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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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discussion seems to be more general than similar discussions of infinite-dimensional

algebra in the literature, e.g. the work of [21] where the Yangian associated with the

quiver acts on the cohomologies of quiver varieties. It would be interesting to fully

understand the relation with [21] and other works, e.g. [29], as we will discuss further

in section 10. Let us also mention that during the preparation of this manuscript we

have been notified of the ongoing work [30], who studies cohomological Hall algebras

[31] for some toric Calabi-Yau manifolds.3

The rest of this paper is organized as follows. We begin with a review of the BPS

crystal melting (section 2) and a�ne Yangian of gl1 (section 3). We introduce the

BPS quiver Yangian in section 4. In order to motivate this definition, in section 5 we

first go back to the plane partitions discussed in section 3 and bootstrap the a�ne

Yangian of gl1. Then in section 6 we repeat a similar analysis for a general quiver

corresponding to a toric Calabi-Yau threefold, to obtain our BPS quiver Yangian.

We discuss the truncation of the algebra and the relation with D4-branes in section 7.

We present many examples both for toric Calabi-Yau threefolds without compact 4-

cycles (section 8) and with compact 4-cycles (section 9). These examples will provide

useful illustrations of many of the general results of the previous sections. The final

section 10 is devoted to a summary and discussions.

2 Review: BPS Crystal Melting

2.1 Quiver Diagram and Superpotential

Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau

threefolds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric

Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.
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and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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We can count the number of coordinate parameters to be

Nh = # (edges of the quiver)� (# (monomial terms in the superpotential)� 1) .

(4.2)

Here we have subtracted one from the superpotential constraints, since any bifunda-

mental field appears exactly twice in the superpotential (this follows since each edge

belongs to two neighboring faces in the periodic quiver) and thus one of the con-

straints is redundant. Since each monomial term in the superpotential corresponds

to a polygonal region of the periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver)� (# (faces of the periodic quiver)� 1) .

(4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler

character zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh � 1) is known to be the

same as the area of the toric diagram �, where the normalization of the area is

chosen such that the minimal lattice triangle spanned by the three lattice points

(0, 0), (1, 0), and (0, 1) has area 1. One can then use Pick’s theorem to rewrite this

as

Nh = E + 2I � 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the

toric diagram �. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges

associated to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote

these Nh independent parameters that characterize the algebra.

4.2 Generators and Relations

The algebra is generated by a triplet of fields (e(a)(u), (a)(u), f (a)(u)) for each quiver

vertex a 2 Q0:

a : e(a)(u) : creation ,  (a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ⌘
+1X

n=0

e(a)n

zn+1
,  (a)(z) ⌘

+1X

n=�1

 (a)
n

zn+1
, f (a)(z) ⌘

+1X

n=0

f (a)
n

zn+1
, (4.7)

10 For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z)
and f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current
paper, but can be determined once we know the map between the quiver Yangians and the W

algebras.
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Figure 4: This figure shows an example of three-dimensional version of Young
diagram (a). If you rotate (a) by 180 degrees, we have (b), which looks like
melting of a crystal. By projecting this figure onto two-dimensions, we have a
perfect matching of a bipartite graph defined on honeycomb bipartite graph
(c), or equivalently tiling of plane using three types of rhombi shown in (d)
(this is an analogue of “domino tiling” in Figure 2). This one-to-one corre-
spondence between three-dimensional Young diagram and perfect matching
in dimer model is a higher-dimensional generalization of more familiar cor-
respondence shown in Figure 3. The interesting fact is that this type of
three-dimensional Young diagram appears in string theory, in the “melting
crystal” picture of [21].
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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau

threefolds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric

Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.
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We use the letter K (in text mode) to label a colored crystal configuration. The

plane partition can be viewed as the simplest colored crystal, with only one color

and the most symmetric shape.

As reviewed earlier in section 2.2, for the construction of the colored crystal we

need to choose an atom as the origin of the crystal. Without loss of generality, we

will choose the atom at the origin to be of color a = 1.24 It corresponds to the level-1

box 1 in (5.8).

In the C3 case, where there is only one type of atom, the algebra has a triplet of

fields, i.e. family of generators, (e(z), (z), f(z)), see (5.3), acting on all the atoms

in the crystal (or equivalently, all the ⇤’s in the plane partition). For a generic toric

Calabi-Yau whose corresponding crystal has |Q0| colors, we need |Q0| triplets of fields

labelled by a 2 Q0, each acting on the atoms of the corresponding color as in (4.6);

they have the mode expansion as in (4.7).

Now we write down the ansatz for the action of the fields (4.6) on an arbitrary

crystal configuration |Ki, as a natural generalization of the ansatz (5.4) for the action

of the a�ne Yangian of gl1 on the set of plane partitions:

 (a)(z)|Ki =  (a)
K (z)|Ki ,

e(a)(z)|Ki =
X

a 2Add(K)

E(a)(K ! K+ a )

z � h( a )
|K+ a i ,

f (a)(z)|Ki =
X

a 2Rem(K)

F (a)(K ! K� a )

z � h( a )
|K� a i ,

(6.2)

for a = 1, . . . , |Q0|, where

E(a)(K ! K+ a ) ⌘ ✏(K ! K+ a )

r
p(a)Res

u=h( a )
 (a)

K (u)

F (a)(K ! K� a ) ⌘ ✏(K ! K� a )

r
q(a)Res

u=h( a )
 (a)

K (u) ,

(6.3)

with

✏(K ! K+ a ) = ± and ✏(K ! K� a ) = ± . (6.4)

Here a 2 Add(K) means that we consider an atom of color a which can be added

to the crystal K (a similar comment applies to a 2 Rem(K)).

24It is easy to generalize to representations with superpositions of colored crystals with the atom
at the origin o having colors other than a = 1, see section 6.3.2. However, the algebra obtained from
such more general representations (i.e. tensored representations of crystals starting with di↵erent
a ) via the bootstrap procedure would be the same as the one obtained using the crystal starting

with 1 .
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Note that there are infinitely many such paths for each a , due to the presence of

loops in the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted

to the coordinate system (6.7), generalizing the coordinate function (5.6). The most

natural way would be to associate a charge hI to each edge I in the quiver diagram,

where I 2 {a ! b} for two vertices a and b (which are possibly identical). We then

define the coordinate function for a to be the sum of all the charges along the path

[o ! a ]:

h( a ) ⌘
X

I 2 path[o! a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom

⇤ is the way to translate the position of the ⇤ to the pole of the charge function

 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first
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and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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this particular case, the supercommutator should be decomposed as follows:

A1 = Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

h
e(2)(z2), e

(1)(w2)
ooo

=

= Symz1,z2

h
e(2)(z1),

h
e(3)(w1),

n
e(2)(z2), e

(1)(w2)
oii

=

= e(1)(w2)e
(2)(z1)e

(3)(w1)e
(2)(z2) + e(1)(w2)e

(2)(z2)e
(3)(w1)e

(2)(z1)�
� e(2)(z1)e

(1)(w2)e
(2)(z2)e

(3)(w1) + e(2)(z1)e
(1)(w2)e

(3)(w1)e
(2)(z2)�

� e(2)(z1)e
(2)(z2)e

(1)(w2)e
(3)(w1) + e(2)(z1)e

(3)(w1)e
(1)(w2)e

(2)(z2)+

+ e(2)(z1)e
(3)(w1)e

(2)(z2)e
(1)(w2)� e(2)(z2)e

(1)(w2)e
(2)(z1)e

(3)(w1)+

+ e(2)(z2)e
(1)(w2)e

(3)(w1)e
(2)(z1)� e(2)(z2)e

(2)(z1)e
(1)(w2)e

(3)(w1)+

+ e(2)(z2)e
(3)(w1)e

(1)(w2)e
(2)(z1) + e(2)(z2)e

(3)(w1)e
(2)(z1)e

(1)(w2)�
� e(3)(w1)e

(1)(w2)e
(2)(z1)e

(2)(z2)� e(3)(w1)e
(1)(w2)e

(2)(z2)e
(2)(z1)�

� e(3)(w1)e
(2)(z1)e

(1)(w2)e
(2)(z2)� e(3)(w1)e

(2)(z2)e
(1)(w2)e

(2)(z1) .

(C.59)

We apply this operator to the root crystal ⇤0. Operators e(a)(z) have poles in points
corresponding to atom weights:

1) w2 = �~2 , 2) z1 = ~1 + ~2 , 3) z2 = �3~1 � 3~2 , 4) w1 = ~1 + ~2 . (C.60)

The expression A1(z1, z2, w1, w2)|⇤0i will produce the whole crystal ⇤, and the residue
will consist of a sum over matrix elements E(⇤1 ! ⇤2) in various combinations. Each
term in this sum will add consequently 4 atoms to ⇤0 to get ⇤ in the result. For
example, this type of term

E(⇤0 ! ⇤0 + a)E(⇤0 + a ! ⇤0 + a+ b)E(⇤0 + a+ b ! ⇤0 + a+ b+ c)⇥
⇥E(⇤0 + a+ b+ c ! ⇤0 + a+ b+ c+ d)

adds atoms a, b, c, d in a sequence [a, b, c, d]. For the sake of brevity let us denote such
quintic E-terms by such sequences. The residue of our interest acquires the following
form:

A2 := Res
z1,z2,w1,w2

h⇤|A1|⇤0i =

= [1, 2, 4, 3] + [1, 3, 4, 2]� [2, 1, 3, 4] + [2, 1, 4, 3]� [2, 3, 1, 4] + [2, 4, 1, 3]+

+ [2, 4, 3, 1]� [3, 1, 2, 4] + [3, 1, 4, 2]� [3, 2, 1, 4] + [3, 4, 1, 2] + [3, 4, 2, 1]�
� [4, 1, 2, 3]� [4, 1, 3, 2]� [4, 2, 1, 3]� [4, 3, 1, 2] .

(C.61)

Using methods discussed above we calculate the necessary coe�cients in multipliers
of �

~32 (~1 + ~2) (2~1 + ~2) 2 (4~1 + ~2)
��1

81

for brevity of expressions. The corresponding expressions read

[2, 4, 1, 3]=� 1

48
, [4, 2, 1, 3]=� 1

96
, [2, 1, 4, 3]=� 1

48
, [1, 2, 4, 3]=

1

32
,

[4, 1, 2, 3]=
1

64
, [1, 4, 2, 3]=

1

64
, [4, 1, 3, 2]=� 1

64
, [1, 4, 3, 2]=� 1

64
,

[2, 4, 3, 1]=
2~1 + ~2

24 (4~1 + ~2)
, [4, 2, 3, 1]=

2~1 + ~2
48 (4~1 + ~2)

,

[2, 3, 4, 1]=
(2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
, [3, 2, 4, 1]=� (2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
,

[4, 3, 2, 1]=� 2~1 + ~2
48 (4~1 + ~2)

, [3, 4, 2, 1]=� (2~1 + ~2) 2
24 (4~1 + ~2) (4~1 + 3~2)

,

[2, 1, 3, 4]=� 2~1 + ~2
24 (4~1 + 3~2)

, [1, 2, 3, 4]=
2~1 + ~2

16 (4~1 + 3~2)
,

[2, 3, 1, 4]=
(2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
, [3, 2, 1, 4]=� (2~1 + ~2) 2

12 (4~1 + ~2) (4~1 + 3~2)
,

[1, 3, 2, 4]=� 2~1 + ~2
16 (4~1 + 3~2)

, [3, 1, 2, 4]=
(2~1 + ~2) 2

8 (4~1 + ~2) (4~1 + 3~2)
,

[4, 3, 1, 2]=
2~1 + ~2

32 (4~1 + ~2)
, [3, 4, 1, 2]=

(2~1 + ~2) 2
16 (4~1 + ~2) (4~1 + 3~2)

,

[1, 3, 4, 2]=� 2~1 + ~2
32 (4~1 + 3~2)

, [3, 1, 4, 2]=
(2~1 + ~2) 2

16 (4~1 + ~2) (4~1 + 3~2)
.

(C.62)

Summing up these contributions with appropriate signs we conclude:

A2 = 0 . (C.63)

As this example shows, the consistency of the Serre relation requires highly non-trivial
cancellations.
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will consist of a sum over matrix elements E(⇤1 ! ⇤2) in various combinations. Each
term in this sum will add consequently 4 atoms to ⇤0 to get ⇤ in the result. For
example, this type of term

E(⇤0 ! ⇤0 + a)E(⇤0 + a ! ⇤0 + a+ b)E(⇤0 + a+ b ! ⇤0 + a+ b+ c)⇥
⇥E(⇤0 + a+ b+ c ! ⇤0 + a+ b+ c+ d)

adds atoms a, b, c, d in a sequence [a, b, c, d]. For the sake of brevity let us denote such
quintic E-terms by such sequences. The residue of our interest acquires the following
form:

A2 := Res
z1,z2,w1,w2

h⇤|A1|⇤0i =

= [1, 2, 4, 3] + [1, 3, 4, 2]� [2, 1, 3, 4] + [2, 1, 4, 3]� [2, 3, 1, 4] + [2, 4, 1, 3]+

+ [2, 4, 3, 1]� [3, 1, 2, 4] + [3, 1, 4, 2]� [3, 2, 1, 4] + [3, 4, 1, 2] + [3, 4, 2, 1]�
� [4, 1, 2, 3]� [4, 1, 3, 2]� [4, 2, 1, 3]� [4, 3, 1, 2] .

(C.61)

Using methods discussed above we calculate the necessary coe�cients in multipliers
of �

~32 (~1 + ~2) (2~1 + ~2) 2 (4~1 + ~2)
��1
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C.4 Example of Serre Relation Calculation

Consider the case of Y (bgl3|1) with the following parity choice ⌃3,1 = {1,�1, 1, 1}, the
quiver diagram has the following form:

(C.57)

Without loss o↵ generality we use the gauge freedom of choosing the weight space, to
obtain the following parameterization:

wB1 = ~1, wC1 = ~2 � ~1, wB2 = ~2, wC2 = �~2 � ~1,
wB3 = ~1, wC3 = �~1 � ~2, wA3 = ~2, wB4 = ~1, wC4 = �~1 � ~2, wA4 = ~2 .

(C.58)

Consider a particular 9-atom crystal:

1 1

1

1

1 1

1

1 1

2

4 1

3

We have enumerated marked atoms. It turns out these atoms can be added to
the root crystal marked by an orange circle in an arbitrary order, and still on all
intermediate steps a derived configuration of atoms is a valid crystal.

Atoms labeled by numbers 2 and 3 have the same color, and moreover they have
a flavor corresponding to the color of an odd node. Therefore the raising generators
adding these atoms are fermionic. Therefore this is the case exactly suitable for checking
quartic Serre relations in Y (bgl3|1), where we have a relation between two odd generators
of the same color, and two other generators corresponding to neighboring nodes. In
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Highly non-trivial cancellations!  
For example, for one of the Serre relations of 

[Galakhov-MY ’20]



Summary 


