Holomorphic maps between generalized complex manifolds

Liviu Ornea

University of Bucharest
and
Institute of Mathematics “Simion Stoilow” of the Romanian Academy

based on joint work with Radu Pantilie

January 4-9, 2009, IPMU, Tokyo
V real vector space, $\dim V = n$. $V^\mathbb{C} = V \otimes \mathbb{C}$.
The linear picture

V real vector space, $\dim V = n$. $V^\mathbb{C} = V \otimes \mathbb{C}$.

Linear CR-structure on V

$C \subset V^\mathbb{C}$ s.t. $C \cap \overline{C} = \{0\}$.

Linear co-CR-structure on V

$D \subset V^\mathbb{C}$ s.t. $D + D = V^\mathbb{C}$.

Co-CR is the dual notion to CR: D is co-CR \iff $\text{Ann}(D)$ is CR in $(V^\mathbb{C})^\ast$.

If J is a complex structure on V, then the corresponding $V_{1,0}$ and $V_{0,1}$ are both CR and co-CR.

Linear CR and co-CR maps $t: (V, C_V) \to (W, C_W)$ linear s.t. $t(C_V) \subseteq C_W$.

$t: (V, D_V) \to (W, D_W)$ linear s.t. $t(D_V) \subseteq D_W$.
The linear picture

V real vector space, dim $V = n$. $V^C = V \otimes \mathbb{C}$.

Linear CR-structure on V

$C \subset V^C$ s.t. $C \cap \overline{C} = \{0\}$.

Linear co-CR-structure on V

$D \subset V^C$ s.t. $D + \overline{D} = V^C$.

Co-CR is the dual notion to CR: D is co-CR $\iff \text{Ann}(D)$ is CR in $(V^C)^*$.

If J is a complex structure on V, then the corresponding $V_{1,0}$ and $V_{0,1}$ are both CR and co-CR.

Linear CR and co-CR maps $t : (V, C_V) \to (W, C_W)$ linear s.t. $t(C_V) \subseteq C_W$.

$t : (V, D_V) \to (W, D_W)$ linear s.t. $t(D_V) \subseteq D_W$.
The linear picture

<table>
<thead>
<tr>
<th>V real vector space, dim V = n. (V^\mathbb{C} = V \otimes \mathbb{C}).</th>
</tr>
</thead>
<tbody>
<tr>
<td>Linear CR-structure on (V)</td>
</tr>
<tr>
<td>(C \subset V^\mathbb{C}) s.t. (C \cap \overline{C} = {0}).</td>
</tr>
<tr>
<td>Linear co-CR-structure on (V)</td>
</tr>
<tr>
<td>(D \subset V^\mathbb{C}) s.t. (D + \overline{D} = V^\mathbb{C}).</td>
</tr>
</tbody>
</table>

- Co-CR is the dual notion to CR:
The linear picture

V real vector space, **dim** $V = n$. $V^\mathbb{C} = V \otimes \mathbb{C}$.

<table>
<thead>
<tr>
<th>Linear CR-structure on V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$C \subset V^\mathbb{C}$ s.t. $C \cap \overline{C} = {0}$.</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Linear co-CR-structure on V</th>
</tr>
</thead>
<tbody>
<tr>
<td>$D \subset V^\mathbb{C}$ s.t. $D + \overline{D} = V^\mathbb{C}$.</td>
</tr>
</tbody>
</table>

- Co-CR is the dual notion to CR:
- D is co-CR \iff $\text{Ann}(D)$ is CR in $(V^\mathbb{C})^*$.
The linear picture

- **V** real vector space, $\dim V = n$. $V^\mathbb{C} = V \otimes \mathbb{C}$.

Linear CR-structure on V

- $C \subset V^\mathbb{C}$ s.t. $C \cap \overline{C} = \{0\}$.

Linear co-CR-structure on V

- $D \subset V^\mathbb{C}$ s.t. $D + \overline{D} = V^\mathbb{C}$.

- Co-CR is the dual notion to CR:
 - D is co-CR \iff $\text{Ann}(D)$ is CR in $(V^\mathbb{C})^*$.
 - If J is a complex structure on V, then the corresponding $V^{1,0}$ and $V^{0,1}$ are both CR and co-CR.
The linear picture

- V real vector space, $\dim V = n$. $V^\mathbb{C} = V \otimes \mathbb{C}$.

Linear CR-structure on V

- $C \subset V^\mathbb{C}$ s.t. $C \cap \overline{C} = \{0\}$.

Linear co-CR-structure on V

- $D \subset V^\mathbb{C}$ s.t. $D + \overline{D} = V^\mathbb{C}$.

- Co-CR is the dual notion to CR:
 - D is co-CR \iff $\text{Ann}(D)$ is CR in $(V^\mathbb{C})^*$.
 - If J is a complex structure on V, then the corresponding $V^{1,0}$ and $V^{0,1}$ are both CR and co-CR.

Linear CR and co-CR maps

- $t : (V, C_V) \to (W, C_W)$ linear s.t. $t(C_V) \subseteq C_W$.
- $t : (V, D_V) \to (W, D_W)$ linear s.t. $t(D_V) \subseteq D_W$.
Linear f-structure on V

$F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues $0, \pm i$. Moreover:
Linear f-structure on V

$F \in \operatorname{End}(V)$ with $F^3 + F = 0$. Accordingly:

- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues $0, \pm i$. Moreover:
- $C := V^{1,0}$ is a CR structure,
Linear f-structure on V

$F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues $0, \pm i$. Moreover:
 - $C := V^{1,0}$ is a CR structure,
 - $D := V^0 \oplus V^{1,0}$ is a co-CR structure.
Linear f-structure on V

$F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:
- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues 0, $\pm i$. Moreover:
- $C := V^{1,0}$ is a CR structure,
- $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

$t : (V, F_V) \to (W, F_W)$ linear s.t. $t \circ F_V = F_W \circ t$.
Linear f-structure on V

$F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:
- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues $0, \pm i$. Moreover:
 - $C := V^{1,0}$ is a CR structure,
 - $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

$t : (V, F_V) \to (W, F_W)$ linear s.t. $t \circ F_V = F_W \circ t$.
Equivalently: $t(C_V) \subseteq C_W$ and $t(D_V) \subseteq D_W$.
Linear f-structure on V

$F \in \text{End}(V)$ with $F^3 + F = 0$. Accordingly:

- $V^C = V^0 \oplus V^{1,0} \oplus V^{0,1}$, corresponding to the eigenvalues $0, \pm i$. Moreover:
 - $C := V^{1,0}$ is a CR structure,
 - $D := V^0 \oplus V^{1,0}$ is a co-CR structure.

f-linear maps

$t : (V, F_V) \to (W, F_W)$ linear s.t. $t \circ F_V = F_W \circ t$.

Equivalently: $t(C_V) \subseteq C_W$ and $t(D_V) \subseteq D_W$.

t is f-linear \iff it is both CR and co-CR map.
Linear generalized complex structures

\[L = L(E, \varepsilon) \subset V^C \oplus (V^C)^* \] which is maximally isotropic of 0 real index:

\[L \cap L = \{0\} . \]
Linear generalized complex structures

\[L = L(E, \varepsilon) \subset V^C \oplus (V^C)^* \] which is

- maximally isotropic
Linear generalized complex structures

\[L = L(E, \varepsilon) \subset V^C \oplus (V^C)^* \] which is

- maximally isotropic
- of 0 real index: \(L \cap \overline{L} = \{0\} \).
CR, co-CR and f-structures in generalized complex geometry

Linear generalized complex structures

$L = L(E, \varepsilon) \subset V^\mathbb{C} \oplus (V^\mathbb{C})^*$ which is

- maximally isotropic
- of 0 real index: $L \cap \overline{L} = \{0\}$.

Induced structures

- As $E + \overline{E} = V^\mathbb{C}$, E is a co-CR structure.
Linear generalized complex structures

\[L = L(E, \varepsilon) \subset V^\mathbb{C} \oplus (V^\mathbb{C})^* \] which is

- maximally isotropic
- of 0 real index: \(L \cap \overline{L} = \{0\} \).

Induced structures

- As \(E + \overline{E} = V^\mathbb{C} \), \(E \) is a co-CR structure.
- \(E \cap \overline{E} = \Delta^\mathbb{C} \) and \(\text{Im}(\varepsilon|_{E \cap \overline{E}}) \) is non-degenerate.
CR, co-CR and f-structures in generalized complex geometry

Linear generalized complex structures

$L = L(E, \varepsilon) \subset V^C \oplus (V^C)^*$ which is
- maximally isotropic
- of 0 real index: $L \cap \overline{L} = \{0\}$.

Induced structures

- As $E + \overline{E} = V^C$, E is a co-CR structure.
- $E \cap \overline{E} = \Delta^C$ and $\text{Im}(\varepsilon|_{E \cap \overline{E}})$ is non-degenerate.

Call $L(E \cap \overline{E}, \text{Im}(\varepsilon|_{E \cap \overline{E}}))$ the associated linear Poisson structure.
Generalized complex structure in normal form

Compatible f structure and 2-form

If there exist F and $\omega \in \Lambda^2 V^*$ s.t.

$\omega|_{V_0}$ is non-degenerate.
If there exist F and $\omega \in \Lambda^2 V^*$ s.t.

- $\omega|_{V^0}$ is non-degenerate.
- $\text{Ker}\omega = V^{1,0} \oplus V^{0,1}$,
Compatible f structure and 2-form

If there exist F and $\omega \in \Lambda^2 V^*$ s.t.
- $\omega|_{V^0}$ is non-degenerate.
- $\text{Ker}\omega = V_1 \oplus V_0 \oplus V_0 \oplus V_1$,

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then L is in normal form.
If there exist F and $\omega \in \Lambda^2 V^*$ s.t.
- $\omega|_{V_0}$ is non-degenerate.
- $\text{Ker}\omega = V^{1,0} \oplus V^{0,1}$,

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then L is in \textit{normal form}.

The associated linear Poisson structure is then $L(V^0, \omega)$, with bivector denoted η.

Compatible f structure and 2-form

If there exist F and $\omega \in \Lambda^2 V^*$ s.t.
- $\omega|_{V^0}$ is non-degenerate.
- $\text{Ker} \omega = V^{1,0} \oplus V^{0,1},$

and $L = L(V^0 \oplus V^{1,0}, i\omega)$, then L is in normal form. The associated linear Poisson structure is then $L(V^0, \omega)$, with bivector denoted η.

Normal form in tensorial language

The corresponding \mathcal{J} is written as

$$\mathcal{J} = \begin{pmatrix} F & \eta \\ -\omega & -F^* \end{pmatrix}.$$
Theorem

Given a generalized complex structure L and a f-structure F s.t. $E = \pi(L)$ is the co-CR structure associated to F,

$$B =\begin{cases} -\text{Re}(\varepsilon) & \text{on } V_0 \\ -\varepsilon & \text{on } V_1 \end{cases}$$

and $V_0 \otimes V_1$, 0.

The only freedom is in the choice of F and, in fact, only the splitting of $V_0 \oplus V_1$ is to be chosen.
Given a generalized complex structure L and a f-structure F s.t. $E = \pi(L)$ is the co-CR structure associated to F, there exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated f-structure F.
Theorem

Given a generalized complex structure L and a f-structure F s.t. $E = \pi(L)$ is the co-CR structure associated to F,

There exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated f-structure F.

$$B = \begin{cases}
- \text{Re}(\varepsilon) & \text{on } V^0 \\
-\varepsilon & \text{on } V^{1,0} \text{ and } V^0 \otimes V^{1,0}
\end{cases}.$$
Theorem

Given a generalized complex structure L and a f-structure F s.t. $E = \pi(L)$ is the co-CR structure associated to F,

There exists a unique $B \in \Lambda^2 V^*$ s.t. $e^B(L)$ is in normal form, with associated f-structure F.

$$B = \begin{cases}
- \text{Re}(\varepsilon) & \text{on } V^0 \\
-\varepsilon & \text{on } V^{1,0} \text{ and } V^0 \otimes V^{1,0}
\end{cases}.$$

The only freedom is in the choice of F and, in fact, only the splitting of $V^0 \oplus V^{1,0}$ is to be chosen.
A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is
- Poisson and
- co-CR
w.r.t. the associated structures.
A linear map $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is
- Poisson and
- co-CR

w.r.t. the associated structures.
Holomorphic linear maps

Definition

A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is
- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under B-transforms.
Holomorphic linear maps

Definition

A linear $t : (V, L_V) \rightarrow (W, L_W)$ is holomorphic if it is
- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under B-transforms.

Equivalences

- t is holomorphic.
Holomorphic linear maps

Definition

A linear \(t : (V, L_V) \to (W, L_W) \) is holomorphic if it is
- Poisson and
- co-CR

w.r.t. the associated structures.

The definition is invariant under \(B \)-transforms.

Equivalences

- \(t \) is holomorphic.
- Up to \(B \)-transforms, \(L_V \) and \(L_W \) are in canonical form and \(t \) is Poisson \(f \)-linear.
Holomorphic linear maps

Definition
A linear $t : (V, L_V) \to (W, L_W)$ is holomorphic if it is
- Poisson and
- co-CR
w.r.t. the associated structures.

The definition is invariant under B-transforms.

Equivalences
- t is holomorphic.
- Up to B-transforms, L_V and L_W are in canonical form and t is Poisson f-linear.
- Up to B-transforms, $t = t_1 \oplus t_2$, with t_1 (resp. t_2) a Poisson (resp. complex) map between symplectic (resp. complex) vector spaces.
A generalized complex structure on M induces almost CR, co-CR and almost f structure.
A generalized complex structure on M induces almost CR, co-CR and almost f structure. For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures.
A generalized complex structure on M induces almost CR, co-CR and almost f structure.

For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures.

$f : M \to N$ is CR, co-CR, f-holomorphic if f_\ast is ...
A generalized complex structure on M induces almost CR, co-CR and almost f structure. For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures.

$f : M \rightarrow N$ is CR, co-CR, f-holomorphic if f_\ast is ...

Definition

$\varphi : M \rightarrow N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to B-transforms of M and N, $\varphi\big|_U$ is a Poisson, f-holomorphic map between generalized complex structures in normal form.
A generalized complex structure on M induces almost CR, co-CR and almost f structure. For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures.

$f : M \rightarrow N$ is CR, co-CR, f-holomorphic if f_\ast is ...

Definition

$\varphi : M \rightarrow N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to B-transforms of M and N, $\varphi|_U$ is a Poisson, f-holomorphic map between generalized complex structures in normal form.

- A holomorphic map takes regular points to regular points.
A generalized complex structure on M induces almost CR, co-CR and almost f structure. For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures. $f : M \rightarrow N$ is CR, co-CR, f-holomorphic if f_\ast is ...

Definition

$\varphi : M \rightarrow N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to B-transforms of M and N, $\varphi \big|_U$ is a Poisson, f-holomorphic map between generalized complex structures in normal form.

- A holomorphic map takes regular points to regular points.
- If φ is diffeo, then holomorphicity is equivalent to $\varphi_\ast(L_M) = L_N$ up to B transforms.
A generalized complex structure on M induces almost CR, co-CR and almost f structure. For CR and co-CR, integrability means closure under Lie bracket. For f-structures, integrability is defined as integrability of the associated CR and co-CR structures.

$f : M \rightarrow N$ is CR, co-CR, f-holomorphic if f_* is ...

Definition

$\varphi : M \rightarrow N$ is holomorphic if $\forall x \in M$ regular, $\exists U \ni x$ s.t., up to B-transforms of M and N, $\varphi|_U$ is a Poisson, f-holomorphic map between generalized complex structures in normal form.

- A holomorphic map takes regular points to regular points.
- If φ is diffeo, then holomorphicity is equivalent to $\varphi_*(L_M) = L_N$ up to B transforms.
- Composition preserves holomorphicity.
From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions \(\varphi : M \to P \) s.t. \(\varphi^*(L) \) is a Poisson structure and \(L = \varphi^*(\varphi^*(L)) \).
From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions \(\varphi : M \to P \) s.t. \(\varphi^*(L) \) is a Poisson structure and \(L = \varphi^*(\varphi^*(L)) \).

one obtains:
From the

Local structure of Dirac manifolds

Locally, around regular points, there exist submersions
\(\varphi : M \to P \) s.t. \(\varphi^*(L) \) is a Poisson structure and \(L = \varphi^*(\varphi^*(L)) \).

one obtains:

Theorem

Let \((M, L_M)\) and \((N, L_N)\) be regular real analytic generalized complex manifolds and let \(\varphi : M \to N \) be a real analytic map. If \(\varphi \) is holomorphic then, locally, up to the complexification of a real analytic \(B \)-field tranformation, the complexification of \(\varphi \) descends to a complex analytic Poisson morphism between the canonical Poisson quotients.
Let \((M, g)\) be generalized complex in normal form with \(L = L(E, i\varepsilon)\).
Let \((M, g)\) be generalized complex in normal form with \(L = L(E, i\varepsilon)\).
Choose a compatible \(f\)-structure \(F\).
Let (M, g) be generalized complex in normal form with $L = L(E, i\varepsilon)$. Choose a compatible f-structure F. Quotient to T^0M (integrable) to obtain local submersions $\varphi : M \to (N, J)$. On N consider the canonical generalized complex structure J. It is in normal form. As φ is f-holomorphic between g.c. structures in normal form, φ is holomorphic.
Let \((M, g)\) be generalized complex in normal form with
\[L = L(E, i\varepsilon). \]
Choose a compatible \(f\)-structure \(F\).
Quotient to \(T^0 M\) (integrable) to obtain local submersions
\[\varphi : M \to (N, J). \]
On \(N\) consider the canonical generalized complex structure \(\mathcal{J}_J\). It is in normal form.
Let \((M, g)\) be generalized complex in normal form with \(L = L(E, i\epsilon)\).

Choose a compatible \(f\)-structure \(F\).

Quotient to \(T^0M\) (integrable) to obtain local submersions \(\varphi : M \to (N, J)\).

On \(N\) consider the canonical generalized complex structure \(J_J\). It is in normal form.

As \(\varphi\) is \(f\)-holomorphic between g.c. structures in normal form, \(\varphi\) is holomorphic.
Let \((M, g)\) be generalized complex in normal form with
\[L = L(E, i\varepsilon). \]
Choose a compatible \(f\)-structure \(F\).
Quotient to \(T^0M\) (integrable) to obtain local submersions
\[\varphi : M \to (N, J). \]
On \(N\) consider the canonical generalized complex structure \(J\). It is in normal form.
As \(\varphi\) is \(f\)-holomorphic between g.c. structures in normal form, \(\varphi\) is holomorphic.

Proposition

\(E\) is co-isotropic w.r.t. \(g^C\) \(\iff\) \(\varphi|_{E\cap\overline{E}}\) is pseudo-horizontally conformal (p.h.c.) \(i.e.\) it pulls back \((1, 0)\)-forms into isotropic forms.
Let \((M, g)\) be generalized complex in normal form with
\[L = L(E, i\varepsilon). \]
Choose a compatible \(f\)-structure \(F\).
Quotient to \(T^0M\) (integrable) to obtain local submersions
\[\varphi : M \rightarrow (N, J). \]
On \(N\) consider the canonical generalized complex structure \(J_J\). It is in normal form.
As \(\varphi\) is \(f\)-holomorphic between g.c. structures in normal form,
\(\varphi\) is holomorphic.

Proposition

\(E\) is co-isotropic w.r.t. \(g^C\iff \varphi|_{E\cap\overline{E}}\) is pseudo-horizontally conformal (p.h.c.) i.e. it pulls back \((1, 0)\)-forms into isotropic forms.
The notion comes from harmonic morphisms.
Inverse construction

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker} \varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker}\varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let F be the unique g-skew-symmetric f-structure on M s.t.
Inverse construction

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}. Let F be the unique g-skew-symmetric f-structure on M s.t. $\text{Ker}F = \mathcal{V}$, $T^0 M \oplus T^{1,0} M = \varphi^{-1}(T^{1,0} N)$, $T^{0,1} M = \varphi^{-1}(T^{0,1} N)$.
Let $\varphi : (M^{n+2}, g) \rightarrow (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker}\varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let F be the unique g-skew-symmetric f-structure on M s.t. $\text{Ker} F = \mathcal{V}$, $T^0M \oplus T^{1,0}M = \varphi^{-1}(T^{1,0}N)$, $T^{0,1}M = \varphi^{-1}(T^{0,1}N)$, $\omega|_{\mathcal{V}}$ is non-degenerate, $\text{Ker}\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.
Inverse construction

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $V = \text{Ker} \varphi_*$, $H = V^\perp$, ω volume form on V.
Let F be the unique g-skew-symmetric f-structure on M s.t.
$\text{Ker} F = V$, $T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0} N)$, $T^{0,1} M = \varphi_*^{-1}(T^{0,1} N)$,
$\omega|_V$ is non-degenerate, $\text{Ker} \omega = H \Rightarrow F$, ω are compatible.
Let $L = L(E, i\omega)$ (in normal form), with $E = V \oplus H^{1,0}$.
Inverse construction

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker}\varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let F be the unique g-skew-symmetric f-structure on M s.t.
$\text{Ker}F = \mathcal{V}$, $T^0M \oplus T^{1,0}M = \varphi_*^{-1}(T^{1,0}N)$, $T^{0,1}M = \varphi_*^{-1}(T^{0,1}N)$,
$\omega|\mathcal{V}$ is non-degenerate, $\text{Ker}\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.
Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \iff J is integrable, \mathcal{V} has minimal leaves and
$A(X, Y) := [X, Y]^\mathcal{V}$ is $(1, 1)$ w.r.t. F.

Inverse construction

Let $\varphi : (M^{n+2}, g) \rightarrow (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker} \varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let F be the unique g-skew-symmetric f-structure on M s.t.
$\text{Ker} F = \mathcal{V}$, $T^0 M \oplus T^{1,0} M = \varphi_*^{-1}(T^{1,0} N)$, $T^{0,1} M = \varphi_*^{-1}(T^{0,1} N)$,
$\omega|_{\mathcal{V}}$ is non-degenerate, $\text{Ker} \omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.
Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable \iff J is integrable, \mathcal{V} has minimal leaves and
$A(X, Y) := [X, Y]^\mathcal{V}$ is (1, 1) w.r.t. F.
For $n = 2$, L integrable $\iff \varphi$ is a harmonic morphism.
Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion.
Let $\mathcal{V} = \text{Ker}\varphi_*, \mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}.
Let F be the unique g-skew-symmetric f-structure on M s.t.
$\text{Ker} F = \mathcal{V}$, $T^0 M \oplus T^{1,0} M = \varphi^{-1}(T^{1,0} N)$, $T^{0,1} M = \varphi^{-1}(T^{0,1} N)$,
$\omega|_\mathcal{V}$ is non-degenerate, $\text{Ker}\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.
Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable $\iff J$ is integrable, \mathcal{V} has minimal leaves and
$A(X, Y) := [X, Y]^{\mathcal{V}}$ is $(1, 1)$ w.r.t. F.
For $n = 2$, L integrable $\iff \varphi$ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.:
Inverse construction

Let \(\varphi : (M^{n+2}, g) \to (N^n, J) \) be a p.h.c. submersion.
Let \(\mathcal{V} = \text{Ker} \varphi_* \), \(\mathcal{H} = \mathcal{V}^\perp \), \(\omega \) volume form on \(\mathcal{V} \).
Let \(F \) be the unique \(g \)-skew-symmetric \(f \)-structure on \(M \) s.t.
\(\text{Ker} F = \mathcal{V} \), \(T^0 M \oplus T^{1,0} M = \varphi^{-1}(T^{1,0} N) \), \(T^{0,1} M = \varphi^{-1}(T^{0,1} N) \),
\(\omega|_{\mathcal{V}} \) is non-degenerate, \(\text{Ker} \omega = \mathcal{H} \Rightarrow F, \omega \) are compatible.
Let \(L = L(E, i\omega) \) (in normal form), with \(E = \mathcal{V} \oplus \mathcal{H}^{1,0} \).

\(L \) is integrable \(\iff \) \(J \) is integrable, \(\mathcal{V} \) has minimal leaves and
\(A(X, Y) := [X, Y]^\mathcal{V} \) is \((1, 1)\) w.r.t. \(F \).
For \(n = 2 \), \(L \) integrable \(\iff \varphi \) is a harmonic morphism.

A generalized complex structure in normal form on a \((M, g)\) s.t.:
the associated \(f \)-structure is \(g \)-skew,
the induced Poisson structure has rank 2,
\(\|\omega\| = 1 \).
Inverse construction

Let $\varphi : (M^{n+2}, g) \to (N^n, J)$ be a p.h.c. submersion. Let $\mathcal{V} = \text{Ker}\varphi_*$, $\mathcal{H} = \mathcal{V}^\perp$, ω volume form on \mathcal{V}. Let F be the unique g-skew-symmetric f-structure on M s.t. $\text{Ker}F = \mathcal{V}$, $T^0 M \oplus T^{1,0} M = \varphi^{-1}(T^{1,0} N)$, $T^{0,1} M = \varphi^{-1}(T^{0,1} N)$, $\omega|_{\mathcal{V}}$ is non-degenerate, $\text{Ker}\omega = \mathcal{H} \Rightarrow F, \omega$ are compatible.

Let $L = L(E, i\omega)$ (in normal form), with $E = \mathcal{V} \oplus \mathcal{H}^{1,0}$.

L is integrable $\iff J$ is integrable, \mathcal{V} has minimal leaves and $A(X, Y) := [X, Y]^{\mathcal{V}}$ is $(1, 1)$ w.r.t. F.

For $n = 2$, L integrable $\iff \varphi$ is a harmonic morphism.

A generalized complex structure in normal form on a (M, g) s.t.:
the associated f-structure is g-skew,
the induced Poisson structure has rank 2,
$\|\omega\| = 1$,
is locally of this form.
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(\mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1\) and \(\mathcal{J}_1 \mathcal{J}_2 < 0\).
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(\mathcal{I}_1 \mathcal{I}_2 = \mathcal{I}_2 \mathcal{I}_1\) and \(\mathcal{I}_1 \mathcal{I}_2 < 0\).
By projection on \(TM\) this gives \((g, b, J_+, J_-)\).
(M, L₁, L₂) s.t. J₁J₂ = J₂J₁ and J₁J₂ < 0. By projection on TM this gives (g, b, J⁺, J⁻). Let V± be the i-eigenbundle of J±.
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(J_1 J_2 = J_2 J_1\) and \(J_1 J_2 < 0\). By projection on \(TM\) this gives \((g, b, J_+, J_-)\).

Let \(V^\pm\) be the \(i\)-eigenbundle of \(J^\pm\).

Let \(L^\pm = \{X + (b \pm g)(X) \mid X \in V^\pm\}\).
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(\mathcal{I}_1 \mathcal{I}_2 = \mathcal{I}_2 \mathcal{I}_1\) and \(\mathcal{I}_1 \mathcal{I}_2 < 0\).

By projection on \(TM\) this gives \((g, b, J_+, J_-)\).

Let \(V^\pm\) be the \(i\)-eigenbundle of \(J^\pm\).

Let \(L^\pm = \{X + (b \pm g)(X) \mid X \in V^\pm\}\).

Then \(L_1 = L^+ \oplus L^-\), \hspace{1cm} L_2 = L^+ \oplus L^-\).
Generalized Kähler manifolds

$$(M, L_1, L_2) \text{ s.t. } J_1 J_2 = J_2 J_1 \text{ and } J_1 J_2 < 0.$$
By projection on TM this gives (g, b, J_+, J_-).

Let V^\pm be the i-eigenbundle of J^\pm.

Let $L^\pm = \{ X + (b \pm g)(X) \mid X \in V^\pm \}$.

Then $L_1 = L^+ \oplus L^-$, \quad $L_2 = L^+ \oplus L^-$.

Theorem (Gualtieri)

L_1 and L_2 Courant-integrable \iff L^\pm integrable \iff J^\pm integrable and parallel w.r.t. $\nabla^\pm := \nabla^g \pm \frac{1}{2} g^{-1} h$, $h = db$.
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(\mathcal{I}_1\mathcal{I}_2 = \mathcal{I}_2\mathcal{I}_1\) and \(\mathcal{I}_1\mathcal{I}_2 < 0\). By projection on \(TM\) this gives \((g, b, J_+, J_-)\).

Let \(V^\pm\) be the \(i\)-eigenbundle of \(J_\pm\).

Let \(L^\pm = \{X + (b \pm g)(X) | X \in V^\pm\}\).

Then \(L_1 = L^+ \oplus L^-\), \(L_2 = L^+ \oplus \overline{L^-}\).

Theorem (Gualtieri)

\(L_1\) and \(L_2\) Courant-integrable \(\iff L^\pm\) integrable \(\iff J_\pm\) integrable and parallel w.r.t. \(\nabla^\pm := \nabla g \pm \frac{1}{2}g^{-1}h, h = db\).

Canonical \(f\)-structures

Let \(E_j = \pi(L_j)\) \((j = 1, 2)\). Then \(E_1 = V^+ + V^-\), \(E_2 = V^+ + \overline{V^-}\).
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(J_1 J_2 = J_2 J_1\) and \(J_1 J_2 < 0\).

By projection on \(TM\) this gives \((g, b, J_+, J_-)\).

Let \(V^\pm\) be the \(i\)-eigenbundle of \(J_\pm\).

Let \(L^\pm = \{X + (b \pm g)(X) \mid X \in V^\pm\}\).

Then \(L_1 = L^+ \oplus L^-, \quad L_2 = L^+ \oplus L^-\).

Theorem (Gualtieri)

\(L_1\) and \(L_2\) Courant-integrable \(\iff\) \(L^\pm\) integrable \(\iff\) \(J_{\pm}\) integrable and parallel w.r.t. \(\nabla^\pm := \nabla g \pm \frac{1}{2} g^{-1} h, \ h = db\).

Canonical \(f\)-structures

Let \(E_j = \pi(L_j)\) \((j = 1, 2)\). Then \(E_1 = V^+ + V^-, \ E_2 = V^+ + \overline{V^-}\).

Then \(E_1^\perp = V^+ \cap V^-, \ E_2^\perp = V^+ \cap \overline{V^-}\) and hence:
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(J_1 J_2 = J_2 J_1\) and \(J_1 J_2 < 0\).
By projection on \(TM\) this gives \((g, b, J_+, J_-)\).
Let \(V^\pm\) be the i-eigenbundle of \(J^\pm\).
Let \(L^\pm = \{X + (b \pm g)(X) \mid X \in V^\pm\}\).
Then \(L_1 = L^+ \oplus L^-\), \(L_2 = L^+ \oplus L^-\).

Theorem (Gualtieri)

\(L_1\) and \(L_2\) Courant-integrable \(\iff\) \(L^\pm\) integrable \(\iff\) \(J^\pm\) integrable
and parallel w.r.t. \(\nabla^\pm := \nabla g \pm \frac{1}{2} g^{-1} h\), \(h = db\).

Canonical f-structures

Let \(E_j = \pi(L_j)\) \((j = 1, 2)\). Then \(E_1 = V^+ + V^-\), \(E_2 = V^+ + \overline{V^-}\).
Then \(E_1^\perp = V^+ \cap V^-\), \(E_2^\perp = V^+ \cap \overline{V^-}\) and hence:
\(E_1, E_2\) are coisotropic w.r.t. \(g^\mathbb{C}\).
Generalized Kähler manifolds

\((M, L_1, L_2)\) s.t. \(\mathcal{J}_1\mathcal{J}_2 = \mathcal{J}_2\mathcal{J}_1\) and \(\mathcal{J}_1\mathcal{J}_2 < 0\).

By projection on \(TM\) this gives \((g, b, J_+, J_-)\).

Let \(V^\pm\) be the \(i\)-eigenbundle of \(J_\pm\).

Let \(L^\pm = \{X + (b \pm g)(X) \mid X \in V^\pm\}\).

Then \(L_1 = L^+ \oplus L^-\), \(L_2 = L^+ \oplus L^-\).

Theorem (Gualtieri)

\(L_1\) and \(L_2\) Courant-integrable \(\iff\) \(L^\pm\) integrable \(\iff\) \(J_\pm\) integrable and parallel w.r.t. \(\nabla^\pm := \nabla^g \pm \frac{1}{2} g^{-1} h, h = db\).

Canonical \(f\)-structures

Let \(E_j = \pi(L_j)\) \((j = 1, 2)\). Then \(E_1 = V^+ + V^-\), \(E_2 = V^+ + \overline{V^-}\).

Then \(E_1^\perp = V^+ \cap V^-\), \(E_2^\perp = V^+ \cap \overline{V^-}\) and hence:

\(E_1, E_2\) are coisotropic w.r.t. \(g^C\).

The skew-symmetric \(F_j\) determined by \(E_j\) and \(E_j^\perp\) are integrable \(f\)-structures.
Generalized Kähler manifolds

$$(M, L_1, L_2) \text{ s.t. } \mathcal{J}_1 \mathcal{J}_2 = \mathcal{J}_2 \mathcal{J}_1 \text{ and } \mathcal{J}_1 \mathcal{J}_2 < 0.$$ By projection on TM this gives (g, b, J_+, J_-).

Let V^\pm be the i-eigenbundle of J^\pm.
Let $L^\pm = \{ X + (b \pm g)(X) | X \in V^\pm \}$.
Then $L_1 = L^+ \oplus L^-$, $L_2 = L^+ \oplus L^-$.

Theorem (Gualtieri)

L_1 and L_2 Courant-integrable \iff L^\pm integrable \iff J^\pm integrable and parallel w.r.t. $\nabla^\pm := \nabla^g \pm \frac{1}{2} g^{-1} h$, $h = db$.

Canonical f-structures

Let $E_j = \pi(L_j)$ ($j = 1, 2$). Then $E_1 = V^+ + V^-$, $E_2 = V^+ + \overline{V^-}$.
Then $E^\perp_1 = V^+ \cap V^-$, $E^\perp_2 = V^+ \cap \overline{V^-}$ and hence:

E_1, E_2 are coisotropic w.r.t. $g^\mathbb{C}$.
The skew-symmetric F_j determined by E_j and E^\perp_j are integrable f-structures.

Holomorphic functions on (M, L_1) resp. (M, L_2) are bi-holomorphic functions on (M, J_+, J_-) resp. $(M, J_+, -J_-)$.
Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.
Generalized Kähler manifolds with integrable \mathcal{H}^+

Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.

\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_-$ invertible on \mathcal{V}.
Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)\perp$.
\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_- \text{ invertible on } \mathcal{V}$.
\mathcal{H}^\pm, \mathcal{V} distributions $\iff L_1$, L_2 regular.
Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.
\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_- \text{ invertible on } \mathcal{V}$.
\mathcal{H}^\pm, \mathcal{V} distributions $\iff L_1$, L_2 regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\iff \mathcal{H}^+$ geodesic $\iff \mathcal{H}^+$ holomorphic on (M, J_+) $\iff \mathcal{H}^+$ holomorphic on (M, J_-).

Note that \mathcal{H}^+ geodesic $\iff (\mathcal{H}^+)^\perp = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Corollary

Let (M, L^M_1, L^M_2) and (N, L^N_1, L^N_2) with $\mathcal{H}^+=M$ and $\mathcal{H}^+=N$ integrable. Then any holomorphic $\phi: (M, L^M_1) \to (N, L^N_1)$ descends, locally, w.r.t. the above Riemannian submersions, to a holomorphic map between the Kähler quotients.
Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.
\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_-^{-1}$ invertible on \mathcal{V}.
\mathcal{H}^\pm, \mathcal{V} distributions $\iff L_1$, L_2 regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\iff \mathcal{H}^+$ geodesic $\iff \mathcal{H}^+$ holomorphic on (M, J_+) $\iff \mathcal{H}^+$ holomorphic on (M, J_-).
In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_\pm) and (g, J_\pm) is Kähler on its leaves.
Generalized Kähler manifolds with integrable \mathcal{H}^+

Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.
\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_-$ invertible on \mathcal{V}.
\mathcal{H}^\pm, \mathcal{V} distributions $\iff L_1, L_2$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\iff \mathcal{H}^+$ geodesic $\iff \mathcal{H}^+$ holomorphic on (M, J_+) $\iff \mathcal{H}^+$ holomorphic on (M, J_-).

In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_\pm) and (g, J_\pm) is Kähler on its leaves.

Note that \mathcal{H}^+ geodesic $\iff (\mathcal{H}^+)^\perp = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.
Generalized Kähler manifolds with integrable \mathcal{H}^+

Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$.
\mathcal{H}^\pm, \mathcal{V} invariant under J_\pm; $J_+ \mp J_- \text{ invertible on } \mathcal{V}$.
\mathcal{H}^\pm, \mathcal{V} distributions $\Leftrightarrow L_1, L_2 \text{ regular}$.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\Leftrightarrow \mathcal{H}^+$ geodesic $\Leftrightarrow \mathcal{H}^+$ holomorphic on (M, J_+) $\Leftrightarrow \mathcal{H}^+$ holomorphic on (M, J_-).
In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_\pm) and (g, J_\pm) is Kähler on its leaves.
Note that \mathcal{H}^+ geodesic $\Leftrightarrow (\mathcal{H}^+)^\perp = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Corollary

Let (M, L^M_1, L^M_2) and (N, L^N_1, L^N_2) with \mathcal{H}^+_M and \mathcal{H}^+_N integrable.
Let $\mathcal{H}^\pm = \text{Ker}(J_+ \mp J_-)$, $\mathcal{V} = (\mathcal{H}^+ \oplus \mathcal{H}^-)^\perp$. $\mathcal{H}^\pm, \mathcal{V}$ invariant under J_\pm; $J_+ \mp J_-\text{ invertible on } \mathcal{V}$. $\mathcal{H}^\pm, \mathcal{V}$ distributions $\iff L_1, L_2$ regular.

Theorem: geometric properties of the distributions

If L_1 is regular, then: \mathcal{H}^+ integrable $\iff \mathcal{H}^+$ geodesic $\iff \mathcal{H}^+$ holomorphic on (M, J_+) $\iff \mathcal{H}^+$ holomorphic on (M, J_-).

In either case, \mathcal{H}^+ is a holomorphic foliation on (M, J_\pm) and (g, J_\pm) is Kähler on its leaves.

Note that \mathcal{H}^+ geodesic $\iff (\mathcal{H}^+)^\perp = \mathcal{V} \oplus \mathcal{H}^-$ is a Riemannian foliation, hence defines local submersions.

Corollary

Let (M, L^M_1, L^M_2) and (N, L^N_1, L^N_2) with \mathcal{H}^+_M and \mathcal{H}^+_N integrable. Then any holomorphic $\varphi : (M, L^M_1) \to (N, L^N_1)$ descends, locally, w.r.t. the above Riemannian submersions, to a holomorphic map between the Kähler quotients.
Products of Kähler manifolds

Let \((M_j, g_j, J_j)\) Kähler manifolds, \((j = 1, 2)\).
On \(M_1 \times M_2\) there are 2 non-equivalent g.K. structures:
Products of Kähler manifolds

Let \((M_j, g_j, J_j)\) Kähler manifolds, \((j = 1, 2)\).
On \(M_1 \times M_2\) there are 2 non-equivalent g.K. structures:
- the \textit{first product} is just the Kähler product structure,
A generalization of a theorem of Apostolov-Gualtieri

Products of Kähler manifolds

Let \((M_j, g_j, J_j)\) Kähler manifolds, \((j = 1, 2)\). On \(M_1 \times M_2\) there are 2 non-equivalent g.K. structures:

- the **first product** is just the Kähler product structure,
- the **second product**: \(L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)\) and \(L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)\)
Let \((M_j, g_j, J_j)\) Kähler manifolds, \((j = 1, 2)\).

On \(M_1 \times M_2\) there are 2 non-equivalent g.K. structures:

- the *first product* is just the Kähler product structure,
- the *second product*:

 \[L_1 = L(T^{1,0}M_1 \times TM_2, i \omega_2) \]

 \[L_2 = L(T^{1,0}M_2 \times TM_1, i \omega_1) \]

Both \(L_1\) and \(L_2\) are in normal form; the corresponding almost \(f\)-structures are skew-adjoint (and, thus, unique with this property).
Products of Kähler manifolds

Let (M_j, g_j, J_j) Kähler manifolds, $(j = 1, 2)$. On $M_1 \times M_2$ there are 2 non-equivalent g.K. structures:

- the first product is just the Kähler product structure,
- the second product: $L_1 = L(T^{1,0}M_1 \times TM_2, i\omega_2)$ and $L_2 = L(T^{1,0}M_2 \times TM_1, i\omega_1)$

Both L_1 and L_2 are in normal form; the corresponding almost f-structures are skew-adjoint (and, thus, unique with this property).

From the geometric properties of the distributions we get:
A generalization of a theorem of Apostolov-Gualtieri

Products of Kähler manifolds

Let \((M_j, g_j, J_j) \) Kähler manifolds, \((j = 1, 2) \).

On \(M_1 \times M_2 \) there are 2 non-equivalent g.K. structures:

- the *first product* is just the Kähler product structure,
- the *second product*: \(L_1 = L(T^{1,0}M_1 \times TM_2, i \omega_2) \) and \(L_2 = L(T^{1,0}M_2 \times TM_1, i \omega_1) \)

Both \(L_1 \) and \(L_2 \) are in normal form; the corresponding almost \(f \)-structures are skew-adjoint (and, thus, unique with this property).

From the geometric properties of the distributions we get:

Theorem

Any generalized Kähler manifold with \(\nu = 0 \) (*i.e.* \([J_+, J_-] = 0 \)) is, up to a unique \(B \)-field transformation, locally given by the second product of two Kähler manifolds.

In particular, \(h = db = 0 \).
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0.$
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri ’07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.

Let $L_1 = L(TM_C, 2\omega_I - i(\omega_J - \omega_K))$, $L_2 = L(TM_C, -i(\omega_J + \omega_K))$.

Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri ’07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.

(M, ε, J) is tamed symplectic $\iff (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.
Generalized Kähler manifolds with $\mathcal{H}^{-} = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.

(M, ε, J) is tamed symplectic $\iff (g, b, J_+, J_-)$ is g.K. with $J_+ + J_- \text{ invertible}$.

Up to a unique B- transform, any g.K. structure with $J_+ + J_- \text{ invertible}$ is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := - (\omega_I + \omega_J)$. Then (M, ε, J) is tamed symplectic with associated g.K. structure $(g, b, J_+, J_-) = (g, \omega_I, J, K)$. Here, $L_1 = L(TM^\mathbb{C}, 2\omega_I - i(\omega_J - \omega_K))$, $L_2 = L(TM^\mathbb{C}, -i(\omega_J + \omega_K))$.
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri ’07)

Let ε be non-degenerate on M and J almost complex structure. Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.

(M, ε, J) is tamed symplectic \Leftrightarrow (g, b, J_+, J_-) is g.K. with $J_+ + J_-$ invertible.

Up to a unique B- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin ’06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := - (\omega_I + \omega_J)$.
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri ’07)

Let ε be non-degenerate on M and J almost complex structure.
Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.
(M, ε, J) is tamed symplectic $\iff (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.
Up to a unique B- transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin ’06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := -(\omega_I + \omega_J)$.
Then (M, ε, J) is tamed symplectic with associated g.K. structure $(g, b, J_+, J_-) = (g, \omega_I, J, K)$.

Generalized Kähler manifolds with $\mathcal{H}^- = 0$

Tamed symplectic manifolds

(M, ε, J) s.t. $\varepsilon(JX, X) > 0$, J and $\varepsilon^{-1}J^*\varepsilon$ integrable, $d\varepsilon = 0$.

Structure theorem (see also Gualtieri '07)

Let ε be non-degenerate on M and J almost complex structure.
Let $J_+ = J$, $J_- = -\varepsilon^{-1}J^*\varepsilon$. Let g, b be the symmetric and skew-symmetric parts of εJ.

(M, ε, J) is tamed symplectic $\iff (g, b, J_+, J_-)$ is g.K. with $J_+ + J_-$ invertible.

Up to a unique B-transform, any g.K. structure with $J_+ + J_-$ invertible is of this kind.

Example (cf. Hitchin '06)

Let (M, g, I, J, K) be hyperkähler and $\varepsilon := -(\omega_I + \omega_J)$.
Then (M, ε, J) is tamed symplectic with associated g.K. structure $(g, b, J_+, J_-) = (g, \omega_I, J, K)$.

Here, $L_1 = L(TM^\mathbb{C}, 2\omega_I - i(\omega_J - \omega_K))$, $L_2 = L(TM^\mathbb{C}, -i(\omega_J + \omega_K))$.
A g.K. manifold with $\mathcal{H}^+ \text{ integrable and } \mathcal{H}^- = 0$ is, up to a unique B-transform, locally a product $(M \times N, L_1^M \times L_1^N, L_2^M \times L_2^N)$ where (L_1^M, L_2^M) comes from a Kähler structure on M and (L_1^N, L_2^N) is a g.K. structure on N with $J_+ + J_-$ and $J_+ - J_-$ invertible.
Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. \((M, L_1, L_2)\) coming from a tamed symplectic structure, let \(\rho^\pm : TM^\mathbb{C} \to T_{\pm}^{1,0} M\). Then \(\rho^\pm_*(L_2)\) is a holomorphic Poisson structure on \((M, J_{\pm})\).
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. (M, L_1, L_2) coming from a tamed symplectic structure, let $\rho^\pm : TM^\mathbb{C} \to T^{1,0}_\pm M$. Then $\rho^\pm_*(L_2)$ is a holomorphic Poisson structure on (M, J^\pm). The converse holds only if $J^+ - J^-$ is invertible. In this case, $\rho^\pm_*(L_2)$ are holomorphic symplectic structures.
Generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Induced holomorphic Poisson structure (cf. Hitchin ’06)

For a g.K. (M, L_1, L_2) coming from a tamed symplectic structure, let $\rho^\pm : TM^C \to T^{1,0}_{\pm}M$. Then $\rho^\pm_* (L_2)$ is a holomorphic Poisson structure on (M, J_\pm).

The converse holds only if $J_+ - J_- \text{ is invertible. In this case, } \rho^\pm_* (L_2) \text{ are holomorphic symplectic structures.}$

The associated Poisson bivectors on (M, J_\pm) are

$$\eta_- = -\eta_+ = \frac{1}{4} [J_+, J_-] g^{-1}.$$

The symplectic foliation associated to η_+ is precisely \mathcal{V}.
Holomorphic maps between generalized Kähler manifolds with $\mathcal{H}^{-} = 0$.

Induced holomorphic Poisson morphism

Let $(M, L_{1}^{M}, L_{2}^{M})$ and $(N, L_{1}^{N}, L_{2}^{N})$ be generalized Kähler manifolds, with $J_{+}^{M} + J_{-}^{M}$ and $J_{+}^{N} + J_{-}^{N}$ invertible, and let $\varphi : M \rightarrow N$ be a map.
Holomorphic maps between generalized Kähler manifolds with $\mathcal{H}^- = 0$.

Induced holomorphic Poisson morphism

Let (M, L^M_1, L^M_2) and (N, L^N_1, L^N_2) be generalized Kähler manifolds, with $J^M_+ + J^M_-$ and $J^N_+ + J^N_-$ invertible, and let $\varphi : M \to N$ be a map.

If

- $\varphi : (M, L^M_2) \to (N, L^N_2)$ is holomorphic and,
- at least one of $\varphi : (M, J^M_+) \to (N, J^N_+)$ and $\varphi : (M, J^M_-) \to (N, J^N_-)$ is holomorphic,

then φ is a holomorphic Poisson morphism between the associated holomorphic Poisson structures.