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Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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discussion seems to be more general than similar discussions of infinite-dimensional

algebra in the literature, e.g. the work of [21] where the Yangian associated with the

quiver acts on the cohomologies of quiver varieties. It would be interesting to fully

understand the relation with [21] and other works, e.g. [29], as we will discuss further

in section 10. Let us also mention that during the preparation of this manuscript we

have been notified of the ongoing work [30], who studies cohomological Hall algebras

[31] for some toric Calabi-Yau manifolds.3

The rest of this paper is organized as follows. We begin with a review of the BPS

crystal melting (section 2) and a�ne Yangian of gl1 (section 3). We introduce the

BPS quiver Yangian in section 4. In order to motivate this definition, in section 5 we

first go back to the plane partitions discussed in section 3 and bootstrap the a�ne

Yangian of gl1. Then in section 6 we repeat a similar analysis for a general quiver

corresponding to a toric Calabi-Yau threefold, to obtain our BPS quiver Yangian.

We discuss the truncation of the algebra and the relation with D4-branes in section 7.

We present many examples both for toric Calabi-Yau threefolds without compact 4-

cycles (section 8) and with compact 4-cycles (section 9). These examples will provide

useful illustrations of many of the general results of the previous sections. The final

section 10 is devoted to a summary and discussions.

2 Review: BPS Crystal Melting

2.1 Quiver Diagram and Superpotential

Let us first briefly summarize the BPS crystal melting for general toric Calabi-Yau

threefolds. For a more complete discussion, see [5, 18].

Let us consider type IIA string theory compactified on a non-compact toric

Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.

– 3 –

13th Joburg Workshop on String Theory 
September 6, 2023

and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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Figure 4: This figure shows an example of three-dimensional version of Young
diagram (a). If you rotate (a) by 180 degrees, we have (b), which looks like
melting of a crystal. By projecting this figure onto two-dimensions, we have a
perfect matching of a bipartite graph defined on honeycomb bipartite graph
(c), or equivalently tiling of plane using three types of rhombi shown in (d)
(this is an analogue of “domino tiling” in Figure 2). This one-to-one corre-
spondence between three-dimensional Young diagram and perfect matching
in dimer model is a higher-dimensional generalization of more familiar cor-
respondence shown in Figure 3. The interesting fact is that this type of
three-dimensional Young diagram appears in string theory, in the “melting
crystal” picture of [21].
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1. The OPE relations (3.6) make manifest the S3 symmetry (permuting the triplet

{h1, h2, h3}) that is intrinsic to the algebra but is somewhat hidden in (3.2).

2. The action of the algebra on the representations in terms of plane partition

is much more transparent in terms of the OPE relations (3.6) than the mode

relations (3.2), see later.

It is convenient to use the following figure to summarize the OPE relations (3.6):

 fe
'3(�) '�1

3 (�)

'3(�) '�1
3 (�)

(3.12)

Finally, as already mentioned in Introduction, it is known that the a�ne Yangian of

gl1 is equivalent to the universal enveloping algebra of the W1+1 algebra, see [20–25].

3.2 Plane Partition

A partition � of an integer n can be characterized by a set of integers �i:

partition of n :

(
�i

��� �i 2 Z�0 ,�i � �i+1 ,
X

i

�i = n

)
. (3.13)

A plane partition ⇤ is a three-dimensional generalization of the integer partition

plane partition of n :

(
⇤i,j

���⇤i,j 2 Z�0 ,⇤i,j � ⇤i+1,j ,⇤i,j � ⇤i,j+1 ,
X

i,j

⇤i,j = n

)
,

(3.14)

and can be given by the stacking of three-dimensional boxes (denoted as ⇤ in this

paper), which are 3D generalization of 2D Young diagrams. The coordinates of these

⇤’s are chosen to be

(x1(⇤), x2(⇤), x3(⇤)) with x1,2,3(⇤) 2 Z�0 . (3.15)

The generating function of plane partition counting is the MacMahon function

[45]

M(q) ⌘
X

⇤2 plane partition

q|⇤| =
1Y

k=1

1

(1� qk)k

= 1 + q + 3q2 + 6q3 + 13q4 + 24q5 + 48q6 + . . . ,

(3.16)

where |⇤| denotes the number of boxes ⇤ in the plane partition ⇤. This partition

function is also the partition function of the topological A-model on C3 [3]; and it is

also identical to the vacuum character of W1+1 algebra (at general central charge c

and coupling �).
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Its associated quiver diagram is

1

(X3, h3)

(X1, h1)

(X2, h2)

(8.19)

where we have labelled the three adjoints X1,2,3, together with their three charges

h1,2,3. The super-potential is

W = Tr[�X1 X2 X3 +X1 X3 X2] . (8.20)

Since in the quiver the vertex 1 has a self-loop, it is bosonic: |1| = 0.

The periodic quiver is

1

1

1

1

h1 h1

h2

h2

h3 (8.21)

where the fundamental region of the torus is shown as a shaded region. The map

to the crystal configuration is easier to visualize from a bigger domain, shown in the

left of Figure 11. In the right of Figure 11, we have redrawn this period quiver in a

slightly di↵erent shape, for the later comparison with periodic quivers for (C2/Zn)⇥C
and generalized conifolds.

The loop constraint (??) gives

h1 + h2 + h3 = 0 . (8.22)

Therefore we have two coordinate parameters, corresponding to the two equivariant

parameters (✏1, ✏2). Note that the central condition (??) is guaranteed by the loop

constraint (8.22).

8.2.1.2 A�ne Yangian of gl1

Note that in this case the vertex constraint (??) also gives (8.22). Therefore the

minimal number of parameters we can have is two, corresponding to the U(1)2 toric

isometries.

There is only one bond factor:

'1)1(u) = '3(u) =
(u+ h1)(u+ h2)(u+ h3)

(u� h1)(u� h2)(u� h3)
. (8.23)
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We can now expand this charge function to obtain its charges  (a)
n using the expansion

(4.7). In particular, we are interested in the leading charge  (a)
0 , which satisfies

 (a)
0 = �a,1 C +

X

I2{1!a}

hI +
X

I2{a!1}

hI . (8.14)

Summing (8.14) over all atoms a, and recalling the definition of the generic central

term in (??) and that of ⌃a in (8.9), we have

 0 = C + ⌃1 . (8.15)

Now we can impose the central condition ⌃1 = 0 (??), which has two conse-

quences for (8.15). First,  0 is central, due to (8.11). Second,

C =  0 . (8.16)

It is also straightforward to check that one can obtain (8.16) if we start with an

arbitrary state |Ki. The analogue of (8.15) for an arbitrary crystal state |Ki is

 0 = C +
X

a 2K

⌃a , (8.17)

where each atom a in the crystal |Ki contributes a term ⌃a, where a is the color

of the atom a . Due to the the central condition (??), all ⌃a = 0, and we have

(8.16) for any |Ki. The identification (8.16) is a natural generalization of the gl1
case (3.20).

8.2 Quiver Yangians for (C2/Zn) ⇥ C and A�ne Yangian of gln

We start with the toric Calabi-Yau threefold (C2/Zn) ⇥ C. The quiver algebra has

n+ 1 parameters. If we impose the n� 1 vertex constraints (??), we can reduce the

number of parameters to 2, which are the two coordinate parameters. We find that

the reduced quiver Yangian in this sub-parameter space is the a�ne Yangian of gln
constructed in [60, 61], which are rational limits of quantum toroidal algebra of gln
constructed in [62] (see also [63]).

Let us study the cases of n = 1, n = 2, and n � 3 in turn.

8.2.1 C3
and A�ne Yangian of gl1

8.2.1.1 Quiver Yangian for C3

For C3, the toric diagram and its dual graph are

(0,0)

(0,1)

(1,0)

3

1

2

(8.18)
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X
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2d crystal

R3

R2

~0

~r

n

}m,0

}m

Figure 1: The 3d crystal and its 2d projection.

where the integer n specifies the coordinate along the third direction, i.e. the “depth”
from the surface of the crystal. We will present some examples of crystal lattices for
some choices of pairs (Q,W ) in Section 3.

Considering all the possible paths starting at the framed node we will get a basic
crystal ⇤0 growing from the root atom.

The crystal admits a coloring. We identify a set of colors with that of the quiver
vertices V. For an atom ⇤ we denote its color as ⇤̂. For an atom ⇤ identified with a
monomial

(an : vn�1 ! vn) · (an : vn�2 ! vn�1) · . . . · (a1 : v0 ! v1) · ◆ ,

we define the color ⇤̂ of the atom ⇤ by the endpoint vn 2 V:

⇤̂ = vn .

2.2 Quiver Quantum Mechanics and BPS States

We will consider an e↵ective theory emerging in the system of D-branes probing Calabi-
Yau three-fold from the point of view of D-brane worldvolume. The e↵ective field theory
is a quiver SQM with four supercharges [30].

In principle, the SQM setup is well defined for an arbitrary pair (Q,W ). To specify
it completely one needs some extra information which we call the quiver data.

6

Note that there are infinitely many such paths for each a , due to the presence of

loops in the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted

to the coordinate system (6.7), generalizing the coordinate function (5.6). The most

natural way would be to associate a charge hI to each edge I in the quiver diagram,

where I 2 {a ! b} for two vertices a and b (which are possibly identical). We then

define the coordinate function for a to be the sum of all the charges along the path

[o ! a ]:

h( a ) ⌘
X

I 2 path[o! a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom

⇤ is the way to translate the position of the ⇤ to the pole of the charge function

 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first
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We can place the atoms in 3D according to their symmetry charges  
(equivariant parameters corresponding to toric isometries)



Figure 7. The BPS crystal configuration for the Suspended Pinched Point singularity.

We have chosen the vertex 1 of Figure 1 as the origin o of the crystal, whose location is

shown by the blue dot in the center.

2.3 Crystal Melting and Molten Crystal

For a given BPS crystal, we can consider a configuration of the molten crystal.

A finite set K of atoms from the BPS crystal is a configuration of the molten

crystal if it satisfies the following melting rule:

melting rule:

⇤ 2 K whenever there exists an edge I 2 Q1 such that I ·⇤ 2 K .
(2.4)

This is equivalent to the condition that I · ⇤ /2 K whenever ⇤ /2 K, namely the

condition that the complement of K is an ideal of the path algebra A(Q,W ).

Since any path by definition starts at the origin o, it follows that the origin o is

always contained in K, unless K is empty.

The molten configuration K has a finite number of atoms. Denote the number

of atoms with color a as |K(a)|. The statistical partition function of BPS crystal

melting is then defined to be a formal power series5

Z(q1, . . . , q|Q0|) =
X

K

Y

a2Q0

q|K(a)|
a . (2.5)

5 More precisely we need to insert signs for this definition [5, 8].
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discussion seems to be more general than similar discussions of infinite-dimensional

algebra in the literature, e.g. the work of [21] where the Yangian associated with the
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[31] for some toric Calabi-Yau manifolds.3
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Calabi-Yau threefold X. Combinatorially, the choice of X is encoded in the so-called

toric diagram �, a lattice convex polytope in Z2, see Figure 1 for an example.

Figure 1. The toric diagram for a toric Calabi-Yau threefold, the so-called Suspended

Pinched Point geometry xy = z2w.

The BPS states of the theory are described by D-branes (D0/D2/D4-branes)

wrapping holomorphic cycles (0/2/4-cycles) inside the Calabi-Yau threefold X. The

3 The quiver Yangian is conjectured to be the Drinfeld double of CoHA; or inversely, the CoHA
captures the positive part of the quiver Yangian, i.e. the creation part instead of the annihilation
part.
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[Ooguri-MY ‘08]

toric diagram



Figure 8. An example of a configuration of the molten crystal (left) and the complement

(right) for the crystal of Figure 7. This contributes a term q41q
3
2q

2
3 to the BPS partition

function.

The statement is that this coincides with the BPS configuration of the crystal.

The partition function has an infinite product form for the resolved conifold

and more generally for toric Calabi-Yau geometries without compact 4-cycles, as

explained by M-theory [42–44]. This suggests an identification of the BPS partition
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indeed the case.
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the a�ne Yangian of gl1 and the set of plane partitions. We will now review the
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plane partitions.

3.1 A�ne Yangian of gl1

The a�ne Yangian of gl1, which we denote by Y (cgl1), is an infinite-dimensional

associative algebra generated by the following three families of operators:

en ,  n , fn , with n 2 Z�0 , (3.1)
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We can count the number of coordinate parameters to be

Nh = # (edges of the quiver)� (# (monomial terms in the superpotential)� 1) .

(4.2)

Here we have subtracted one from the superpotential constraints, since any bifunda-

mental field appears exactly twice in the superpotential (this follows since each edge

belongs to two neighboring faces in the periodic quiver) and thus one of the con-

straints is redundant. Since each monomial term in the superpotential corresponds

to a polygonal region of the periodic quiver, one can also write this as

Nh = # (edges of the periodic quiver)� (# (faces of the periodic quiver)� 1) .

(4.3)

Since the periodic quiver is written on the two-dimensional torus and has Euler

character zero, one can rewrite this as

Nh = # (vertices of the periodic quiver) + 1

= # (gauge groups of the quiver) + 1 . (4.4)

For a toric Calabi-Yau threefold this number (i.e. # = Nh � 1) is known to be the

same as the area of the toric diagram �, where the normalization of the area is

chosen such that the minimal lattice triangle spanned by the three lattice points

(0, 0), (1, 0), and (0, 1) has area 1. One can then use Pick’s theorem to rewrite this

as

Nh = E + 2I � 1 , (4.5)

where E (resp. I) is the numbers of external (resp. internal) lattice points of the

toric diagram �. We will use {hI}, with I = 1, · · · , |Q1|, to denote the set of charges

associated to the edges of the quiver; and we use {hA}, with A = 1, · · · , Nh, to denote

these Nh independent parameters that characterize the algebra.

4.2 Generators and Relations

The algebra is generated by a triplet of fields (e(a)(u), (a)(u), f (a)(u)) for each quiver

vertex a 2 Q0:

a : e(a)(u) : creation ,  (a)(u) : charge , f (a)(u) : annihilation . (4.6)

Generically, they have the mode expansion:10

e(a)(z) ⌘
+1X

n=0

e(a)n

zn+1
,  (a)(z) ⌘

+1X

n=�1

 (a)
n

zn+1
, f (a)(z) ⌘

+1X

n=0

f (a)
n

zn+1
, (4.7)

10 For the fermionic generators in the NS sector, it might be more natural to expand the e(a)(z)
and f (a)(z) generators in terms of half-integer modes. This will not by relevant within the current
paper, but can be determined once we know the map between the quiver Yangians and the W

algebras.

– 16 –



and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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We use the letter K (in text mode) to label a colored crystal configuration. The

plane partition can be viewed as the simplest colored crystal, with only one color

and the most symmetric shape.

As reviewed earlier in section 2.2, for the construction of the colored crystal we

need to choose an atom as the origin of the crystal. Without loss of generality, we

will choose the atom at the origin to be of color a = 1.24 It corresponds to the level-1

box 1 in (5.8).

In the C3 case, where there is only one type of atom, the algebra has a triplet of

fields, i.e. family of generators, (e(z), (z), f(z)), see (5.3), acting on all the atoms

in the crystal (or equivalently, all the ⇤’s in the plane partition). For a generic toric

Calabi-Yau whose corresponding crystal has |Q0| colors, we need |Q0| triplets of fields

labelled by a 2 Q0, each acting on the atoms of the corresponding color as in (4.6);

they have the mode expansion as in (4.7).

Now we write down the ansatz for the action of the fields (4.6) on an arbitrary

crystal configuration |Ki, as a natural generalization of the ansatz (5.4) for the action

of the a�ne Yangian of gl1 on the set of plane partitions:

 (a)(z)|Ki =  (a)
K (z)|Ki ,

e(a)(z)|Ki =
X

a 2Add(K)

E(a)(K ! K+ a )

z � h( a )
|K+ a i ,

f (a)(z)|Ki =
X

a 2Rem(K)

F (a)(K ! K� a )

z � h( a )
|K� a i ,

(6.2)

for a = 1, . . . , |Q0|, where

E(a)(K ! K+ a ) ⌘ ✏(K ! K+ a )

r
p(a)Res

u=h( a )
 (a)

K (u)

F (a)(K ! K� a ) ⌘ ✏(K ! K� a )

r
q(a)Res

u=h( a )
 (a)

K (u) ,

(6.3)

with

✏(K ! K+ a ) = ± and ✏(K ! K� a ) = ± . (6.4)

Here a 2 Add(K) means that we consider an atom of color a which can be added

to the crystal K (a similar comment applies to a 2 Rem(K)).

24It is easy to generalize to representations with superpositions of colored crystals with the atom
at the origin o having colors other than a = 1, see section 6.3.2. However, the algebra obtained from
such more general representations (i.e. tensored representations of crystals starting with di↵erent
a ) via the bootstrap procedure would be the same as the one obtained using the crystal starting

with 1 .
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a 2Add(K)

E(a)(K ! K+ a )

z � h( a )
|K+ a i ,

f (a)(z)|Ki =
X

a 2Rem(K)

F (a)(K ! K� a )

z � h( a )
|K� a i ,

(6.2)

for a = 1, . . . , |Q0|, where

E(a)(K ! K+ a ) ⌘ ✏(K ! K+ a )

r
p(a)Res

u=h( a )
 (a)

K (u)

F (a)(K ! K� a ) ⌘ ✏(K ! K� a )

r
q(a)Res

u=h( a )
 (a)

K (u) ,

(6.3)

with

✏(K ! K+ a ) = ± and ✏(K ! K� a ) = ± . (6.4)

Here a 2 Add(K) means that we consider an atom of color a which can be added

to the crystal K (a similar comment applies to a 2 Rem(K)).

24It is easy to generalize to representations with superpositions of colored crystals with the atom
at the origin o having colors other than a = 1, see section 6.3.2. However, the algebra obtained from
such more general representations (i.e. tensored representations of crystals starting with di↵erent
a ) via the bootstrap procedure would be the same as the one obtained using the crystal starting

with 1 .
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Note that there are infinitely many such paths for each a , due to the presence of

loops in the periodic quiver.

For each color a, we would like to define a coordinate function that is adapted

to the coordinate system (6.7), generalizing the coordinate function (5.6). The most

natural way would be to associate a charge hI to each edge I in the quiver diagram,

where I 2 {a ! b} for two vertices a and b (which are possibly identical). We then

define the coordinate function for a to be the sum of all the charges along the path

[o ! a ]:

h( a ) ⌘
X

I 2 path[o! a ]

hI . (6.8)

Recall that in the case of plane partitions, the coordinate function for an atom

⇤ is the way to translate the position of the ⇤ to the pole of the charge function

 ⇤(z). We need the same for the colored crystal. Therefore, although for a given

a , the path [o ! a ] is not unique, we need its coordinate function to be uniquely

defined, in order to associate it to the poles of  (a)
K (z). This requires that the sum

over charges on the edges around any loop has to vanish, which is precisely the loop

constraint (??). This condition is the generalization of (5.33) for plane partitions.

6.3 Fixing Charge Function

We are now ready to fix the charge function  (a)
K (z) for an arbitrary colored crystal

K and any color a.

6.3.1 Ansatz

Generically, the charge function of  (a)
K (z) can receive contributions from all the

atoms in the crystal configuration K. Generalizing the result for C3 in (3.19), we

write down the ansatz for the charge function  (a)
K (z)

 (a)
K (u) =  (a)

0 (z)
Y

b2Q0

Y

b 2K

'b)a(u� h( b )) , (6.9)

where  (a)
0 (z) is the vacuum contribution, and we have grouped the atoms in K by

their colors, with the color label b running over all vertices in the quiver diagram,

including the color a itself. For each color a, each atom of color b contributes a

factor of 'b)a function, with argument shifted by the coordinate function of that

atom h( b ), given by (??) with the charges subject to the loop constraint (??).

Given the ansatz for the charge function (??), the goal is to determine the bond

factor 'b)a(z) (so called because it describes the “bonding” between atoms of color

a and those of color b). We use the ansatz for the algebra’s action (6.2) on crystals

|Ki, following the procedure outline in section 6.1. As in the case of C3, we first
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and contain infinitely many generators e(a)n , (a)
n , f (a)

n . As we will show later in sec-

tion 8, for Calabi-Yau threefolds without compact 4-cycles,  (a)
n<�1 = 0 and  (a)

�1 = 1.

We express the Z2-grading (i.e. the Bose/Fermi statistics) of the generators

e(a)n , f (a)
n of the generators) to be

grading rule: |a| =

(
0 (9I 2 Q1 such that s(I) = t(I) = a) ,

1 (otherwise) ,
(4.8)

with |a| = 0 (|a| = 1) for bosonic (fermionic) generators. The operators  (a)
n are

Cartan and hence are set to be even.

4.2.1 Relations in Terms of Fields

The generators satisfy the OPE relations

 (a)(z) (b)(w) =  (b)(w) (a)(z) ,

 (a)(z) e(b)(w) ' 'b)a(�) e(b)(w) (a)(z) ,

e(a)(z) e(b)(w) ⇠ (�1)|a||b|'b)a(�) e(b)(w) e(a)(z) ,

 (a)(z) f (b)(w) ' 'b)a(�)�1 f (b)(w) (a)(z) ,

f (a)(z) f (b)(w) ⇠ (�1)|a||b|'b)a(�)�1 f (b)(w) f (a)(z) ,

⇥
e(a)(z), f (b)(w)

 
⇠ ��a,b

 (a)(z)�  (b)(w)

z � w
,

(4.9)

where throughout this paper “'” means equality up to znwm�0 terms, “⇠” means

equality up to zn�0wm and znwm�0 terms, and finally

� ⌘ z � w . (4.10)

The bracket [e(a)(z), f (b)(w)} represents the commutator in the superalgebra sense.

Namely, it is an anti-commutator {e(a)(z), f (b)(w)} when both a and b are odd, and

is a commutator [e(a)(z), f (b)(w)] otherwise.

The function 'a)b(z), which we call the “bond factor” since roughly speaking it

describes the “bonding” between atoms of color a and atoms of color b, is defined to

be

'a)b(u) ⌘

Q
I2{b!a}(u+ hI)Q
I2{a!b}(u� hI)

, (4.11)

where {a! b} denotes the set of edges from vertex a to vertex b. When there is no

arrow between vertex a and vertex b in the quiver (denoted as a 6 ! b), the bond

factor is trivial:

a 6 ! b : 'a)b(u) = 'b)a(u) ⌘ 1 ; (4.12)
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Figure 4: This figure shows an example of three-dimensional version of Young
diagram (a). If you rotate (a) by 180 degrees, we have (b), which looks like
melting of a crystal. By projecting this figure onto two-dimensions, we have a
perfect matching of a bipartite graph defined on honeycomb bipartite graph
(c), or equivalently tiling of plane using three types of rhombi shown in (d)
(this is an analogue of “domino tiling” in Figure 2). This one-to-one corre-
spondence between three-dimensional Young diagram and perfect matching
in dimer model is a higher-dimensional generalization of more familiar cor-
respondence shown in Figure 3. The interesting fact is that this type of
three-dimensional Young diagram appears in string theory, in the “melting
crystal” picture of [21].

8

There is a corresponding truncation  
of the algebra 

studied by [Gaiotto-Rapcak] 
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cf. stable envelope of [Maulik-Okounov] 
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