

Masahito Yamazaki (Kavli IPMU / TSQS, UTokyo)

TSQS 2022, Nov. 8 @ Koshiba Hall

Is the world digital or analog?

discrete lattice model

continuous field theory

lattice model

field theory

Discretizations in general break the symmetries of the field theory, but we can choose "nice" discretizations

Q: What happens if we have enough symmetries, so that the theories are solvable/integrable?

 $Q_n \sim \sum p_i^n$ (n=1,2,...) conserved [S.Parke '80] cf. [Coleman-Mandula '67] Factorized scattering (Yang-Baxter equation)

Factorized scattering (Yang-Baxter equation)

Extra Dimensions come to rescue

[Costello-Witten-MY '17] [Costello-Witten-MY '18] [Costello-MY '19] [Ashwinkumar-Sakamoto-MY '22]

We make integrable lattice from Wilson lines

 $\langle W \rangle = \langle P exp \int A \rangle$

Yang-Baxter equation automatic from topological invariance

Yang-Baxter equation automatic from topological invariance

QFT perturbation techniques (re)produce many results in integrable models

[Costello-Witten-MY '17, '18]

Coming back to thermodynamic limit…

lattice model

refine the mesh…

Thermodynamic limit

We obtain 2d surface defects coupled with the bulk 4d theory

Two defects: horizontal and vertical

Two defects: horizontal and vertical

The two defects seem to be decoupled, but interact through extra dimensions

[Costello-MY '19]

Simple example: chiral/anti-chiral free fermions 44 $\mathcal{L} = \mathcal{L}\overline{\mathcal{J}} + \mathcal{L}\overline{\mathcal{J}} + \mathcal{L}\overline{\mathcal{J}}\overline{\mathcal{J}}$ + $r_{ab}(z_1 - z_2) (\psi + \psi(z_1)) (\overline{\psi} + \psi(z_2))$ $\propto (z_1 - z_2)^{-1}$ Green's function

Reproduce Gross-Neveu and Thirring models f' G = SO(N)G = SU(N)

We can systematically construct many new integrable field theories

[Costello-MY '19]

e.g. we can have multiple defects, higher genus spectral curves…

Different discretizations

[Ashwinkuma-Sakamoto-MY (to appear)]

Different discretizations

[Ashwinkuma-Sakamoto-MY (to appear)]

Extra dimensions help! (Einsteinian "Geometrization")

topological/holomorphic phases of matter

Cf. "Field theory T-duality" [Taylor '96,..., MY '19]; dimensional oxidation vs. dimensional reduction

applications to quantum simulations "integrable Trotterization" as benchmarks?

[Okuda-Maruyoshi-Suzuki-Yamazaki-Yoshida '22]

engineering extra dimensions via "synthesic dimensions"?