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What are we going to do?

Study of topological solitons: interplay of physics and mathematics

m infinite Grassmanian, Sato theory
m CFT techniques, free fermions; KdV, KP, Toda

m ADHM construction, Donaldson theory, Nekrasov's instanton
counting, Seiberg-Witten
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What are we going to do?

Study of topological solitons: interplay of physics and mathematics
m infinite Grassmanian, Sato theory
m CFT techniques, free fermions; KdV, KP, Toda

m ADHM construction, Donaldson theory, Nekrasov's instanton
counting, Seiberg-Witten

Our main claim today

New mathematical tools, called amoeba and tropical geometry,
are useful to study solitons!

We study 1/4 BPS vortex-instanton system in the Higgs phase 5d A/ = 1
U(N¢) SYM with N fundamental Higgs scalars.
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Solitons in the Higgs Phase

When Higgs fields get VEV, gauge symmetry is completely broken and we
are in a Higgs phase. Monopoles and instantons become composite in the
Higgs phase.

m Monopoles

magnetic flux are squeezed into \ /
vortices, and monopoles become N\~

tices (Meissner effect)

composite of monopoles and vor- /// \\\
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Solitons in the Higgs Phase

When Higgs fields get VEV, gauge symmetry is completely broken and we
are in a Higgs phase. Monopoles and instantons become composite in the

Higgs phase.

m Monopoles

magnetic flux are squeezed into
vortices, and monopoles become
composite of monopoles and vor-
tices (Meissner effect)

m Instantons
shrink to point, but can reside in
vortex (trapped instantons)
2
vortex-instanton system:
Today's talk

[
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\

vortex

instanton

2008 £ 4 A 23 H @ YITP 3/43



1/4 BPS solitons in the Higgs phase

m Many 1/4 BPS solitons in the Higgs phase of 8 SUSY non-Abelian
8-SUSY gauge theories found recently. Most of them are obtained
from solitons in 5d by (Scherk-Schwarz) dimensional reduction.
[Eto-Isozumi-Nitta-Ohashi-Sakai '05]

Example: (4+41)d (2+1)d
0 1 2 3 4/codim:2 0 1 3
/ .
vortex o o;/]/| - doma!n wall o o
vortex | o lo o - domainwall |o o
instanton | o ;I—COd'm:lHitchin charge | o

M. Yamazaki (Univ. Tokyo)

Intersecting Solitons...

2008 £ 4 A 23 H @ YITP 4/43



1/4 BPS solitons in the Higgs phase

m Many 1/4 BPS solitons in the Higgs phase of 8 SUSY non-Abelian
8-SUSY gauge theories found recently. Most of them are obtained
from solitons in 5d by (Scherk-Schwarz) dimensional reduction.
[Eto-Isozumi-Nitta-Ohashi-Sakai '05]

Example: (4+1)d (2+1)d
0 1 |2 4 0 1 3
vortex [ o o [of / N domainwall [ o o
vortex o / /6 domain wall o o
instanton | o L - Hitchin charge | o

Intersecting Solitons... 2008 £ 4 A 23 H @ YITP 4/43

M. Yamazaki (Univ. Tokyo)



1/4 BPS solitons in the Higgs phase

m Many 1/4 BPS solitons in the Higgs phase of 8 SUSY non-Abelian
8-SUSY gauge theories found recently. Most of them are obtained
from solitons in 5d by (Scherk-Schwarz) dimensional reduction.
[Eto-Isozumi-Nitta-Ohashi-Sakai '05]

Example: (4+1)d (2+1)d
0 1 (2/3 |4 0 1 3
vortex o o o/ / N domain wall o o
vortex o / o /6 domain wall o o
instanton | o L - Hitchin charge | o

m From this viewpoint, 5d soliton is the most important of these classes
of solitons, but so far almost no study has been carried out.

We study vortex-instanton system in the Higgs phase of 5d A/ =1 SYM. J
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Vortex-Instanton Systems
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Vortex-Instanton System in 5d Yang-Mills-Higgs

We consider vortex-instanton system on R%! x T2 ~ R, x (C*)2. Let
z1 = X1 +iy1, 22 = X2 + iy2 be complex coordinates of R2 x T2

1 2
£=tr (= s FuF + D, H(D"H)t — %(HHT ~clng)?|

(By adding H), this is the bosonic part of 5d N = 1 super Yang-Mills.
m W,: SU(Nc) gauge field, F,,,: field strength

mHA(r=1,--- ,Nc, A=1,--- ,Np(= N¢): Higgs fields
m g: gauge coupling,

m c: Fl parameter ¢ # 0: Higgs gets VEV and we are in the Higgs phase

M. Yamazaki (Univ. Tokyo)
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BPS inequality

By Bogomol'nyi completion, we have BPS inequality [Hanany-Tong,
Eto-Isozumi-Nitta-Ohashi-Sakai '04]:

two types of topological charges: instanton charge | and vortex charge V:

1
| = e 2/tr(F/\F) /chz,
Vv ——/trF/\w: /cl/\w.
27

where w = —(d21 A dz + dzy A dzy) is the Kahler form on ((C*)2
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Moduli Matrix Formalism

BPS equations
(a) . lezz = 0, (b) . DziH = 0,
(€): —2i(Fzz, + Fapz,) = & (HHT — cly,),

m From (a), 3N¢ X N¢ matrix valued function
S(zi,Z) € U(Nc)® = GL(Ng, C) such that

W;, = —iS718;S.

m Defining an N¢ X N matrix

(b) reduces to

or Hp is holomorphic.
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m From (c), Q = SST satisfies “master equation”:

g’c
0, (20, 27") + 05,(Q0,927") = ==~ (1Nc - 909—1) ,

where we have defined

LTI
QQ = _HOH()-
C

Note: we have “gauge symmetry”, which we call “V-transformation”,
defined by

(Ho, S) — (VHy, VS), V(z) € GL(Nc¢, C).

Existence and uniqueness (modulo V-transformation) of solutions is known
for arbitrary Kahler manifolds
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Moduli matrix formalism [Eto-Isozumi-Nitta-Ohashi-Sakai]

Ho(z): given, Qo = %HOHS
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Moduli matrix formalism [Eto-Isozumi-Nitta-Ohashi-Sakai]

Ho(z): given, Qo = %HOHS
U

Solve 8, (28,,27) + 8;,(28,,271) = —5< (1n, — Q1)
to obtain Q = SSt.
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Moduli matrix formalism [Eto-Isozumi-Nitta-Ohashi-Sakai]

Ho(z): given, Qo = %HOHS
U
2
Solve 8;,(8,,271) + 85,(29,,271!) = —& (Ine — QOQ_I)
to obtain Q = SST.
!
W;, and H determined by W5, = —iS™18;S, H = S"'H,
modulo gauge equivalence.

We can use Hg (“moduli matrix”) to parametrize moduli space, although
it is difficult to solve master equation explicitly.
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Moduli matrix formalism [Eto-Isozumi-Nitta-Ohashi-Sakai]

Ho(z): given, Qo = %HOHS
!
2
Solve 8;,(8,,271) + 85,(29,,271!) = —& (Ine — QOQ_I)
to obtain Q = SST.
!
W;, and H determined by W5, = —iS™18;S, H = S"'H,
modulo gauge equivalence.

We can use Hg (“moduli matrix”) to parametrize moduli space, although
it is difficult to solve master equation explicitly.

m Note: In the strong gauge coupling limit g — oo, we have explicit
solution: Q = Qy = %HOHS, except for subtlety around Hg = 0 (to
be used later)
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So far, we have explained general formalism, but we do not have a clear
physical picture....

m shape of vortex?

m distribution of instanton charge?

m What happens in dimensional reduction ((4+1)d — (2+1)d)?
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Relation with Amoeba and Tropical Geometry

m Vortex Sheet and Amoeba
m Dimensional Reduction and Tropical Geometry

m Topological Charges
m Metric on Moduli Space
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We have composite solitons of vortices and instantons. Let us first
concentrate on vortices.

Where is the vortex? How does it look like?
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m When det Ho(z1,22) = 0, gauge symmetry is partially restored and
thus this surface is the position of vortex (" vortex sheet”). From
periodicity on T2,

P(u1,uz) = det Ho(z1,22) = Z any,n, U7 UL,
(nl,ng)EZZ

with u; = efi (recall periodicity in T2 z; ~ 7 + 27/ —1Ry).
Still difficult to visualize.....
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m When det Ho(z1,22) = 0, gauge symmetry is partially restored and
thus this surface is the position of vortex (" vortex sheet”). From
periodicity on T2,

P(u1,uz) = det Ho(z1,22) = Z any,n, U7 UL,
(nl,ng)EZZ

with u; = efi (recall periodicity in T2 z; ~ 7 + 27/ —1Ry).
Still difficult to visualize.....

m Consider the projection of vortex sheet (amoeba) onto two
non-compact directions:

Ap = { (Rulog|ui|, Rzlog[uz]) € B | Pus,uz) = 0}

Note here that Ry log |ui| = x1 and Rz log |uz| = x2.
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Define “Newton polytope” (a.k.a grid diagram) A(P) C R2? of a Laurent
polynomial P(uy, uz) by

A(P) = conv. hull {(nl, ny) € Zz’ any,n, 7 0} .

Conversely, P(u1,uz) is called the Newton polynomial of A,

Newton polytope amoeba

P(u1, u2) = ag,0 + a1,0u1 + az,ou? + azoud + ag1uz + ag,1uruz +
2 2 2 22
azjujuz + a3,1U?U2 + ag,2uj + ajpuiu; + az puju;.
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projection

amoeba=projection of vortex junctions/webs
tentacles=semi-infinite cylinder of vortex
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projection

amoeba=projection of vortex junctions/webs
tentacles=semi-infinite cylinder of vortex

m Amoeba: introduced by [Gelfand-Kapranov-Zelevinsky| in the study of
hypergeometric functions

m Relation with real algebraic geometry [Mikhalkin], topological string
theory [Nekrasov-Okounkov-Vafa], dimer model [Kenyon-Okounkov],
instanton counting [Maeda-Nakatsu]...
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Introduction

Vortex-Instanton Systems

Relation with Amoeba and Tropical Geometry

m Dimensional Reduction and Tropical Geometry

A Conclusions and Discussions
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Dimensional Reduction and Tropical Limit

What happens in dimensional reduction from (4+1)d — (2+1)d? Take
R1 = Rz = R — 0 with fixed rp; n, = Rlog |an, n,|, and neglect all KK

modes. — —
0 1 (234
vortex o o
vortex o o | o
instanton | o

M. Yamazaki (Univ. Tokyo)
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0 1 3
domain wall o o
domain wall o o
Hitchin charge | o
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Dimensional Reduction and Tropical Limit

What happens in dimensional reduction from (4+1)d — (2+1)d? Take
R1 = Rz = R — 0 with fixed rp; n, = Rlog |an, n,|, and neglect all KK
modes. —

0 1 (2|34 0 3
vortex | o o |o - domainwall | o o
vortex | o ofo domain wall | o o
instanton | o Hitchin charge | o
_—
R=10
vortex(amoeba) domain wall(tropical variety)
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Wilson Loops and Ronkin Functions

Define adjoint scalars £ (x1,x2) by

. 1 dy-
Yi(x1,%x2) = _21rR1 7{ 27R log [P exp < %dyl Wy.ﬂ R

This is the Wilson loop along T2, or zero mode in KK decomposition, and
is interpreted as the two dimensional kink profiles.

_ ) 8
glr';otr [zi(XhXZ)] = B—XNP(XhXZ)a

where Np(x1,x2) (Ronkin function) is given by

1

1
N = d%y log |P
p(x1, x2) 27R: 2R, /T2 y log |P(u1, uz)]

Wilson loop=derivatives of Ronkin function

)
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P(uj,u2) =u1 +up+1=¢e* +e2 41,

amoeba

S

AR AT A
)
RIS
L7
Ly

Ronkin function  gradient of Ronkin function (Tr
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Tropical Geometry

In tropical limit (R — 0),

n n
P(uj,up) = Z I
(n17n2)€ZZ
= Fp(x1,%x2) = (rnax) (n1x1 4+ n2x2 + o ny) 5
ni,n2

or up + uz — x1 @ x2 = max(x1,x2), uruz — x1 ® X2 = X1 + X2.
Namely, commutative ring (R, 4+, X) is replaced by commutative semiring
(ring w.o/ additive inverse) (R, @, ®) (dequnatization,
ultradiscretizaiton),
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ultradiscretizaiton),

“ordinary” geometry <> commutative ring
“tropical” geometry < commutative semiring

M. Yamazaki (Univ. Tokyo) Intersecting Solitons... 2008 4 4 A 23 H @ YITP 21 /43



Tropical Geometry

In tropical limit (R — 0),

n n
P(uj,up) = Z I
(n17n2)eZZ
= Fp(x1,%x2) = (rnax) (n1x1 4+ n2x2 + o ny) 5
ni,n2

or up + uz — x1 @ x2 = max(x1,x2), uruz — x1 ® X2 = X1 + X2.
Namely, commutative ring (R, 4+, X) is replaced by commutative semiring
(ring w.o/ additive inverse) (R, @, ®) (dequnatization,
ultradiscretizaiton),

“ordinary” geometry <> commutative ring
“tropical” geometry < commutative semiring

m New, active area of research in mathematics
m Various applications (enumeration of curves, mirror symmetry,
computational biology, celluar automata...)
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Questions still remain
m shape of vortex? OK
m What happens in dimensional reduction ((4+1)d — (2+1)d)? OK
» distribution of instanton charge? Not Yet

The key to answer this question is the topological charges.
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Introduction

Vortex-Instanton Systems

Relation with Amoeba and Tropical Geometry

m Topological Charges

A Conclusions and Discussions
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BPS inequality (remainder)

BPS inequality:
2

8n
E > " 1+2ncV,
g2

two types of topological charges: instanton charge | and vortex charge V:

1

1
V ——/trF/\w: /cl/\w.
27

where w = %(dzl A dz + dzy A dzy) is the Kahler form on ((C*)z.
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Vortex Charge

We can take g — oo since the topological charges are independent of the
gauge coupling constant g. Then

1 1 1
——tr F= —dd.logdet 2 — —dd.log|P|,
27 47 27

where d. = —i(d — ). By using the Poincaré-Lelong formula

1
/ —ddclog |P| A a = / a, X = {P(u1,uz) = 0}in (C*)?,
(c*)2 2 X

*)2 T

the vortex charge can be evaluated as

vV = —c/ tr FAw = 27rc/w = 2mc Area(X).
(C*) X

V is uniformly distributed along vortex sheets X, and the total vortex
charge is given by the area of the vortex sheets multiplied by the tension
27c.
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Instanton Charge

. 1
1 = —W/tr(F/\F) = /Chz,

Instanton charge | is divided into two contributions:

| = _Iintersection + Iinstanton
~—_— ~—

binding energy  point-like instantons

m intersection charge

1 1
lintersection = W tr FAtr F = 5 /C] A C1,

Binding energy of solitons (negative contribution to energy)

m instanton number
Iinstanton = /CZ-

Number of point-like instantons (positive contribution to energy)
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Intersection Charge

Next consider the intersection charge. By taking g — o0, the intersection

charge density Zintersection Pecomes a complex Monge-Ampéere measure
(dd. log |P|)? on (C*)?

1 1
Tintersection = —— tr FAtr F — ——dd.log |P| A dd. log |P]|.
82 8n2

Then the intersection charge is evaluated again by using Poincaré-Lelong
formula,

1 1
Iintersection = E /X ddc |0g |P| = 5#()(3 x)'

but this naive evaluation is the self-intersection number and divergent!
By using suitable reguralization, we have liptersection = 2Area(A(P)).
(For N¢ = 1, Np = 2, this is rigorously proven).
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Intersection Charge in the Tropical Limit

In the tropical limit Ry, R2 — o0, the intersection charge is given by the
intersection number of the tropical varieties of P; and P2, and it is easy to
see that the number is given by 2Area(A(P)) (tropical Berenstein

theorem).
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Non-Abelian case: Instanton Number

So far, only the trace part (U(1) part) is discussed.

| = _Iintersection + Iinstanton 9
N——

binding energy  point-like instantons

1 1
lintersection = Q/tr FAtr F = E/Cl N €1,

1
Iinstanton = /C2 = W [Tr FATr F— r]:‘I'(F VAN F)]

m Only the U(1) part matter for intersection charge.
m In order to discuss instanton number, we have to go to non-Abelian

case.
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Moduli Matrix in Non-Abelian Case

Consider the simplest case No¢ = Ng = 2.

|1/2 BPS vortex moduli spacel

m we have orientational moduli (NG mode)
U(2)c x SU2)r 22, SU2)crr —2% U(1)cqr.
Morientation = CP! ~ SU(2)0+F/U(1)C+F M

m The moduli matrix for the vortex at z; = 0 [Eto:'05]

_ 1 b z1 O
to=ve(o 2 )~ e (i 1)
where ~ represents the V-equivalence relation. These two moduli
matrices provide two patches b and 1/b of CP!.
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‘1/4 BPS moduli space‘

o= ((§ b)),

where P(uy,uz) and b(uy, uz) are Laurent polynomials

n n n n
P(ui,u2) = > anmui'uy?, b(uz, u2) = ) bayn,uy’uy’,

In g — oo limit,

1 1+ |bj> bP
— “HoHI = 1
Q Q= —HoHg < Pb [P ) .

By appropriately taking care of the subtlety of g — oo limit, instanton
number is given by

1

|=/ch2 = [[[ddclog[P[ A ddclog(1 + [b?)
8w

instanton number —dd, log [P] A dd. log [P]) ,
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m small radius limit R — 0

R -
5 log(1 + |b|2) — Fp(x1,%x2) = max (nix1 + n2x2 + Sy ny),

ni,n2

where sg o = %Iog(l + |b0,0|2) and sp;,n, = Rlog |by, n,| for
(n1, n2) # 0 are fixed in the limit. Then

o 0 0

linstanton — d XEjj€kl ~— 7 FP(Xla X2)

E .
I%; D% Bx; 0% b(x1,%2)

Instanton number density is localized at the intersection of the
tropical variety of the Laurent polynomial P and the lines on which
the piece-wise linear function Fy(x1,x2) is not differentiable.
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The instanton number density in the small radius limit for

P =u; +u2+1and b = by jujuz + by gus + bg . Solid line: tropical
variety of P, dashed line: the lines on which IEb(xl,xz) is not
differentiable.
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Metric on Moduli Space

We can also discuss metric of the moduli space. This is important when
we become dynamical issues.

m Moduli parameters: coefficients an, n, of P.

P(ui,up) = Z an;,n, U7 UL,
(n1,m2)€V(Q)
For Nc = Ng = 1, the metric of the moduli space is given by

w?_ -
Ky = c/ iaiajlogdetﬂ

+ 2BwAitr [5(989—1)5,-((23&—1) — (a5 (a0 h)|

m Only the coefficients an, 0, corresponding to internal lattice points are
normalizable.

m Coefficients corresponding to externall lattice points correspond to
the motion of external legs
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Consider the case where the loop sizes are much larger than the radius of
torus R=R; =Ry > I. Then

K ~ 8n2%cR Aimo/dsz (Np(x1,x2,a,a) — N5(x1,x2))
= 87r2cR/d2x (Fp(Xl,Xz) — Fﬁ(xl,xz)) ,

where Fp and Fg are piece-wise linear functions defined by

Fp = ngf;'o RNp(x1,x2) = (nl,f.?)%)\(/(o)(nlxl + n2x2 + fogny)s
FI3 = I;Il‘l;lo RNﬁ(Xl, x2) = (nl,nrzr)lea\}/ix(Q)(nIXI + naxs + rn1,n2)7

with rn, 0, = Rlog |an, n, |-
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Consider the case where the loop sizes are much larger than the radius of

torus R=R; =Ry > |. Then Ronkin function

K ~ 8n2%cR Aimo/dsz (Np(x1, x2,a,d)|— Ns(x1,x2))

= 87r2cR/d2x Fp(Xl,X2 — F,;(x1,X2)),

tro ical Eolynomlal
where Fp and Fj are piece-wise I|near functions defined by

Fp = Aif;lo RNp(x1,x2) = (nl,f.?)%)\(/(o)(nlxl + n2x2 + fogny)s
FI3 = I%IEQO RNIS(Xl, x2) = (nl,nrzr)lea\}/ix(Q)(nIXI + naxs + rn1,n2)7

with rn, 0, = Rlog |an, n, |-
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Consider the case where the loop sizes are much larger than the radius of

torus R=R; =Ry > |. Then Ronkin function

K ~ 8n2%cR Aimo/dsz (Np(x1, x2, a,a)|—|Ns(x1,x2))

-

= 87r2cR/d2x Fp(Xl,X2 — Fﬁ(xl,xz))

tro ical Eolynomlal
where Fp and Fj are piece-wise I|near functions defined by

constant term

Fp = Aif;lo RNp(x1,x2) = (nl,f.?)%)\(/(o)(nlxl + n2x2 + fogny)s
FI3 = I%IEQO RNIS(Xl, x2) = (nl,nrzr)lea\}/ix(Q)(nIXI + naxs + rn1,n2)7

with rn, 0, = Rlog |an, n, |-
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Example

-1 -1
P(ui,uz2) = uy +uz2 + u; "u; ~ + agp.

(0.0) (1,0) \

(—=1,=-1)

(a) Newton polytope (b) wall web (tropical variety)

In this case, only one normalizable moduli parameter ag g, which is related
to the size of the loop.
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The asymptotic Kahler potential is proportional to the volume of the
tetrahedron surrounded by four planes

K ~ 1272cR 3.

When we write a = e/R+#¢  effective Lagrangian is given by
Lo = 1872crR (# + Rzéz) :

This can be interpreted as the kinetic energy associated with the motion of

the three walls composing the loop (Z?:l %vlz)
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Conclusion

m We have studied composite solitons consisting of intersections (webs)
of vortices and instantons. They are a 1/4 BPS soliton in the Higgs
phase of N/ = 1 supersymmetric Yang-Mills theory on R x (C*)2.

m These solitons are important because they reduce to solitons in other
dimensions by dimensional reduction.
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Conclusion

m We have studied composite solitons consisting of intersections (webs)
of vortices and instantons. They are a 1/4 BPS soliton in the Higgs
phase of N/ = 1 supersymmetric Yang-Mills theory on R x (C*)2.

m These solitons are important because they reduce to solitons in other
dimensions by dimensional reduction.

amoeba and tropical geometry arise quite naturally, and they provide
powerful techniques to study solitons and gauge theory! J
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soliton/gauge theory amoeba /tropical geometry
moduli matrix Newton polynomial
projection of vortex sheet amoeba
dimensional reduction tropical limit
domain wall tropical variety
Wilson loop along T2 derivative of Ronkin function
intersection charge complex Monge-Ampére measure
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Discussions

Possible generalizations include:

@ Generalization to arbitrary gauge group? (cf.
[Eto-Fujimori-Gudnason-Konishi-Nitta-Ohashi-Vinci])
non-Abelian /non-commutative tropical geometry?

@ Extention to (C*)" or on general Kahler manifolds [Mundet i Rierra]

Actually, amoeba and tropical geometry appears in various topics, and the
relation between them is not clear:

@ Connection with dimer models, brane tilings?

» Ronkin function is the thermodynamic limit of partition function of

dimer model

» ‘Good’ amoeba (Harnack curve) appears from spectral curve of dimer
model [Kenyon-Okounkov]

» coamoeba/alga? (projection onto T?) [Feng-He-Kennaway-Vafa,
Ueda-Yamazaki]
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More Discussions

@ Relation with topological string theory?
(cf.[Okounkov-Reshetikhin-Vafa|: asymptotic form of plane partition
gives amoeba)

(]

D-brane realization? (cf. cylinder case: kinky D-brane
[Lambert-Tong,Eto-Fujimori-lsozumi-Nitta-Ohashi-Ohta-Sakai])?
Relation with 1/4 BPS dyons? String web? (cf. [Lunin '08, Ray '08]:
Ronkin function appear in SUGRA solution) Relation with black hole
entropy?

@ Relation with Nekrasov's partition function (we are back to Coulomb
phase when ¢ — 0, vortices disappear and instantons remain),
symplectic Gromov-Witten invariant (Donaldson+Gromov-Witten)
[Baptista]?
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Welcome to the world 0][ “TROPICAL PHYSICS”!
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