Moduli Stabilization in Stringy ISS Models

Masahito YAMAZAKI

Department of Physics, the University of Tokyo, Hongo

Based on arXiv:0710.0001[hep-th] In collaboration with Yu Nakayama and T.T. Yanagida

2007/Dec/08 @ OCU

Introduction and motivation

 ISS model [Intriligator-Seiberg-Shih '06]: metastable dynamical SUSY breaking;

We want to construct ISS models from string theory!

We want to construct ISS models from string theory!

• Already many works? [Ooguri-Ookouchi, Franco-Uranga,...]

We want to construct ISS models from string theory!

- Already many works? [Ooguri-Ookouchi, Franco-Uranga,...]
- But all these works are in the global SUSY limit (non-compact CY), in which gravity decouples and parameters given by hand.

We want to construct ISS models from string theory!

- Already many works? [Ooguri-Ookouchi, Franco-Uranga,...]
- But all these works are in the global SUSY limit (non-compact CY), in which gravity decouples and parameters given by hand.

The goal of this talk

We want to solve moduli stabilization problem in ISS model (especially mass moduli). We consider compact CY, and gravity does not decouple.

The need for moduli stabilization

• SUSY broken with potential

$$|V|_{\rm ISS \ vac.} = N_c |m|^2 |\Lambda|^2$$

where m is the mass parameter, Λ is the dynamical scale of electric theory, N_c is the number of colors in electric theory.

The need for moduli stabilization

• SUSY broken with potential

$$\mathsf{V}|_{\mathrm{ISS \ vac.}} = \mathsf{N_c}|
ho|^2|\mathsf{A}|^2 \propto
ho^2$$

where m is the mass parameter, Λ is the dynamical scale of electric theory, N_c is the number of colors in electric theory.

If m becomes dynamical variable ρ, then ρ = 0 and SUSY restored!.
 We need some extra ingredient to stabilize ρ.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

The need for moduli stabilization

• SUSY broken with potential

$$\mathsf{V}|_{\mathrm{ISS \ vac.}} = \mathsf{N_c}|
ho|^2|\mathsf{A}|^2 \propto
ho^2$$

where m is the mass parameter, Λ is the dynamical scale of electric theory, N_c is the number of colors in electric theory.

If m becomes dynamical variable ρ, then ρ = 0 and SUSY restored!.
 We need some extra ingredient to stabilize ρ.

Solution: gauge anomalous $\mathrm{U}(1)_{\mathsf{D}}$ and use its D-term

Charge Assignment of $\mathrm{U}(1)_{D}$							
	ρ	$arphi,ar{arphi}$	Μ	$\mathbf{q}, \mathbf{ar{q}}$	$\Lambda^{3N_c-2N_f}$	$\tilde{\Lambda}^{2N_{f}-3N_{c}}$	
	-2	+1	+2	-1	2N _f	$-2N_{f}$	

◆□▶ ◆□▶ ◆目▶ ◆目▶ 目 のへで

arphi, ar arphi: electric quarks, $\mathbf{q}, ar \mathbf{q}$, magnetic quarks, M: mesons

However, this is not the end of the story!

However, this is not the end of the story!

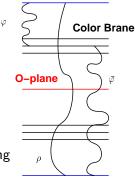
- $U(1)_D$ is anomalous
- ullet we need to stabilize FI parameter $m{\xi}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

However, this is not the end of the story!

 $\bullet~{\bf U}(1)_D$ is anomalous, but anomaly cancelled by 4d GS mechanism

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで


• FI parameter $\boldsymbol{\xi}$ is generated dynamically

 \Rightarrow These problems are solved at once quite naturally in string theory!

Explicit string theory setup

- Explicit construction from string theory provided using type IIB CY flux compactification with D7-branes and O7-plane
- Kähler potential is given by construction
- we discuss stabilization of τ, ρ, q, q̄, M using SUGRA potential. (τ: Kähler modulus)

Magnetized Brane

• Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_{\sf D}$ symmetry and its D-term potential

< 一型

- \bullet Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_{\sf D}$ symmetry and its D-term potential
- Construction from string theory provided

- \bullet Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_D$ symmetry and its D-term potential
- Construction from string theory provided
- Possible to obtain de Sitter vacua with vanishingly small cosmological constant by fine-tuning

- \bullet Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_{\sf D}$ symmetry and its D-term potential
- Construction from string theory provided
- Possible to obtain de Sitter vacua with vanishingly small cosmological constant by fine-tuning
- All non-compact moduli fixed (Goldstone mode still left as compact moduli)

- \bullet Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_{\sf D}$ symmetry and its D-term potential
- Construction from string theory provided
- Possible to obtain de Sitter vacua with vanishingly small cosmological constant by fine-tuning
- All non-compact moduli fixed (Goldstone mode still left as compact moduli)

Future Problems

• SUSY breaking scale ~ Planck scale unless significant fine tuning. [Nakayama-M.Y-Yanagida, work in progress]

- \bullet Moduli of ISS models stabilized by gauging of a anomalous ${\rm U}(1)_{\sf D}$ symmetry and its D-term potential
- Construction from string theory provided
- Possible to obtain de Sitter vacua with vanishingly small cosmological constant by fine-tuning
- All non-compact moduli fixed (Goldstone mode still left as compact moduli)

Future Problems

- SUSY breaking scale ~ Planck scale unless significant fine tuning. [Nakayama-M.Y-Yanagida, work in progress]
- Application to D-term gauge mediation [Nakayama-Taki-Watari-Yanagida '07] with very light gravitino (\sim 1eV)

Image: A matrix of the second seco