2012 Basic Numerical Analysis

Partial Differential Equations 1: Diffusion Equations

Contents

- The world of errors....
- Explicit and implicit time stepping
- Spatial derivatives
- Heat conduction
- Crank-Nicholson scheme
- von Neumann stability analysis

Implicit method (blackboard)

Stiff equations

$$
\begin{aligned}
& u^{\prime}=998 u+1998 v \\
& v^{\prime}=-999 u+1999 v
\end{aligned}
$$

Initial values: $u(0)=1, v(0)=0$.
By the transformation $u=2 y-z, v=-y+z$, we obtain

$$
\begin{aligned}
& u=2 e^{-x}-e^{-1000 x} \\
& v=-e^{-x}+e^{-1000 x}
\end{aligned}
$$

The second term is very sensitive to variation in x.

Round-off errors

The two roots of a quadratic equation $a x^{2}+b x+c=0$ are calculated ANALYTICALLY:
$x=\left(-b \pm \sqrt{b^{2}-4 a c}\right) / 2 a$
However, computers do not return accurate values for, say, $a=1.01, b=2718281, c=0.01$. Why?

Round-off errors

For $x=3.1834 \times 10^{-3}$

$$
1-\frac{1}{\sqrt{1+x}}=1.5879 \times 10^{-3}
$$

$$
=1-\frac{1}{\sqrt{1.0032}}=1-\frac{1}{1.0016}=1-0.99840=0.00160
$$

$$
=\frac{\sqrt{1+x}-1}{\sqrt{1+x}}=\frac{1.0016-1}{1.0016}=\frac{0.0016}{1.0016}=0.00115974
$$

$$
=\frac{x}{1+x+\sqrt{1+x}}=\frac{0.0031843}{1.0032+1.0016}=\frac{0.0031843}{2.0048}=0.0015879
$$

Machine ε

The smallest positive floating point number which a current-generation computer (with IEEE 754) is

$$
\begin{aligned}
& 2^{-23}=1.109209 \ldots \times 10^{-7} \quad \text { (single precision) } \\
& 2^{-52}=2.22044 \ldots \times 10^{-16} \quad \text { (double precision) }
\end{aligned}
$$

パイこね変換

Choose a value x in between 0 and 1 ． If $x<0.5$ ，double the value，i．e．$x=2 x$ ． If $x>=0.5$ ，set $x=2-2 x$ ．

Repeat the above procedure．

Discretization

and partial difference

$$
\begin{array}{rr}
\frac{d}{d x} f(x) \sim \frac{f(x+h)-f(x)}{h} \quad \text { Forward difference } \\
\frac{d}{d x} f(x) \sim \frac{f(x)-f(x-h)}{h} \quad \text { Backward difference } \\
\frac{d}{d x} f(x) \sim \frac{f(x+h)-f(x-h)}{2 h} \quad \text { Central difference } \\
\frac{d^{2}}{d x^{2}} f(x) \sim \frac{f(x+h)-2 f(x)+f(x-h)}{h^{2}} & \text { Second derivative }
\end{array}
$$

2nd order PDEs

Parabolic

$$
\frac{\partial f}{\partial t}=\frac{\partial^{2} f}{\partial x^{2}}
$$

Elliptic

$$
\frac{\partial^{2} f}{\partial x^{2}}+\frac{\partial^{2} f}{\partial y^{2}}=S(x, y)
$$

Hyperbpolic

$$
\frac{\partial^{2} f}{\partial t^{2}}-\frac{\partial^{2} f}{\partial x^{2}}=0
$$

Diffusion
Heat conduction
Poisson

Soundwave

Heat conduction

$$
\begin{aligned}
\frac{\partial \mathrm{T}(\mathbf{r}, \mathrm{t})}{\partial \mathrm{t}} & =\mathrm{D} \nabla^{2} \mathrm{~T}(\mathbf{r}, \mathrm{t}) \\
\mathbf{q} & =-\kappa \nabla \mathrm{T},
\end{aligned}
$$

1-D problem

In the interval $x_{l}<x<x_{h}$, temperature T is given by

$$
\frac{\partial T(x, t)}{\partial t}=D \frac{\partial^{2} T(x, t)}{\partial x^{2}}
$$

Calculate T for the initial condition

$$
T\left(x, t_{0}\right)=\exp \left(\frac{-x^{2}}{4 D t_{0}}\right)
$$

Simple discretization

$$
\frac{\partial T(x, t)}{\partial t}=D \frac{\partial^{2} T(x, t)}{\partial x^{2}}
$$

Forward in time, central in space:

$$
\frac{T\left(t_{n+1}, x_{m}\right)-T\left(t_{n}, x_{m}\right)}{\Delta t}=\frac{T\left(t_{n}, x_{m+1}\right)-2 T\left(t_{n}, x_{m}\right)+T\left(t_{n}, x_{m-1}\right)}{h^{2}}
$$

This is an explicit method.

For large $\Delta \mathrm{t}$:

Stencil for Euler's method

Stencil for Crank-Nicholson

$$
\frac{T\left(x, t_{n+1}\right)-T\left(x, t_{n}\right)}{\delta t}=\frac{D}{2} \frac{\partial^{2} T\left(x, t_{n}\right)}{\partial x^{2}}+\frac{D}{2} \frac{\partial^{2} T\left(x, t_{n+1}\right)}{\partial x^{2}}
$$

