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cc--theorems in various dimensionstheorems in various dimensions

� A measure of the number of degrees of freedom 
in interacting field theories. It should decrease 
along rg flow.

� Most obvious conjecture is the thermal free 
energy. Not constant along conformal 
manifolds. Also, in 3d, the critical O(N) model is 
a counter-example. 



cc--theorems in various dimensionstheorems in various dimensions

� In 2d, the coefficient of the trace anomaly 
famously has this property. RG flow is the 
gradient flow for this quantity.

� In 4d,                                                 , and it is 
conjectured that a plays this role. 

� In odd dimensions, there are no anomalies, so 
this has long been an open problem. 

16π2〈Tµ
µ〉 = c(Weyl)2 − 2a(Euler)

Zamolodchikov



SuperconformalSuperconformal RR--chargecharge

� Theories with 4 supercharges admit a U(1) R-symmetry, 
under which the susies are charged. R+F is again an R-
symmetry for any flavor generator, F. 

� SCFTs must be R-symmetric, as the (now unique) R-
charge appears in anti-commutators. The dimensions of 
chiral primaries are given by their R-charge. 

� The superconformal R in the IR typically differs from 
that in the UV SCFT by mixing with abelian flavor 
symmetries. 

R = R0 +
∑f

j=1 ajFj



4d a4d a--maximizationmaximization

�� Solved using Solved using ‘‘t t HooftHooft anomaly matchinganomaly matching

�� The trace anomaly,                                , in The trace anomaly,                                , in 
terms of the exact terms of the exact superconformalsuperconformal RR. . 

�� It was shown that It was shown that aa is maximized as a function is maximized as a function 
of a trial of a trial RR--charge. charge. 

�� Gives evidence for the Gives evidence for the aa--theorem. theorem. 

a = 3
32 (3TrR

3 − TrR)

Anselmi Freedman Grisaru Johansen

Intriligator Wecht



Other proposals in 3dOther proposals in 3d

�� The two point function of an The two point function of an RR--current is maximized current is maximized 
for the for the superconformalsuperconformal one, since one, since RR--currents and flavor currents and flavor 
currents sit in different currents sit in different multipletsmultiplets. However, it is . However, it is 
quantum corrected and seems not to be exactly quantum corrected and seems not to be exactly 
calculable in 3d.calculable in 3d.

�� Myers Myers and and SinhaSinha proposed an entanglement entropy, proposed an entanglement entropy, 
which reproduces which reproduces aa in 4d. It was later shown to be in 4d. It was later shown to be 
equivalent to the sphere partition function in 3d. equivalent to the sphere partition function in 3d. 

Barnes Gorbatov Intriligator Wright

Casini Huerta Myers



Partition functions on SPartition functions on S33

� Calculated by Kapustin Willett Yaakov using 
localization when there are no anomalous dimenions.

� This partition function of the Euclidean theory is given 
in classical supergravity by minus the Euclidean 
Einstein action of the AdS. 

� Matrix integral for the N=6 theory solved by Drukker
Marino Putrov, reproducing N3/2 behavior. 

S = − 1

16πGN

∫
d4x

√
g(R− 2Λ) + Ssurf + Sct =

π

2GN

[Henningsson Skenderis; Emparan Johnson Myers]

[Klebanov Tseytlin]



Is the SIs the S33 partition function wellpartition function well--defined?defined?

� In general, a calculation in an effective theory 
with a lower cutoff  Λ’ < Λ differs by a local 
effective action for the background fields. 

� In even dimensions, have the Euler density, 
which integrates to a number. 

∫ √
g,

∫ √
g R

E4 =
1
4
RijklRabcdǫ

ijabǫklcd

ZΛ = ZΛ′ econst E =
(

Λ
Λ′

)a



� In odd dimensions, all such terms depend on the 
radius of the sphere – they correspond to power 
law divergences. 

� Therefore, the odd-dimensional sphere partition 
function is a well-defined number for conformal 
field theories. 

� Gravitational Chern-Simons term integrates to a 
number, but it only affects the phase, by 
reflection positivity. 

i
4π

∫
Tr
(
ω ∧ dω + 2

3ω ∧ ω ∧ ω
)



ZZ--minimizationminimization
� Return to Cardy’s original motivation – consider the 

theory on S3. Finite after power law divergences are 
removed. 

� Susy preserving curvature couplings parameterized by 
an R-charge. 

� Can be calculated exactly using supersymmetry 
(localization) as a function of R.

� Minimized by the IR R-charge, that uniquely 
corresponds to conformal coupling to curvature.



NN=2 Chern=2 Chern--SimonsSimons--matter theorymatter theory

� Consists of a vector multiplet in the adjoint of 
the gauge group, and chiral multiplets in 
representations       

� The kinetic term for the chiral multiplets
includes couplings

� There is the usual D term 

Ri

−φ̄iσ
2φi − ψ̄iσψi

φ̄iDφi

SN=2
CS = k

4π

∫
(A ∧ dA+ 2

3A
3 − χ̄χ+ 2Dσ)



Integrate out D,   , and 

SN=2 =

∫
k

4π
(A ∧ dA+

2

3
A3) +Dµφ̄iD

µφi + iψ̄iγ
µDµψi

−16π2

k2
(φ̄iT

a
Ri

φi)(φ̄jT
b
Rj

φj)(φ̄kT
a
Rk

T b
Rk

φk)−
4π

k
(φ̄iT

a
Ri

φi)(ψ̄jT
a
Rj

ψj)

−8π

k
(ψ̄iT

a
Ri

φi)(φ̄jT
a
Rj

ψj).

σ χ

Note that this action has classically marginal 
couplings. It is has been argued that it does not 
renormalize, up to shift of k, and so is a CFT. 



The recipeThe recipe

× ∏
chirals

in rep Ri

DetRi

(
eℓ(1−∆i+i σ2π )

)

ℓ(z) = −z log
(
1− e2πiz

)
+ i

2

(
πz2 + 1

πLi2(e
2πiz)

)
− iπ

12

∂zℓ(z) = −πz cot(πz)

Z =
∫ ∏

Cartan
dσ
2π exp

[
i

4π trkσ
2
]
DetAd

(
sinh σ

2

)



SuperconformalSuperconformal symmetries on Ssymmetries on S33

� The conformal group in 3d is USp(4) = SO(3,2).

� In Euclidean signature, one has the real form USp(2,2) 
= SO(4,1). 

� On S3, the USp(2) × USp(2) = SO(4) subgroup acts as 
rotations of the sphere.

� The N = 2 superconformal group is OSp(2|4).

� The R-symmetry is SO(2) = U(1).



Supersymmetry on the sphereSupersymmetry on the sphere

� The sphere possesses homogeneous Killing 
spinors,                    , so one expects that 
supersymmetry is preserved. The associated 
generators square to isometries. 

� It corresponds to keeping Q and S while 
throwing away     and     of the superconformal
algebra.

� Closely related to the 4d superconformal index 
on S3 × R. 

∇µǫ = ± i
2γµǫ

Q̄ S̄



OSp(2|2) OSp(2|2) ×× SU(2)SU(2)

� The OSp(2|2) subgroup of OSp(2|2,2) does not
contain any conformal transformations. The 
bosonic generators are the R-symmetry and 
SU(2)L isometries.

� Parity exchanges the two SU(2)s and is broken 
by this choice. 

{Qi
A, Q

j
B} = δijJAB + iǫABǫijR

δ = 1√
2
(Q1

1 + iQ2
1), δ̃ =

1√
2
(Q1

2 − iQ2
2)



δφ = 0

δφ̄ = ψ̄ε

δψ = (−iγµDµφ− iσφ+
∆

r
φ)ε

δψ̄ = εF̄

δF = ε(−iγµDµψ + iσψ +
1

r
(
1

2
−∆)ψ + iλφ)

δF̄ = 0,

δAµ = − i

2
λ†γµε

δσ = −1
2
λ̄ε

δλ =

(
−1
2
γµνFµν −D+ iγµ∂µσ −

1

r
σ

)
ε

δλ̄ = 0

δD =

(
− i

2
(Dµλ̄)γ

µ +
1

4r
λ̄

)
ε.

There are the unique 

modifications of the flat 

space transformations that 

satisfy the algebra. 

Or by coupling to gravity, 

putting the theory on the 

sphere, and taking MPl to 

infinity. Certain background 

fields must be turned on to 

preserve supersymmetry. 

The fully nonlinear theory 

involves corrections that 

terminate at order 1/r2, 

together with covariantized

derivatives.  

[Festuccia Seiberg]



Curvature couplingsCurvature couplings

� To put a non-conformal theory on the sphere, one 
needs to specify how to couple it to curvature. 

� If the theory were conformal, those couplings could be 
uniquely determined by requiring Weyl invariance.

� OSp(2|2) invariance also determines the couplings 
uniquely, for any R-charge. 

S =

∫ √
g
(
Dµφ

†Dµφ + iψ†Dψ + F †F + φ†σ2φ + iφ†Dφ − iψ†σψ + iφ†λ†ψ − iψ†λφ

+
∆ − 1

2

r
ψ†ψ +

2i

r
(∆ − 1

2
)φ†σφ +

∆(2 −∆)

r2
φ†φ

)
.[D. Sen; Romelsberger]



From UV to IRFrom UV to IR

� Supersymmetric localization implies that the partition 
function is independent of the radius of the sphere, 
even in the non-conformal case. 

� Given the R-charge that sits in the susy algebra, one 
may do the calculation on a small sphere, using the UV 
theory, and obtain the IR result for a large sphere. 

� The difference between UV and IR theories is Q-exact, 
if both are coupled to curvature using the same R-
multiplet.



Localizing the path integralLocalizing the path integral

� In Euclidean path integrals, the meaning of 
supersymmetry is that the expectation values of Q(..) 
vanish. 

� This can sometimes be used to show that the full 
partition function localizes to an integral over Q-fixed 
configurations. There is a 1-loop determinant from 
integrating out the other modes.

Z(t) =
∫ ∏

dΦ e−S−tSloc

d
dtZ = −

∫ ∏
dΦe−S−tSloc{Q,V } = 0

Sloc = {Q,V }, [Q2, V ] = 0

[Witten; Duistermaat Heckman; Pestun; 

Kapustin Willett Yaakov]



Gauge sectorGauge sector

� The unique supersymmetrization of the Yang-Mills 
action on the sphere is 

� It is Q-exact. There is a massless field,             , whose 
zero mode survives the localization. 

� The Chern-Simons action is non-zero on space of 
supersymmetric configurations:

+iλ†∇λ+ i[λ†, σ]λ+ 2
rDσ − 1

2rλ
†λ+ 1

r2σ
2
)

1
g2YM

∫ √
g Tr

(
1
2F

µνFµν +DµσD
µσ +D2

ik
4π

∫
S3

2(Dσ) = iπkr2(σ2)

σ = −Dr



Matter sectorMatter sector

� A chiral multiplet has a one parameter family of 
supersymmetry preserving actions on the sphere.

� Superpotential terms may be supersymmetrized if they 
do not break the R-symmetry. 

� These actions are all Q-exact.

S =

∫ √
g
(
Dµφ

†Dµφ + iψ†Dψ + F †F + φ†σ2φ + iφ†Dφ − iψ†σψ + iφ†λ†ψ − iψ†λφ

+
∆ − 1

2

r
ψ†ψ +

2i

r
(∆ − 1

2
)φ†σφ +

∆(2 −∆)

r2
φ†φ

)
.



Computing the determinantsComputing the determinants

� On a tiny sphere, the theory is gaussian, except 
for the zero mode scalar in the vector multiplets. 

� One expands the fields in angular momentum 
modes to determine the 1-loop determinant. 

� For the vector multiplets, the result is 
∏

rootsα
sinh(α(σ/2))

α(σ)

[Kapustin Willett Yaakov]



11--loop matter determinantloop matter determinant

∂zℓ(z) = −πz cot(πz)

ℓ(z) = −z log
(
1− e2πiz

)
+

i

2

(
πz2 +

1

π
Li2(e

2πiz)

)
− iπ

12

Z1−loop =
∞∏

n=1

(
n+ 1 + irσ −∆

n− 1− irσ +∆

)n

Define z = 1−∆+ irσ, and let ℓ(z) = logZ1−loop



The matrix integralThe matrix integral

× ∏
chirals

in rep Ri

DetRi

(
eℓ(1−∆i+i σ

2π )
)

Z =
∫ ∏

Cartan
dσ
2π exp

[
i

4π trkσ
2
]
DetAd

(
sinh σ

2

)



Real massesReal masses

� These are background values of the real scalar in 
a background vector multiplet coupled to an 
abelian flavor symmetry.

� On the sphere, one needs to set                  to 
preserve supersymmetry.

D = −σ
r

{δ, δ̃} = J + 1
r (RUV + aF )− imF

∫
d4θQ̄emθθ̄Q



A A holomorphyholomorphy

� One can check that the actions depend 
holomorphically on the parameters 

� Thus so does the partition function. This allows 
one to relate the less familiar dependence on 
curvature couplings to a familiar dependence on 
real mass deformations. 

zj = aj − irmj



11--point functionspoint functions
� Unbroken conformal invariance implies that all 1-

points vanish, except for the identity operator.

� One would expect that                 , when evaluated at 
m=0 and the superconformal value of R. 

� However, there is a subtlety – there may be nontrivial 
actions for the background fields. 

� Partition function is complex due to framing of Chern-
Simons theory (susy preserving UV regulator violates 
reflection positivity). 

1
Z
∂mZ = 0



ParityParity

� Recall that parity switches the two SU(2) isometries of 
S3. Thus parity together with OSp(2|2) generates the 
entire superconformal group. 

� The real mass is parity odd. Therefore in a parity 
preserving theory, its VEV must vanish. 

� In a parity violating CFT, only the parity even identity 
operator has a VEV. Thus Im( 1

Z
∂mZ) = 0



|Z| |Z| extremizationextremization

� Using the holomorphy, this implies that 

at the superconformal value of ∆.

� Holographic evidence and examples indicate 
that |Z| is always minimized. Need to control 
2-point functions to prove this in field theory. 

∂∆|Z| = 0



AdSAdS dual of Zdual of Z

� 3d CFT describing N M2 branes on a Calabi-
Yau cone is dual to AdS4 × Sasaki-Einstein 7-
manifold. 

� The theory on S3 is dual to euclidean AdS. 

− log (ZS3) =
πL2AdS
2G4d

N

= N3/2
√

2π6

27V ol(Y )

Where the metric on Y is normalized such that Rij = 6gij



Quiver CSM theoriesQuiver CSM theories

� U(N)k × U(N)-k CSM with a pair of 
bifundamental hypermultiplets

W = 2π
k ǫabǫȧḃ(AaBȧAbBḃ)

Z = 1
(2π)2N

∫ ∏N
i=1 dσidσ̃i exp

[
ik
4π (tr σ2 − tr σ̃2)

]

× ∏
i<j sinh

2
(
σi−σj

2

)
sinh2

(
σ̃i−σ̃j

2

)∏
chirals

in rep Ri

DetRi

(
eℓ(1−∆i+i σ

2π )
)



Large N limitsLarge N limits

� In the ‘t Hooft limit, the eigenvalues form a 
density. The clump has size of order 1. Thus 
F~N2 f(λ) to leading order, as expected from the 
saddle point solution to matrix models.

� For large N at fixed k, there is still a density, but 
the clump has size of order √N. Requires 
cancellation of long range forces. 



Matrix models for Matrix models for NN=2 quivers=2 quivers

�� The saddle point equations are given by the The saddle point equations are given by the 
vanishing of the forces:vanishing of the forces:

F
(a)
i = F

(a)
i,ext + F

(a)
i,self +

∑
b F

(a,b)
i,inter +

∑
b F

(b,a)
i,inter

F
(a)
i,self =

∑
j �=i coth

λ
(a)
i −λ(a)j

2

F
(a,b)
i,inter =

∑
j

[
∆(a,b)−1

2 − i
λ
(a)
i −λ(b)j

4π

]
coth

[
λ
(a)
i −λ(b)j

2 − iπ
(
1−∆(a,b)

)]

F
(a)
i,ext =

ika
2π λ

(a)
i



AnsatzAnsatz

� Want a clump of size strictly between O(1) and O(N) -
long range forces must then cancel.

� Use an eigenvalue density, ρ(x), for the universal x 
components, and functions ya(x).

� Algebraic in ρ!

λ
(a)
i = N1/2xi + iya,i + o(N0)

ka
2πN

3/2
∫
dx ρ(x)xya(x) +∆

(a)
m N3/2

∫
dx ρ(x)x

−N3/2 2−∆+
(a,b)

2

∫
dxρ(x)2

[(
ya − yb + π∆−

(a,b)

)2

− 1
3π

2∆+
(a,b)

(
4−∆+

(a,b)

)]

N3/2
∫
dxρ(x)x

(
1−∆a

2 − 1
4πya(x)

)

[Herzog Klebanov Pufu Tesileanu; Santamaria Marino Putrov]



An exampleAn example

� Describes M2 branes on a CY cone. 1-loop 
quantum corrections are crucial to finding the 
moduli space. At level 0, gives AdS4 × Q111.

� To leading order in N, independent of the 
fundamental flavor R-charge.

Wfl = p1A1q1 + p2A2q2

F = 4
√

2πN3/2

3
∆̂(∆̂+k+1)√

(k+1)2(k−1)−4(k+1)∆̂−2∆̂2



Volume minimizationVolume minimization

� In Sasaki-Einstein geometry, the Reeb vector is paired 
with the radial direction in the Kahler form on the CY 
cone. 

� For toric SE, it is part of the U(1)4 isometry. 

� The volume can be computed as a function of this 
embedding (in general, a Sasakian manifold with Kahler
cone). It is minimized by the SE one.

� The whole function matches the field theory Z!



SU(2)SU(2)11 with an with an adjointadjoint

�� This CSM theory is equivalent to a free This CSM theory is equivalent to a free chiralchiral
multipletmultiplet, up to decoupled topological sector , up to decoupled topological sector ––
TrTr XX2 2 reaches the reaches the unitarityunitarity bound. bound. 

�� For the For the superconformalsuperconformal index, monopole index, monopole 
operators play a crucial role in matching. operators play a crucial role in matching. 

Z =
∫
du sinh2(2πu)e2πiu2eℓ(1−∆)+ℓ(1−∆+2iu)+ℓ(1−∆−2iu)

= 1√
2
e
iπ
2 (1+∆)2− iπ

4 eℓ(1−2∆)



SummarySummary

� Explained 3d N=2 R-symmetric theories on the sphere.

� Computed the IR partition function exactly in the UV 
theory as a function of R-charge parameterized 
curvature couplings. 

� |Z| is minimized by the IR superconformal R, 
determining the superconformal R-charge exactly. 

� Looked at some examples.


