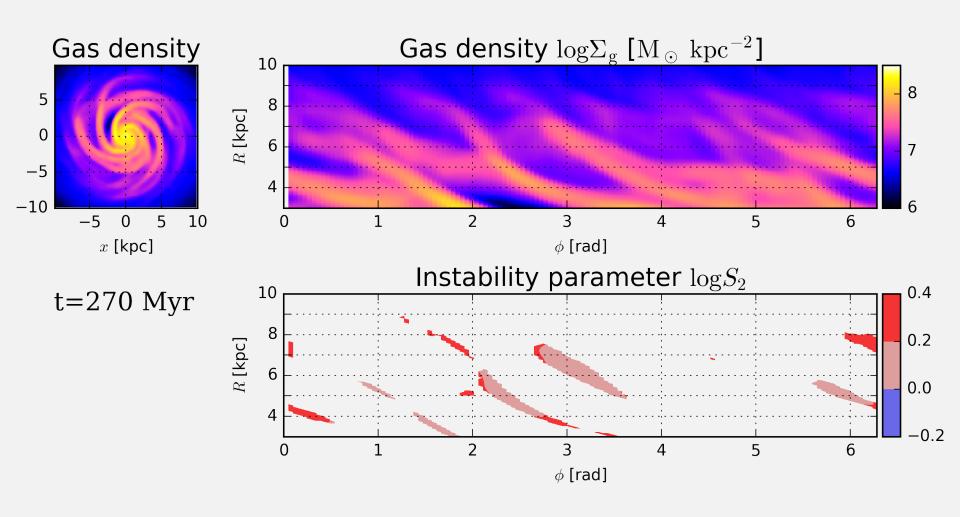


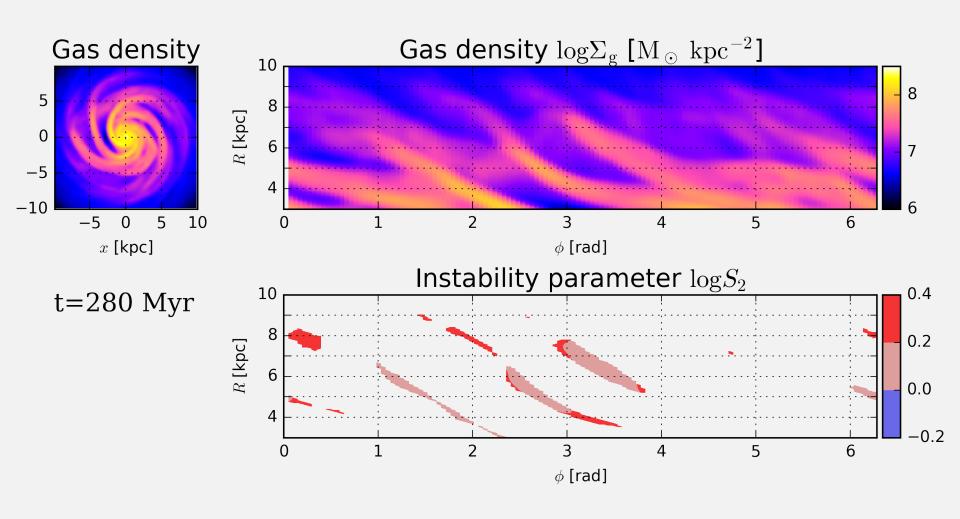


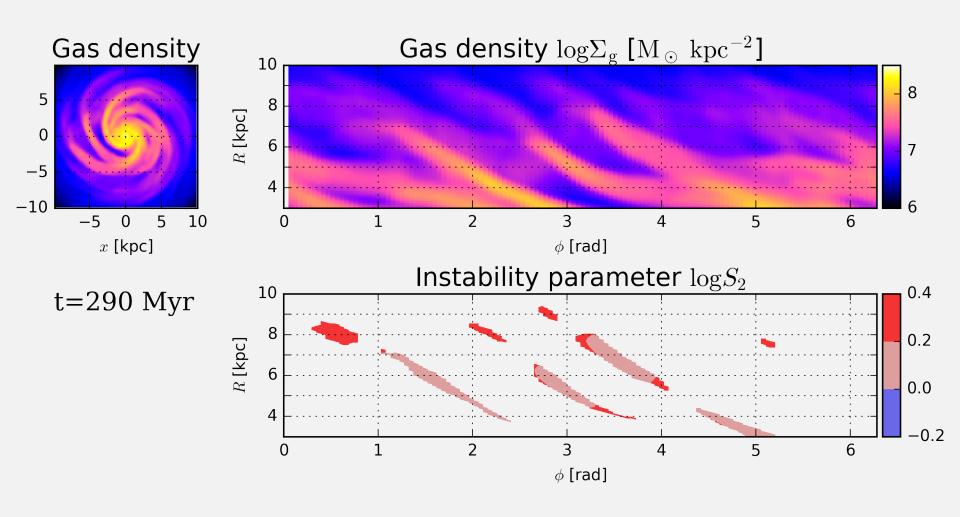


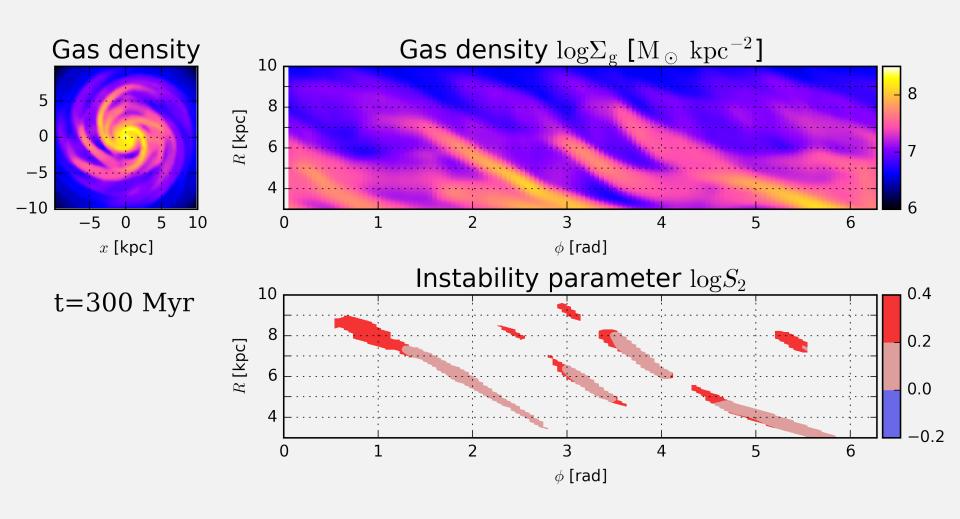


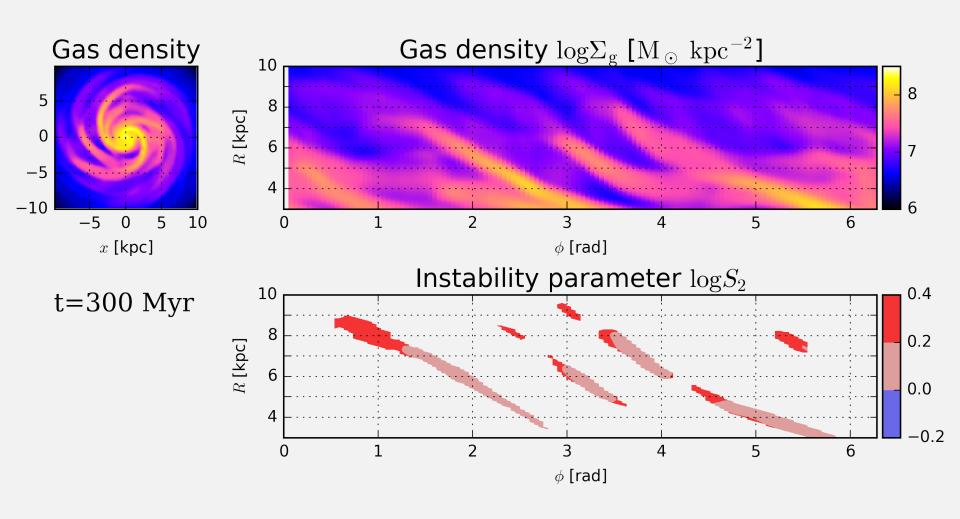












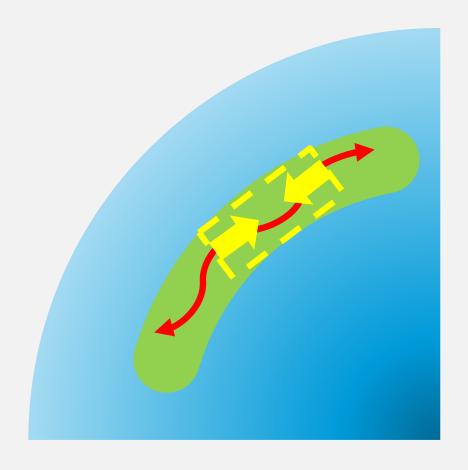
Clump mass estimation

 An unstable perturbation is expected to collapse along the arm (1D collapse)

Clump mass estimation

 An unstable perturbation is expected to collapse along the arm (1D collapse)

$$M_{cl} \sim \Sigma W \lambda$$



Clump-mass prediction

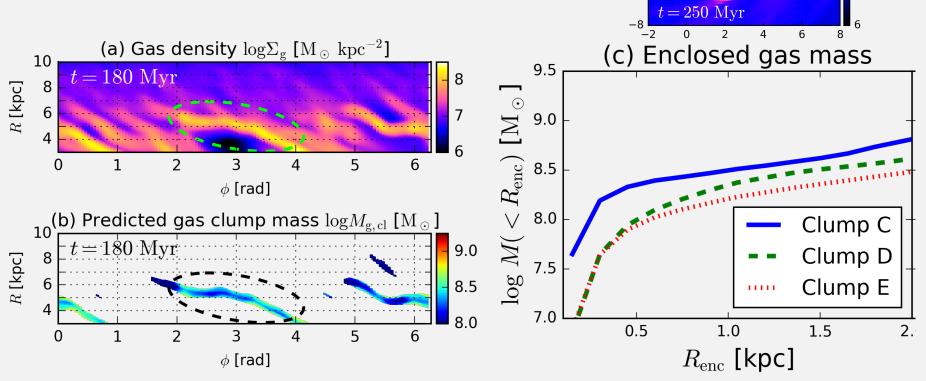
[kpc] *y*

• An unstable perturbation is expected to collapse (a) Gas density $\log \Sigma_{\rm g}$ [M $_{\odot}$ kpc $^{-2}$]

along the arm (1D collapse)

 $M_{cl} \sim \Sigma W \lambda$

• $M_{cl}{\sim}10^8-10^{8.5}~{
m M}_{\odot}~$ (predicted)



Limitations of our models

- Our simulations are ideal
 - Isolated models
 - Isothermal gas
 - No star formation or stellar feedback
 - Very thin discs
- Our analytic model is also ideal
 - Razor-thin spiral arms
 - Tight-winding approximation
 - Equilibrium for spiral arms
 - Gaussian density distribution assumed
- We also find a few non-linear fragmentation
 - Clump formation can occur even if the instability condition is not satisfied.
 - But, non-linear fragmentation is quite rare in our simulations.

Violent Disc Instability (VDI)

(based on Toomre instability; Dekel et al. 2009)

V.S.

Spiral-Arm Instability (SAI)

Violent Disc Instability

Spiral-Arm Instability

Disc formation

Toomre instability Q < 1

Disc formation

Toomre instability and/or swing amplification

Spiral arm formation

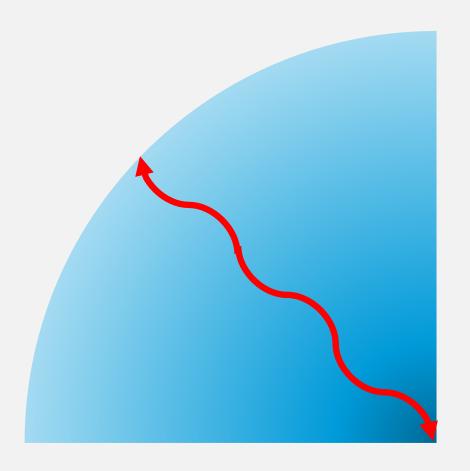
Spiral-Arm Instability S < 1

Giant clump formation

Giant clump formation

Violent Disc Instability

Spiral-Arm Instability

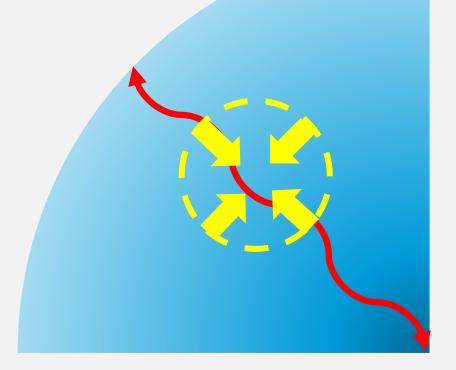


- Violent Disc Instability
 - 2D collapse

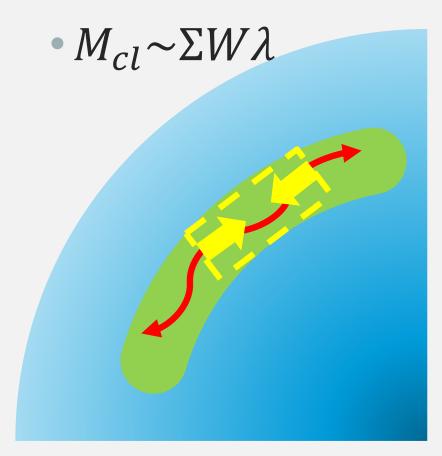
•
$$M_{cl} \sim \pi \Sigma (\lambda/2)^2$$

Spiral-Arm Instability

- Violent Disc Instability
 - 2D collapse
 - $M_{cl} \sim \pi \Sigma (\lambda/2)^2$



- Spiral-Arm Instability
 - 1D collapse



From our analysis, we can obtain scaling relations of properties of giant clumps.

the most unstable wavelength:
$$\lambda_{\rm MU}=2\pi\left(\frac{\pi\alpha GF_0A\Sigma W^{1-lpha}}{8\Omega^2}\right)^{\frac{1}{2-lpha}}$$
 .

expected clump mass: $M_{\rm cl} \sim \lambda_{
m MU} \frac{\Upsilon}{f_{
m g}} = \lambda_{
m MU} A \frac{\Sigma}{f_{
m g}} W.$

Spiral-arm instability

expected scaling relation:

$$R_{\rm cl} \propto \left(\frac{\sigma_{\rm cl}}{V} R_{\rm d}\right)^{1.3}$$

Toomre instability

expected scaling relation:

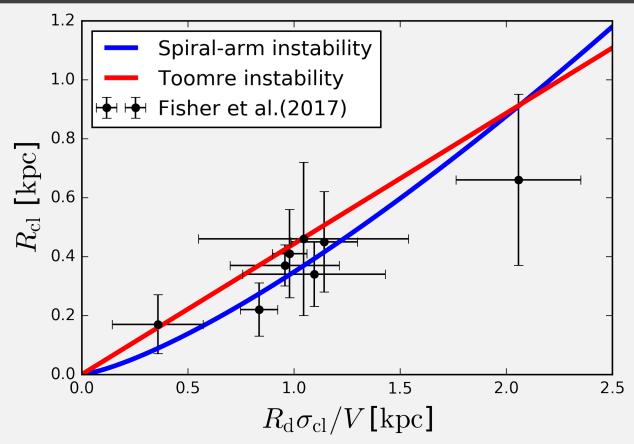
$$R_{\rm cl} \propto \frac{\sigma_{\rm cl}}{V} R_{\rm d}$$

 $R_{\rm cl}$: clump radius,

 $\sigma_{\rm cl}$:vel. disp. with in clump,

 $R_{\rm d}$: disc radius,

V: disc rot. vel.



- Both models of the spiral-arm and Toomre instability can explain the observations.
 - Neither is rejected by the observations.
- Our spiral-arm instability theory can be a possible mechanism of giant clump formation in high-z galaxies.

From our analysis, we can obtain scaling relations of properties of giant clumps.

$$\frac{M_{\rm cl}}{M_{\rm d,g+s}} \simeq 2 \left[\frac{1}{8} \alpha F_0 (A\beta)^{3-\alpha} \eta \left(\frac{W}{R_{\rm d}} \right)^{3-2\alpha} \right]^{\frac{1}{2-\alpha}}$$

Spiral-arm instability expected scaling relation: $rac{M_{
m g,cl}}{M_{
m g,d}} \propto f_{
m g}^{0.7} R_{
m d}^{-1.3},$

$$\frac{M_{\rm cl}}{M_{\rm d,g+s}} \simeq \pi^2 a^{-4} \eta^2.$$

Toomre instability expected scaling relation: $rac{M_{
m g,cl}}{M_{
m g,d}} \propto f_{
m g}^2,$

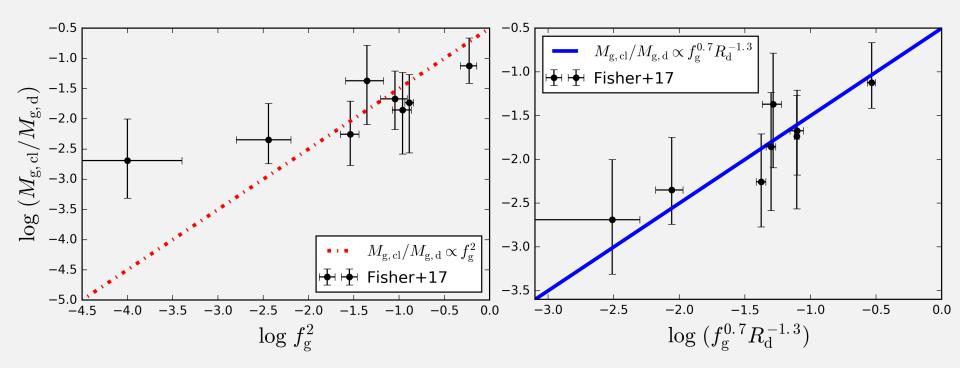
 $R_{\rm cl}$: clump radius,

 $\sigma_{\rm cl}$:vel. disp. with in clump, $R_{\rm d}$: disc radius,

V: disc rot. vel.

Violent Disc Instability

Spiral-Arm Instability



- The observations may prefer our SAI model.
 - But, the sample size is too small.
 - If the most gas-poor one is excluded, the fittings become comparable in both models.

Summary

 We analytically derived an instability parameter and its criterion for spiralarm fragmentation.

$$S \equiv \frac{1}{\pi G k^2} \left[\frac{\Upsilon_{\rm g} f(kW_{\rm g})}{c_s^2 k^2 + 4\Omega_{\rm g}^2} + \frac{\Upsilon_{\rm s} f(kW_{\rm s})}{\sigma_{\phi}^2 k^2 + 4\Omega_{\rm s}^2} \right]^{-1} < 1.$$

- Our novel instability parameter can characterize remarkably well fragmentation of spiral arms and clump formation following.
- Neither model of our spiral-arm nor Toomre instability is inconsistent with current observations.
 - The spiral-arm instability could be a possible mechanism of giant clump formation in high-redshift galaxies.
- It is also interesting to adopt our instability analysis to local spiral galaxies.