

Masahito Yamazaki (Kavli IPMU, University of Tokyo)

March 30, 2022

[X00] 総括班 村山 (KIPMU)	[A01]軽いDM 高橋 (東北大)	[A02]重いDM 村瀬 (PSU)	[A03]マクロDM 柳 (名古屋大)	
[B01] レーザー干渉計 道村 (東大)	axion, dilaton (円偏光)	背景重力波 (相転移など)	背景重力波 (inflationなど)	[C02
[B02] すばる分光 高田 (KIPMU)	fuzzy DM, SIDM 3D DM 地図	矮小銀河内の対消滅 3D DM 地図	PBH, UCMH, DM subhalo, 3D DM地図	2]宇宙構:
[B03] イメージング 宮崎 (NAOJ)	DM subhalo DM 地図	DM subhalo DM地図	PBH, UCMH (重カマイクロレンズ)	造形成理
[B04] X線 山崎(典) (ISAS)	sterile neutrino moduli (輝線、連続光)	ダークマター崩壊 (輝線、連続光)	PBH蒸発 (X線背景放射)	論安藤
[B05] <i>e⁺e⁻</i> 加速器 西田(KEK)	dark photon SIMP	高エネルギーの間接検証 (余剰次元、Higgs)	高エネルギーの間接検証 (余剰次元、Higgs)	(アムステリ
[B06] CMB 小松(MPA)	axion (CMB 偏光)	宇宙初期の対消滅 _{N-c}	PBH ($ au$)	レダム大)
[C01]量子重力理論 山崎(雅) (KIPMU)				
🤇 🦯 quantum gravity??				

The Team

Yasunori Nomura (Berkeley)

Ryo Saito (Yamaguchi) Satoshi Shirai (IPMU) Syuhei Iguro (IPMU -> Karlruhe)

Activity of Hired PD

Syuhei Iguro (2021/Apr - 2021/Sep, move to Karlsruhe)

Expert of flavor and collider physics:

Unified approach to secondary CMB B-mode polarization

T. Namikawa, A. Naruko, **RS**, A. Taruya, and D. Yamauchi: JCAP 10 (2021) 029 (1) [B06] [A02] [C01] [C02]

Cosmic Microwave Background (CMB) anisotropies

- Anisotropies of order 10⁻⁵: a source of rich information on the early universe, calculable by cosmological perturbation theory
- Recent precise measurements → Small, nonlinear effects

Curve-of-Sight (CoS) approach :

_ensed

A new approach to compute all secondary (non-primordial) nonlinear effects to CMB anisotropies in a single framework.

- A solution to the Boltzmann equation of CMB photons at nonlinear orders (An extension of the Line-of-Sight approach [Seljak & Zaldarriaga 96] at the linear order.)
- Weak gravitational lensing can be integrated to the Boltzmann equation.

Application : an accuracy test of the remapping approach

The standard remapping approach is reliable to subtract the lensing B mode to detect the primordial GWs in upcoming CMB experiments.

- Estimation of all nonlinear effects not in the remapping approach. Redshift, time delay,…
- The correction is O(0.01)%
 - ~ Inflationary B mode with the tensor-to-scalar ratio $r = O(10^{-5})$

Yasunori Nomura

What ensures the stability of dark matter?

 → Any linearly realized global symmetry must be explicitly broken with O(1) strength at the string scale (the cutoff scale of low energy field theory).

Y.N., Phys. Rev. **D101** (2020) 066024

- \cdots suggests specific candidates for dark matter
 - string axion
 - particle whose stability is ensured by an accidental symmetry ... occurs naturally for composite dark matter

Yasunori Nomura

Chiral Dark Sector

A very **simple**, perhaps the simplest, model of composite dark matter with the properties **consistent with the black hole physics**.

the **most general** Lagrangian consistent with **gauge** symmetry

→ stable dark matter with the correct abundance (dark pion, dark nucleon)

K. Harigaya and Y.N., Phys. Rev. D94 (2016) 035013
R. T. Co, K. Harigaya and Y.N., *Phys. Rev. Lett.* 118 (2017) 101801

··· rich phenomenology

possibility of two-component dark matter (dark pion and nucleon), dark radiation for $a = 0, \cdots$

Plan

- detailed study of the model
 - \cdots latest constraints, prospect for future observations, \cdots
- analysis of general features of the class of similar models

 \cdots effect of U(1) gauge symmetry on the confining phase transition in the early universe, \cdots

Examples of MY's Recent Research

Holography for ensemble averages of CFTs

(as suggested by "wormholes" in 2d gravity / black hole information paradox)

M. Ashwinkumar, M. Dodelson, A. Kidambi, J. Leedom, MY (JHEP '21., and to appear)

Revisiting Θ-angles/axions in Yang-Mills

R. Kitano, R. Matsudo, N. Yamada + MY ('21) and in progress Implications? Cf. Y. Nomura + T. Watari + MY ('17), M. Ibe + T.T. Yanagida + MY ('18) [e.g. A01?]

Refining/quantifying some swampland constraints?

Ongoing discussions with J. Leedom, T. Rudelius and others

More constraints from UV completion / positivity, causality, unitarity \cdots

Discussion with T. Noumi (part of this scheme), K. Aoki, J. Tokuda and C01 group

quantum dark sector shower, leading to characteristic signal (e.g. lepton jets with 4, 6, 8, $\cdots \mu$'s) [Many papers recently; cf. Tanaka-san's talk]

Classical Monte Carlo:

insufficient because of quantum interference effects

(only approximate, e.g. large Nc limit, small off-diagonal flavor coupling, \cdots)

Important quantum interference effects between different flavors

Quantum processes are better simulated by quantum computers!

cf. [Bauer, de Jong, Nachman, Provasol ('19)] as a toy model for QCD

So Chigusa (UC Berkeley)

MY

From [Chigusa-MY], to appear

Sometimes dramatic enhancement for n-dark-photon events for large n (e.g. 2n μ events); implications for DM collider search @ e.g. FASER? [cf. Otono-san's talk] Dark Matter + Quantum Computers? Quantum Sensors? new ideas / questions / collaborations welcome!

2022 ~ MY as member (課題推進者)

ibm_Kawasaki @ Utokyo 27 qubit machine