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Outline

• Seiberg and Kutasov-Schwimmer-Seiberg dualities in 4d
• 3d analogs of Seiberg duality (unitary gauge group)
• 3d analogs of KSS duality (unitary gauge group)
• Nonperturbative truncation of the chiral ring
• Other gauge groups and matter representations
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Seiberg duality in 4d, I

Seiberg duality (1994) is a conjectured IR duality between
certain pairs of N = 1 d = 4 gauge theories.

Electric theory: SU(Nc) gauge theory with Nf fundamental
flavors (Qa, Q̃ã), a, ã = 1, . . . , Nf ,

Magnetic theory: SU(Nf −Nc) gauge theory with Nf

fundamental flavors qa, q̃
ã, a singlet “meson” superfield Ma

ã , and
a superpotential

W = q̃ãqaM
a
ã .

Checks: symmetries, ’t Hooft anomaly matching, chiral ring
matching, consistent behavior under defomations and along the
moduli space.
Generalizes to SO(Nc) and USp(2Nc) theories with fundamental
matter.
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Seiberg duality in 4d, II

Chiral ring matching:

Q̃Q 7→ M,

QNc 7→ qNf−Nc ,

Q̃Nc 7→ q̃Nf−Nc .

NB. The electric and magnetic theories flow to a nontrivial IR
fixed point for 3Nc/2 < Nf < 3Nc. If Nf is in the range
Nc ≤ Nf ≤ 3Nc/2, the magnetic theory is IR free. If Nf < Nc,
the magnetic theory does not make sense, while the electric
theory does not have a stable vacuum.
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KSS duality in 4d, I

Electric theory: SU(Nc) gauge theory with Nf fundamental
flavors (Qa, Q̃ã), a, ã = 1, . . . , Nf , an adjoint X and a
superpotential

W = TrXn+1.

Magnetic theory: SU(nNf −Nc) gauge theory with Nf

fundamental flavors qa, q̃
ã, an adjoint Y , n singlet “meson”

superfields Mj , j = 1, . . . , n,and a superpotential

W = TrY n+1 +

n∑

j=1

q̃Y n−jq Mj .
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KSS duality in 4d, II

Chiral ring matching:

Q̃Xj−1Q 7→ Mj , TrXj−1 7→ TrY j−1, j = 1, . . . , n.

Baryon-like chiral operators also match.

Note the chiral ring relation Xn = 0 following from ∂W/∂X = 0.

• KSS duality holds if the perturbation W = TrXn+1 is
relevant. The condition for this is RX < 2/(n+ 1), where RX

can be computed by a-maximization in the W = 0 theory
(Intriligator, Wecht). This gives upper bound on Nf .

• There are additional relations in the electric (resp. magnetic)
chiral ring coming from the characteristic equation for X
(resp. Y ). These relations do not match. KSS proposed that
the magnetic characteristic equation appears in the electric
theory as a nonperturbative effect, and vice versa.
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KSS duality in 4d, III

KSS duality generalizes to other classical groups and matter
representations (Intriligator, Leigh, Strassler, 1995):

• SO(Nc) theory with Nf fundamentals, an adjoint X and a
superpotential W = TrX2n+2.

• USp(2Nc) theory with 2Nf fundamentals, an adjoint X and
a superpotential W = TrX2n+2.

• SO(Nc) theory with Nf fundamentals, a symmetric
traceless X and a superpotential W = TrXn+1.

• USp(2Nc) theory with 2Nf fundamentals, an antisymmetric
traceless X and a superpotential W = Tr (XJ)n+1.

• SU(Nc) theory with Nf fundamentals, a symmetric or
antisymmetric tensor flavor Xij , X̃ij , and a superpotential
W = Tr(XX̃)n+1.

3d Seiberg Dualities with Tensor Matter – p. 7/26



KSS duality in 4d, IV

Further remarks:

• Some of these dualities can be “derived” using suitable
brane constructions of N = 1 gauge theories and brane
moves which amount to continuation past infinite coupling.
Not clear why and when this is allowed.

• No dual description is known for the SU(Nc) theory with Nf

fundamentals, an adjoint X, and W = 0. Naive attempt to
take the limit n → ∞ of the KSS duality fails because for
fixed Nf , Nc and large enough n the operator TrXn+1

becomes irrelevant, and the KSS duality does not apply.
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Aharony dualities in 3d, I

Seiberg dualities have 3d counterparts with N = 2 d = 3 SUSY
(Aharony, 1997, Aharony-Shamir, 2011).

• U(Nc) theory with Nf fundamental flavors is dual to
U(Nf −Nc) theory with Nf fundamental flavors, N2

f singlets
Ma

ã , two extra singlets v+, v−, and a superpotential

W = q̃qM + V+v− + V−v+,

where V± are monopole operators with magnetic charge
(±1, 0, . . . , 0).

There are no gauge-invariant baryon operators, mesons match
as before. Monopole operators U± in the electric theory map to
singlet fields v± in the magnetic theory.
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Aharony dualities in 3d, II

There are similar dualities for gauge groups O(Nc) and
USp(2Nc).

• O(Nc) 7→ O(Nf −Nc + 2)

• USp(2Nc) 7→ USp(2Nf − 2Nc − 2).

There are no baryons to match, while basic monopole operators
map to singlets. The chiral ring seems to be generated by
mesons and basic monopole operators (Bashkirov, 2011).
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3d dualities with Chern-Simons terms, I

In 3d one can turn on Chern-Simons couplings. There are 3d
Seiberg-like dualities for N = 2 d = 3 theories with
Chern-Simons terms (Giveon, Kutasov, 2008, A.K. 2011).

Recipe: take Aharony duality, on the electric side turn on CS
coupling k, on the magnetic side turn on CS coupling −k,
replace Nf 7→ N + f + |k| and drop singlets coupled to
monopole operators.

Thus U(Nc)k theory with Nf fundamental flavors is dual to
U(Nf + |k| −Nc)−k theory with Nf flavors, a singlet meson M
and W = q̃qM .

For |k| ≥ Nc it makes sense to set Nf = 0, and we get:

U(Nc)k N = 2 Chern-Simons theory is dual to U(|k| −Nc)−k

N = 2 Chern-Simons theory.
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3d dualities with Chern-Simons terms, II

Further remarks:

• N = 2 U(Nc)k CS theory is equivalent to bosonic U(Nc) CS
theory at CS level kb = k −Nc · signk (for |k| ≥ Nc). Thus for
Nf = 0 Seiberg-like duality with CS terms is level-rank
duality of bosonic U(N)k CS theories .

• If Nf + |k| −Nc < 0, the electric theory appears to break
SUSY spontaneously.

• Similar remarks apply to gauge groups O(Nc) and
USp(2Nc).
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Testing 3d dualities

• Chiral ring matching (but matching monopole operators is
not straightforward, see Bashkirov 2011).

• Parity anomaly matching

• S3 partition function

• Superconformal index (twisted partition function on S2×S1).

The lasts two tests are very powerful (one compares functions of
r + 1 variables, where r is the rank of the global symmetry
group). Sometimes one can prove equality of S3 partition
functions analytically (A.K., Willett, Yaakov, 2010, Willett,
Yaakov, 2011).
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3d analogs of KSS duality, I

KSS duality also appears to have 3d analogs (Niarchos, 2008,
A.K., Kim and Park, 2011). There are such analogs both with
and without Chern-Simons couplings. I will discuss the case
k 6= 0.

Electric theory: U(Nc)k theory with Nf fundamental flavors, an
adjoint X, and W = TrXn+1.

Magnetic theory: U(n(Nf + |k|)−Nc)−k theory with Nf

fundamental flavors, an adjoint Y and

W = TrY n+1 +

n∑

j=1

q̃Y n−jq Mj .
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3d analogs of KSS duality, II

This duality is supposed to hold for Nf and k such that TrXn+1

is a relevant perturbation. The condition for this is
RX < 2/(n+ 1).

RX as a function of Nf , Nc, k can be obtained in principle using
F-maximization (Jafferis, 2010). That is, one computes |Z(S3)|
in the W = 0 theory as a function of RX and RQ and minimizes
it with respect to these parameters.

This is easy to do numerically only for Nf = 0, when one does
not have RQ at all.
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3d analogs of KSS duality, III

We tested the 3d KSS duality by computing the S3 partition
function and superconformal index of dual theories.

For example, consider the "self-dual" case: electric U(2)1 theory
with Nf = 1, and W = TrX3. For both electric and magnetic
theory we got (here r = RQ):

r − 1/3 -0.3 -0.2 -0.1 0
log |Z| -0.423782 -1.66927 -1.94454 -1.91804

r − 1/3 0.1 0.2 0.3
log |Z| -1.73155 -1.45191 -1.12236

Index I(x) = Tr (−1)FxE+j3 exp(−β(E −R− j3)):

I(x) = 1+x2/3+x4/3+x2r(1+2x2/3+x4/3)+x−2r(−x8/3−x10/3)+x4r+. . .
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3d analogs of KSS duality, IV

• Setting Nf = 0, we already get an interesting statement:
U(Nc)k theory with an adjoint and W = TrXn+1 is dual to
U(n|k| −Nc)−k theory with an adjoint and W = TrY n+1.

• If in addition Nc > n|k|, the magnetic rank is negative. We
interpret this as a sign that the electric theory breaks SUSY.

• If Nc = n|k|, the magnetic theory is trivial, so the electric
theory must flow to a trivial fixed point.

How is all this compatible with the chiral rings of electric and
magnetic theories? They seem to be spanned by TrXj and
TrY j , but the range over which j runs is not the same.

This is again the issue of nonperturbative relations in the chiral
ring.
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Chiral ring truncation

Some insight is gained by considering the superconformal index.

Take U(2)1 with an adjoint X and W = TrX3. The magnetic
gauge group is U(0), so the theory must be trivial.

Classically, the electric chiral ring has a single generator
v = TrX and a single relation v3 = 0. The magnetic chiral ring is
trivial.

The indices agree (I = 1), because the contribution of v (∼ x2/3)
is canceled by a monopole operator with magnetic charge
(1,−1).

Thus at strong coupling TrX is either not closed or becomes
exact, thanks to the presence of a monopole operator.
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Duality without the superpotential, I

For k = 1 and Nf = 0 we can do better: we can find the dual
description of the theory with W = 0, and explain the chiral ring
truncation in terms of this dual description.

Consider U(Nc)1 theory with an adjoint X, but now with W = 0.

Chiral ring is freely generated by ui = TrXi, i = 1, . . . , Nc. The
VEVs of ui parameterize the moduli space.

Along the moduli space the gauge group is Higgsed to
(U(1)1)

Nc , which is a trivial TQFT.

Conjecture: this theory is dual to a free theory of Nc chiral
superfields u1, . . . , uNc

.
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Duality without the superpotential, II

We tested this by computing the S3 partition function (as a
function of r = RX ) and the index, and found perfect agreement.

For example, for Nc = 3 we got for both theories:

r 0.2 0.3 0.4 0.5 0.6
log |Z| -0.613634 -0.635679 -0.318126 0.000000 -0.163086

The partition function is hard to compute for higher Nc, the index
is easier.
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Relation with Jafferis-Yin duality

For Nc = 2 this duality is almost the same as the "Duality
Appetizer" (Jafferis, Yin, 2010). They proposed that SU(2)1
theory with an adjoint and W = 0 is dual to a single free chiral
superfield u2.

The S3 partition functions differ by a factor 1/
√
2. They proposed

that this factor can be attributed to a decoupled U(1)2 CS theory
on the “magnetic" side. This agrees with the low-energy
behavior along the moduli space (Higgsing SU(2)1 by an adjoint
VEV gives U(1)2 CS theory).

Alternatively, we can move this factor to the electric side and
interpret it as coming from U(1)1/2 CS theory. This makes sense
because U(1)1/2 × SU(2)1 = U(2)1.

For higher Nc we get a generalization of the "Duality Appetizer".
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Chiral ring truncation revisited, I

Now we can see why for W = TrXn+1 additional relations in the
chiral ring appear on the quantum level (at least for Nf = 0 and
k = 1).

Consider again U(2)1 with an adjoint X and W = 0. The chiral
ring is freely generated by v = TrX and u = Tr X2.

Example 1.
W = TrX4. The magnetic gauge group is U(1)−1, the magnetic
chiral ring is generated by v = Y with a relation Y 3 = 0.

In the electric theory the classical chiral ring has two generators
v = TrX and u = Tr X2 and relations u2 = uv2, v3 = 3uv.

Now note that TrX4 = u2/2 + uv2 − v4/2, so if we treat u and v

as free, we get an F-term relation u = −v2. Then classical
relations become v4 = 0 and v3 = 0.
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Chiral ring truncation revisited, II

Example 2.
W = TrX3. The magnetic theory is trivial. In the electric theory
the classical chiral ring has a single generator v with a relation
v3 = 0 (we have u = 0 thanks to the superpotential).

Now note that TrX3 = 3uv/2− v3/2, so if u, v are regarded as
free, we get F-term relations u = v2, v = 0. So the quantum
chiral ring is trivial, as predicted by duality.
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Generalizations I

The 3d KSS duality with Chern-Simons terms has analogs for
other gauge groups and matter representations.

• O(Nc)k theory with Nf fundamentals, an adjoint X and a
superpotential W = TrX2n+2.

• USp(2Nc)k theory with 2Nf fundamentals, an adjoint X and
a superpotential W = TrX2n+2.

• O(Nc)k theory with Nf fundamentals, a symmetric traceless
X and a superpotential W = TrXn+1.

• USp(2Nc)k theory with 2Nf fundamentals, an antisymmetric
traceless X and a superpotential W = Tr (XJ)n+1.

• U(Nc)k theory with Nf fundamentals, a symmetric or
antisymmetric tensor flavor Xij , X̃ij , and a superpotential
W = Tr(XX̃)n+1.
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Generalizations II

All these dualities are very similar to 4d dualities found by
Intriligator, Leigh and Strassler. We tested them by computing
Z(S3) and the index for many dual pairs.

Is there is a dual description of the electric theories with the
superpotential turned off, similar to the generalized Jafferis-Yin
duality for U(Nc)1 theories with an adjoint?

We found two more classes of theories for which this works.
• SO(2Nc + 2)1 theory with an adjoint and W = 0 is dual to

the theory of Nc + 1 free fields σ2j , j = 1, . . . , Nc and p (dual
to TrX2j and PfX)

• USp(2Nc)2 theory with an antisymmetric tensor X and
W = 0 is dual to the theory of Nc free fields σj , j = 1, . . . , Nc

(dual to Tr (XJ)j).
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Generalizations III

These dualities are plausible because along the moduli space
both theories reduce to trivial TQFTs (U(1)1)

Nc+1 or (SU(2)2)
Nc

plus moduli.

We tested these dualities for several low values of Nc by
computing Z(S3) and the index.

For other gauge groups and matter representations this does
not work. For example, USp(2Nc)k theory with an adjoint is not
dual to a free theory, for any k, because the TQFT along the
moduli space (U(1)2k)

Nc is not trivial for all k ∈ Z.
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