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What are N=2 4d quiver theories?

nodes - gauge groups
arrows - bifundamentals



What are asymptotically free or conformal N=2 
quivers? 

for i-th node beta-function is 

βi ∼ 2Ni −
�

links ij

Nj

βi = aijNj

aii = 2, aij = −number of arrows ij

matrix (aij) is generalized Cartan matrix 

beta non-negative => matrix (a) is of Fin or Aff ADE type
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Theorem 1 (McKay 1980). Let G be a non-trivial finite subgroup of SU(2). Then, the McKay quiver of

SU(2) is an affine simply laced Dynkin diagram.

Before sketching the proof, we exhibit each case of this correspondence explicitly in Table 1.

Table 1. The explicit form of the McKay correspondence.

Finite subgroup of SU(2) Affine simply laced Dynkin diagram

Z/nZ �x | xn = 1� �An−1

1 1 1 1 1 1 1

1

BD2n �x, y, z | x2 = y2 = yn = xyz� �Dn−2

1 2 2 2
2

1

1

1

BT �x, y, z | x2 = y3 = z3 = xyz� �E6

1
2

2
3

2 1

1

BO �x, y, z | x2 = y3 = z4 = xyz� �E7

2

2

3
4

3 2 11

BD �x, y, z | x2 = y3 = z5 = xyz� �E8

2

3

4
6

5 4 3 2 1

3. Proof of the correspondence

We give here a proof intended to minimize the number of necessary prerequisites, but we note that

there are other “deeper” proofs possible. Of course, it is also possible to give a proof based on case-by-case

verification (which is how this correspondence was first discovered), but we would like to give a more uniform

interpretation.

Proof of Theorem 1. We will slowly obtain more and more combinatorial properties of the McKay quiver G
until the affine simply laced Dynkin diagrams pop out as the only graphs satisfying these properties.

Claim 1: The McKay quiver of any G is an undirected graph, that is, mij = mji. For this, let χi be the

character of the representation Vi, and notice that

mij = �χi,χV χj� =
1

|G|
�

g∈G

χi(g)χV (g)χj(g) =
1

|G|
�

g∈G

χi(g)χV (g)χj(g) = �χiχV ,χj� = mji,

where we note that χV is real because each element of SU(2) has real trace.

Claim 2: The McKay quiver is connected. This follows from the fact that every irreducible representation

of G is contained in some tensor power of the faithful representation V .

Claim 3: The McKay quiver has no self-loops, that is, mii = 0. For this, observe that

mii = �χV χi,χi� =
1

|G|
�

g∈G

χV (g)|χi(g)|2.

If G has even order, then it contains the element −1 ∈ SU(2), so multiplication by −1 defines an involution

on G with χV (g) = −χV (−g); hence we have

2mii =
1

|G|
�

g∈G

χV (g)(|χi(g)|2 − |χi(−g)|2) = 0.

(3) (E6) Binary Tetrahedral group BT describing spinor lift of sym-

metries of tetrahedron |BT | = 24, generated by

σ =

�
i 0

0 −i

�
τ =

�
0 1

−1 0

�
µ =

1√
2

�
ε7 ε7

ε5 ε

�
ε = e

2πi
8

(3.123)

(4) (E7) Binary Octahedral group BO describing spinor lift of sym-

metries of cube/octahedron |BO| = 48, generated by σ, µ, τ and

κ =

�
ε 0

0 ε7

�
(3.124)

(5) (E8) Binary Icosahedral group BI describing spinor lift of sym-

metries of icosahedron/dodecahedron |BI| = 120, generated by

σ =

�
−ε3 0

0 −ε2

�
1√
5

�
−ε+ ε4 ε2 − ε3

ε2 − ε3 ε− ε4

�
ε = e

2πi
5 (3.125)

3.12. McKay correspondence. Let G ⊂ SU(2) be a discrete sub-

group. Let V = C2 be the G-module defined by the embedding

G ⊂ SU(2). Let Vi be i-th irreducible representation of G. Consider



We want to compute the partition function

Z =

�
[DA . . . ]e−S[A,... ]

by direct evaluation of the 4d path integral
and see how SW geometry appears

 

Witten’97 (M-theory): A quivers
KMV’97 (geom. eng & top strings): all ADE quivers 

Of course, the prepotential F is known from



but it still might be useful to solve the problem
 in another way

Losev, Moore, Nekrasov, Shatashvilli’97: 
developed equivariant integration over 4d instantons moduli spaces

Zk =

�

Mk

µ = finite contour integral

Nekrasov’02

Z =
∞�

k=0

Zkq
k

claimed: Z = e−
1

�1�2
FSW as �1, �2 → 0

Nekrasov, Okounkov’ 02  proved (for SU(N)) 

Shadchin’05:  SU(N)xSU(N)





T
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TGxTL fixed points for G = П SU(Ni)
are rank 1 torsion free sheaves

point U(1) instantantos 

           ideals in C[[z1, z2]]









for empty partition

for non-empty partition and fundamental 
representation just subtract missing sections



for adjoint representation



,{ }
i runs over boxes 

for colored partition



Now convert Chern character
 to Euler character Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)

1

That is the integral transform

Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)|s=0

1



Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)|s=0

eu(vect) = exp

�
− d

ds
Γ(s)−1

� ∞

0

dt ts−1 EtE−t

(1− e−�1t)(1− e−�2t)

�

where
Et = Wt − (1− e−�1t)(1− e−�2t)V (0.2)

1

Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)|s=0

eu(vect) = exp

�
− d

ds
Γ(s)−1

� ∞

0

dt ts−1 EtE−t

(1− e−�1t)(1− e−�2t)

�

where
Et = Wt − (1− e−�1t)(1− e−�2t)V (0.2)

γ2(x|�1, �2) =
d

ds
Γ(s)−1

� ∞

0

dt ts−1 e−tx

(1− e−t�1)(1− e−t�2)
(0.3)

1

in terms of the 2-gamma function

and the Chern root densities 

Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)|s=0

eu(vect) = exp

�
− d

ds
Γ(s)−1

� ∞

0

dt ts−1 EtE−t

(1− e−�1t)(1− e−�2t)

�

where
Et = Wt − (1− e−�1t)(1− e−�2t)V (0.2)

γ2(x|�1, �2) =
d

ds
Γ(s)−1

� ∞

0

dt ts−1 e−tx

(1− e−t�1)(1− e−t�2)
(0.3)

Et =

�
ρ(x)e−txdx (0.4)

1

we get 

Z =

�

A/G
(0.1)

chM =
�

eiwi

cht M =
�

etwi

euM =
�

wi
� ∞

0

dt ts−1e−tw = Γ(s)w−s

euM = exp(− d

ds
Γ(s)−1

� ∞

0

dt ts−1 chM)|s=0

eu(vect) = exp

�
− d

ds
Γ(s)−1

� ∞

0

dt ts−1 EtE−t

(1− e−�1t)(1− e−�2t)

�

where
Et = Wt − (1− e−�1t)(1− e−�2t)V (0.2)

γ2(x|�1, �2) =
d

ds
Γ(s)−1

� ∞

0

dt ts−1 e−tx

(1− e−t�1)(1− e−t�2)
(0.3)

Et =

�
ρ(x)e−txdx (0.4)

eu(vect) = exp(−
�

dx dx� ρ(x)γ2(x− x�)ρ(x�)) (0.5)

1













Like 2d electrons restricted to intervals, 
(matrix model eigenvalues, etc)







Cut crossing are isomorphic 
to simple reflections generating quiver Weyl group

Consider Weyl invariant functions of h(ρ̂)
We take characters of irreps with heighest weight Λi







(on this page G denotes quiver group)

L̂(G)


