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1 Hyperbolic Systems

Let us consider a general second order partial differential equation of hyper-
bolic type:

∂2f

∂t2
− c2

∂2f

∂x2
= 0. (1)

Formal solutions for the above equation are given by

f = f1(x− ct) + f2(x+ ct). (2)

It is easy to understand the solution by noting that

∂2f

∂t2
− c2

∂2f

∂x2
=

(
∂

∂t
− c

∂

∂x

)(
∂

∂t
+ c

∂

∂x

)
f = 0. (3)

Namely, the evolution of a physical system governed by equation (1) is also
discribed by the solution for the following two first-order equations

∂f

∂t
− c

∂f

∂x
= 0, (4)

∂f

∂t
+ c

∂f

∂x
= 0. (5)

2 Difference schemes and the stability analysis

We’d like to solve the above hyperbolic equations by means of a difference
method, i.e., by discretizing the equations. One can easily notice that equa-
tion (2) represent two propagating waves; one in forward direction with
velocity c, the other in backward direction with velocity −c. Essentially, it
is sufficient to study the stability for the forward case. The other case can
be treated in exactly the same manner by changing c to −c1 .

We have learned that there are three simple ways to discretize the equa-
tion

∂f

∂t
+ c

∂f

∂x
= 0. (6)

1 This fact should be kept in mind. In this section, we use forward and backward
difference schemes, but a forward scheme can be a backward one when the sign of c is
changed.
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Because we consider an evolving system, let us adopt a forward scheme
[f(x, t+∆t)−f(x, t)]/∆t for the time derivative. For the spatial derivative,
the forward scheme is

f(x, t+∆t)− f(x, t)

∆t
+ c

f(x+∆x, t)− f(x, t)

∆x
= 0. (7)

The backward scheme is, simply,

f(x, t+∆t)− f(x, t)

∆t
+ c

f(x, t)− f(x−∆x, t)

∆x
= 0. (8)

One can come up with yet another way of evaluating the spatial derivative
as the mean of the above two. Namely, the central difference gives

f(x, t+∆t)− f(x, t)

∆t
+ c

f(x+∆x, t)− f(x−∆x, t)

2∆x
= 0. (9)

It would be a useful exercise for you to derive that the forward and backward
schemes are of the first order, that is that the truncation error associated
with the spatial derivative is O(∆x2), whereas the central scheme is of the
second-order. Apparently, the central scheme is a better method. Neverthe-
less... see below.

As usual, we’d like to know how the solution develops if we set the initial
condition to be a plane parallel wave:

finit = exp(
ikx

∆x
). (10)

Let us set our computational domain and the grid points such that the j-th
grid has the x-coordinate of j∆x, where j runs from 1 to N . Then the initial
condition is

f0
j = exp(ikj). (11)

Here after we use the notation fn
j = f(j∆x, n∆t).

It’d be best (if not ideal) if numerical integration yields the solution

fn
j = exp

[
ik(j − cn∆t

∆x
)

]
, (12)

because we know the formal analytic solution is f(x− ct). You can see this
easily by setting the time step width as ∆t = ∆x/c. Then the value of f at
j − 1-th grid is simply transferred to the next j-th grid over a period of ∆t,
at the correct velocity c.

Now, let us examine if a good solution is obtained by any of the three
difference methods. The solution for the forward scheme is obtained to be

fn
j =

{
1− c∆t

∆x
[exp(ik)− 1]

}n

exp(ikj). (13)

It is non-trivial to derive this solution, but it is indeed straightforward to
check whether this solution satisfies equation (7). Similarly, the solution for
the backward and the central schemes are, respectively,

fn
j =

{
1− c∆t

∆x
[1− exp(−ik)]

}n

exp(ikj), (14)
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and

fn
j =

{
1− i

c∆t

∆x
sin(k)

}n

exp(ikj). (15)

The first thing to notice is that all the three solutions asymptotically
become ∼ exp[ik(j − nc∆t/∆x)] for small k when ∆t → 0, because the
front factors {...} then approach {1 − ik c∆t

∆x }. Long-wavelength modes are
accurately represented at least initially.

Let us now compare the three solutions with the true solution (equation
[12]) and re-write them as

fn
j = (gF)

nftrue, (16)

fn
j = (gB)

nftrue, (17)

fn
j = (gC)

nftrue. (18)

The error produced per one time step is now given (estimated) by the norm
of gF, gB, gC, respectively. By now you’d have guessed that the norm should
be less than unity for the solution to be stable. You are right. Why don’t
you check it explicitly:

gF = {1− α[exp(ik)− 1]} exp(ikα), (19)

gB = {1− α[1− exp(−ik)]} exp(ikα), (20)

gC = {1− α[1− iα sin(k)]} exp(ikα), (21)

where we have denoted the so-called Courant factor as α = c∆t/∆x. It is
nice that the error per timestep is given by a function of the dimensionless
factor α for an arbitrary wavenumber k. The remaining task is straightfor-
ward, although somewhat tedious. The actual calculations are left as your
exercise:

|gF| = |(1 + α− α cos(k)) cos(αk) + α sin(k) sin(αk)

+i{(1 + α− α cos(k)) sin(αk)− α sin(k) cos(αk)}|. (22)

See Figure 1, which shows |gF| for three ks as a function of α. It’d be nice
to get a fresh surprise by seeing that |gF| is always larger than unity! Such
a scheme produces unstable solutions. (You might have seen this already
when you solved the Burgers equation with the forward difference scheme.)
What about the backward scheme ? After similar algebra, we obtain Figure
2, which shows that |gB| is less than unity for 0 < α < 1. This is the
necessary condition (not sufficient though) for the backward scheme to yield
a stable solution, with respect to the true solution.

3



3 The case for diffusion equations

We can easily extend the discussion in the previous section to the stability
of the central difference scheme for the diffusion equation. Consider forward
in time, and central in space:

f(x, t+∆t)− f(x, t)

∆t
= D

f(x+∆x, t)− 2f(x, t) + f(x−∆x, t)

∆x2
, (23)

or, with our simpler notations,

fn+1
j = fn

j + α(fn
j−1 − 2fn

j + fn
j+1), (24)

where α = D∆t/∆x2.
Let us examine the stability for the initial condition

f0
j = exp(ikj). (25)

One time step advancement yields

f1
j = f0

j + α[exp(ik(j − 1))− 2 exp(ikj) + exp(ik(j + 1))]

= exp(ikj) + α[exp(−ik)− 2 + exp(ik)] exp(ikj)

= [1 + α(2 cos(k)− 2)] exp(ikj)

=

[
1− 4α sin2

k

2

]
exp(ikj) (26)

Notice that sin2 is an oscillating function in [0,1], and thus the solution is
stable only if α < 1/2. It is now clear for you why, in the last week’s problem
set, you saw a catastrophic failure for large ∆t.
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