Instanton calculus in quiver gauge theories

Vasily Pestun \&
Nikita Nekrasov

Princeton, Nov 12, 2011

What are $N=2$ 4d quiver theories?

nodes - gauge groups arrows - bifundamentals

What are asymptotically free or conformal $\mathrm{N}=2$ quivers?
for i -th node beta-function is

$$
\begin{aligned}
& \qquad \beta_{i} \sim 2 N_{i}-\sum_{\text {links } i j} N_{j} \\
& \qquad a_{i i}=2, \quad a_{i j}=- \text { number of arrows } \mathrm{ij} \\
& \text { matrix }\left(a_{i j}\right) \text { is generalized Cartan matrix }
\end{aligned}
$$

$$
\beta_{i}=a_{i j} N_{j}
$$

beta non-negative \Rightarrow matrix (a) is of Fin or Aff ADE type

Finite subgroup of $S U(2)$		Affine simply laced Dynkin diagram	
$\mathbb{Z} / n \mathbb{Z}$	$\left\langle x \mid x^{n}=1\right\rangle$	\widetilde{A}_{n-1}	
$\mathbb{B} D_{2 n}$	$\left\langle x, y, z \mid x^{2}=y^{2}=y^{n}=x y z\right\rangle$	\widetilde{D}_{n-2}	
$\mathbb{B T}$	$\left\langle x, y, z \mid x^{2}=y^{3}=z^{3}=x y z\right\rangle$	\widetilde{E}_{6}	
$\mathbb{B}(1)$	$\left\langle x, y, z \mid x^{2}=y^{3}=z^{4}=x y z\right\rangle$	\widetilde{E}_{7}	
$\mathbb{B D}$	$\left\langle x, y, z \mid x^{2}=y^{3}=z^{5}=x y z\right\rangle$	\widetilde{E}_{8}	

We want to compute the partition function

$$
Z=\int[D A \ldots] e^{-S[A, \ldots]}
$$

by direct evaluation of the 4d path integral and see how SW geometry appears

Of course, the prepotential F is known from Witten'97 (M-theory): A quivers
KMV'97 (geom. eng \& top strings): all ADE quivers

but it still might be useful to solve the problem in another way

Losev, Moore, Nekrasov, Shatashvilli'97:
developed equivariant integration over 4d instantons moduli spaces

$$
\begin{aligned}
Z_{k}=\int_{\mathcal{M}_{k}} \mu & =\text { finite contour integral } \\
Z & =\sum_{k=0}^{\infty} Z_{k} q^{k}
\end{aligned}
$$

Nekrasov'02 claimed: $\quad Z=e^{-\frac{1}{\epsilon_{1} \epsilon_{2}} \mathcal{F}_{S W}}$ as $\epsilon_{1}, \epsilon_{2} \rightarrow 0$
Nekrasov, Okounkov' 02 proved (for $\operatorname{SU}(\mathrm{N})$)
Shadchin'05: $S U(N) \times S U(N)$

$$
\begin{aligned}
& \left.Z_{\Omega}=\int_{A / G} e^{-S_{c l}} e u_{T}\left(\Omega^{2+} \otimes \operatorname{od} \varepsilon\right)\right)\left._{\substack{M T \\
F_{F}^{+}=0}}^{e u^{-}\left(\left(S^{-} \otimes S^{+}\right) \otimes R\right)}\right|_{\left.\right|_{\phi u=0} ^{M Q}} \\
& \int_{M} \alpha=\int_{F} \frac{i_{F} \alpha}{e u N_{F}}
\end{aligned}
$$

SD: $\Omega^{2} \xrightarrow{d} \Omega^{\prime} \xrightarrow{d^{+}} \Omega^{2+}$ vector
$D: S^{-} \xrightarrow{D} S^{+} \quad$ hyper

$$
\begin{array}{r}
Z_{\Omega}=\sum_{\substack{\text { fixed } \\
\text { points } \lambda}} e^{-S_{\lambda}} e_{u_{T}}(S D \text { oadg) eu }(X \otimes R) \\
R-\text { rep of } G \text { for hyper } \\
T=T_{G} \times T_{F} \times T_{L}
\end{array}
$$

$T_{G} \times T_{L}$ fixed points for $G=\Pi S U\left(N_{i}\right)$

 are rank 1 torsion free sheavespoint $U(1)$ instantantos
ideals in $\mathbb{\imath}\left[\left[z_{1}, z_{2}\right]\right]$

Tl action:

$$
\begin{aligned}
& 1 L \quad t_{1}=e^{i \varepsilon_{1}} \\
& z_{1} \rightarrow t_{1}^{-1} z_{1} \quad z_{2} \rightarrow t_{2}^{-1} z_{2} \quad t_{2}=e^{i \varepsilon_{2}} \\
& c z_{T} \theta=\sum_{n_{1}, n_{2} \rightarrow 1} t_{1}^{n_{1}} t_{2}^{n_{2}}=\frac{1}{\left(1-t_{1}\right)\left(1-t_{2}\right)} \\
& c_{T} I_{\lambda}=V_{\lambda}
\end{aligned}
$$

$$
\begin{aligned}
& S^{-}-S^{+}=-K^{V_{2}} \otimes\left(\Omega^{\left.0^{0} \rightarrow \Omega^{\circ} \rightarrow \Omega^{0,} \rightarrow \Omega^{0,2}\right)}\right. \\
& \Omega^{0} \xrightarrow{d} \Omega^{\prime} \xrightarrow{d^{+}} \Omega^{2+}=\frac{1}{2}(1+K) \otimes\left(\Omega^{0, ~} \rightarrow \Omega^{0^{0,} \rightarrow} \rightarrow \Omega^{\Omega^{2}}\right) \\
& O=\Omega^{0,0} \rightarrow \Omega^{0,1} \xrightarrow{\delta} \Omega^{0,2}
\end{aligned}
$$

for empty partition

$$
c_{T}\left(S^{-}-S^{+}\right)=-\frac{t_{1}^{1 / 2} t_{2}^{1 / 2}}{\left(1-t_{1}\right)\left(1-t_{2}\right)}
$$

for non-empty partition and fundamental representation just subtract missing sections

$$
c h_{T}\left(s^{-}-s^{+}\right) \otimes W=-t_{1}^{1 / 2} t_{2}^{1 / 2}\left(\frac{W}{\left(1-t_{1}\right)\left(1-t_{2}\right)}-V_{\lambda}\right)
$$

for adjoint representation

$$
\begin{aligned}
& \operatorname{ch}_{T}\left(H^{\prime}(\operatorname{ad} w)\right)=\operatorname{ch}\left(\theta_{\lambda}(w) \otimes \theta_{\lambda}^{*}(w)\right)= \\
& =\frac{\operatorname{ch} \theta_{\lambda}(w) \operatorname{ch} \theta_{\lambda}^{*}(w)}{\operatorname{ch} \theta}= \\
& \left.=\frac{\varepsilon \varepsilon^{*}}{\left(1-h_{1}\right)\left(1-t_{2}\right)}, \quad \varepsilon=w-\left(1-t_{1}\right)\left(1-t_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& W=\sum_{\alpha=1}^{N} e^{i a_{\alpha}} \\
& V=\sum_{i=1}^{k} e^{i \phi_{i}}
\end{aligned}
$$

for colored partition $\xrightarrow{\rightarrow}=\left(\lambda_{\alpha}\right)=\left(\lambda_{1}, \ldots \lambda_{N}\right)$
i runs over boxes $\Phi_{i}=a_{\alpha(i)}-\left(n_{1}(i)-1\right) \epsilon_{1}-\left(n_{2}(i)-1\right) \varepsilon_{2}$

Now convert Chern character to Euler character

$$
\begin{aligned}
\operatorname{ch} M & =\sum e^{i w_{i}} \\
\operatorname{ch}_{t} M & =\sum e^{t w_{i}} \\
\text { eu } M & =\prod w_{i}
\end{aligned}
$$

That is the integral transform

$$
\int_{0}^{\infty} d t t^{s-1} e^{-t w}=\Gamma(s) w^{-s}
$$

$$
\text { eu } M=\left.\exp \left(-\frac{d}{d s} \Gamma(s)^{-1} \int_{0}^{\infty} d t t^{s-1} \operatorname{ch} M\right)\right|_{s=0}
$$

$$
\mathrm{eu}(\text { vect })=\exp \left(-\frac{d}{d s} \Gamma(s)^{-1} \int_{0}^{\infty} d t t^{s-1} \frac{E_{t} E_{-t}}{\left(1-e^{-\epsilon_{1} t}\right)\left(1-e^{-\epsilon_{2} t}\right)}\right)
$$

where

$$
E_{t}=W_{t}-\left(1-e^{-\epsilon_{1} t}\right)\left(1-e^{-\epsilon_{2} t}\right) V
$$

in terms of the 2-gamma function

$$
\gamma_{2}\left(x \mid \epsilon_{1}, \epsilon_{2}\right)=\frac{d}{d s} \Gamma(s)^{-1} \int_{0}^{\infty} d t t^{s-1} \frac{e^{-t x}}{\left(1-e^{-t \epsilon_{1}}\right)\left(1-e^{-t \epsilon_{2}}\right)}
$$

and the Chern root densities
we get

$$
E_{t}=\int \rho(x) e^{-t x} d x
$$

$$
\mathrm{eu}(\text { vect })=\exp \left(-\int d x d x^{\prime} \rho(x) \gamma_{2}\left(x-x^{\prime}\right) \rho\left(x^{\prime}\right)\right)
$$

densities $\rho(x)$:

$$
\begin{aligned}
\rho(x)=\Sigma \delta\left(x-a_{\alpha}\right)-\sum_{i}\left(\delta\left(x-\varphi_{i}\right)+\delta\left(x-\varphi_{i}+\epsilon_{1}+\epsilon_{2}\right)\right. \\
\left.-\delta\left(x-\varphi_{i}+\epsilon_{1}\right)-\delta\left(x-\varphi_{i}+\epsilon_{2}\right)\right)
\end{aligned}
$$

$$
\begin{aligned}
& \int_{I_{i \alpha}} \rho(x) d x=1 \\
& \int_{I_{i \alpha}} x \rho_{i}(x) d x=a_{i \alpha} \\
& \int x^{2} \rho_{i i}(x) d x=\sum_{\alpha} a_{i \alpha}^{2}-2 \epsilon_{1} \epsilon_{2} K_{i}
\end{aligned}
$$

each bifund contributes:

$$
\int \rho_{i}(x) X_{2}\left(x+M_{i j}-x^{\prime}\right) \rho_{j}\left(x^{\prime}\right) d x d x^{\prime}
$$

assume we can find $M_{i} \mid M_{i j}=M_{i}-M_{j}$
(no cycles or $\sum M_{i j}=0$)

$$
\tilde{\rho}(x)=\rho\left(x-M_{i}\right)
$$

In $\tilde{\rho}^{(x)}$

$$
\begin{aligned}
& \text { In } \tilde{\rho}(x) \\
& Z=\sum_{\substack{\text { fixed } \\
\text { point }}} e^{\frac{1}{\varepsilon_{1} \varepsilon_{2}} \varepsilon[\tilde{\rho}(x)]} \\
& \varepsilon[\tilde{\rho}(x)]=\frac{1}{2} \int d x \tilde{\rho}_{i}(x) k\left(x-x^{\prime}\right) a_{i j} \tilde{\rho}_{j}\left(x^{\prime}\right) d x^{\prime} \\
& \varepsilon \rightarrow \min ^{\varepsilon} \quad-\frac{1}{2} \log q_{i} \int \tilde{\rho}(x)\left(x-\mu_{i}\right)^{2} d x \\
& \quad \rho(x) d x=1
\end{aligned}
$$

w) constraints

$$
\begin{aligned}
& \int_{\tilde{T}_{i j}} \rho(x) d x=1 \\
& \int_{\tilde{S}_{i \alpha}} x \rho(x) d x=C l_{i \alpha}-M_{i}
\end{aligned}
$$

Kernel $K(x)=\frac{x^{2}}{2} \log \left(x-\frac{3}{2}\right)$

$$
\begin{aligned}
& k^{\prime}(x)=x(\log x-1) \\
& K^{\prime \prime}(x)=\log x
\end{aligned}
$$

crit. points of $\mathcal{E}[\tilde{\rho}]$:

$$
\int d x^{\prime} k\left(x-x^{\prime}\right) a_{i j} \tilde{\rho}_{j}\left(x^{\prime}\right)=\log q_{i}, x \in \operatorname{supp} \tilde{\rho}_{i}
$$

supp S

Like id electrons restricted to intervals, (matrix model eigenvalues, etc)

$$
\hat{\rho}_{i}(x)=\int_{\operatorname{supp} \tilde{\rho}} d x^{\prime} \log \left(x-x^{\prime}\right) \tilde{\rho}_{i}\left(x^{\prime}\right)
$$

$\hat{\rho}_{i}(x)$ analytic function

$$
\begin{aligned}
& \hat{\rho}_{i}(x) \quad \text { analytic function } \\
& \quad \text { on } \mathbb{C} \backslash \operatorname{supp} \tilde{\rho} \\
& x \rightarrow \infty \quad \hat{\rho}_{i}(x) \sim N_{i} \log (x)
\end{aligned}
$$

$$
\begin{aligned}
& \hat{\rho}_{i}(x)=\int \log \left(x-x^{\prime}\right) \tilde{\rho}_{i}\left(x^{\prime}\right) \\
& \frac{\hat{\rho}_{i}(x)}{\hat{\rho}_{i}^{(+)}} \quad \text { halo on } \mathbb{C} \operatorname{supp} \tilde{\rho}_{i} \\
& \hat{\rho}_{i}(x) \sim x^{N_{i}}, x \rightarrow \infty
\end{aligned}
$$

crit. point equations $\Rightarrow \begin{gathered}\text { cut crossing } \\ \text { equation }\end{gathered}$ equation

$$
\hat{\rho}_{i}^{(-)}=\hat{\rho}_{i}^{(t)}-\operatorname{aij}_{i j} \hat{\rho}_{j}+\log q_{i}
$$

Quiver ADE Weyl reflections!
$h \in$ Cartan of quiver ADE Liealg
Let $h=\sum \hat{\rho}_{i} \alpha_{i}^{V}-\sum \log q_{i} \Lambda_{i}^{V}$

$$
\alpha_{i}^{v} \text { - coroots }
$$

Λ_{i} - fund. coweights

$$
\left\langle\Lambda_{i}^{v}, \alpha_{j}\right\rangle=\delta_{i j}
$$

Li reflection:

$$
\begin{aligned}
& \text { Flection: } \alpha_{i}^{2}\left\langle\alpha_{i} h\right\rangle \\
& h \rightarrow h-\hat{\rho}_{i} \hat{\rho}_{i}-a_{i j} \hat{\rho}_{j}+\log q_{i}
\end{aligned}
$$

Cut crossing are isomorphic to simple reflections generating quiver Weyl group

Consider Weyl invariant functions of $h(\hat{\rho})$
We take characters of irreps with heighest weight Λ_{i}

$$
x_{i}(\hat{\rho})=\operatorname{tr}_{\Lambda_{i}} e^{h(\hat{\rho})}
$$

as $x \rightarrow \infty \quad\left\langle\Lambda_{i}, \hat{\rho} \hat{\alpha}_{j}^{*}-\log 9 j \Lambda_{j}^{v}\right\rangle$

$$
\begin{aligned}
x_{i}(\hat{\rho}) & =e^{N_{j}} \sqcap x_{j}^{-\left\langle\Lambda_{i}, N_{j}\right\rangle} \simeq \\
& \simeq x^{5},
\end{aligned}
$$

$X_{i}(\hat{\rho}(x))$ are bounded hold fun on \mathbb{P} $\Rightarrow x_{i}(\hat{\rho}(x))$ are polynoms of $\operatorname{deg} N_{j}$

Finally $\begin{aligned} & 0-0-0^{2} \\ & 24 \\ & 24 \\ & 5\end{aligned}$
$\hat{g}_{i}(x)$ are determined by system of n equations

$$
\begin{aligned}
& \left\{\operatorname{tr}_{\Lambda_{i}} e^{\alpha_{i} \hat{\rho}_{i}-\Lambda_{i}^{v} \log g_{i}}=P_{i}(x)\right\} \\
& P_{i}(x)=\Pi q_{j}^{\left\langle-\Lambda_{i}, N_{j}^{i}\right\rangle} x^{N_{i}}+\ldots . \\
& \sum N_{i} \text { chefs of } P_{i} \leftrightarrow \sum N_{i} \text { Coloumb } \\
& \text { moduli } a_{i \alpha}
\end{aligned}
$$

(on this page G denotes quiver group)
Aff (G) $\left\{x_{i}\right\}=$ conj. class of Kac-Moody loop group $\hat{\mathcal{L}}(G)$

elliptic modulus $Q=e^{-\delta(h)}=\prod_{i} q_{i}$

(in $\widetilde{A}_{n} \cdot n$ points on dual curve)

