2012 Basic Numerical Analysis

Massive parallel systems

« Current main architecture (top500.0rg)

Parallel computing . 100s to >10000 cores

USing MPI . Consists of many “PCs” (CPU+ memory
+ network slot) . Some recent machines
have GPUs.

Top500 une 2012

Rank Site Computer/Year Vendor Cores Rmax Rpeak Power

Sequoia - BlueGene/Q, Power BQC 16C

DOE/NNSA/LLNL
1 United States FB%? GHz, Custom /2011 16324.75 20132.66 7890.0
RIKEN Advanced Institute for K computer, SPARC64 Vilifx 2.0GHz,
2 Computational Science (AICS) Tofu interconnect/2011 705024 10510.00 11280.38 12659.9
Japan Fujitsu
DOE/SC/Argonne National Mira - BlueGene/Q, Power BQC 16C
3 Laboratory 1.60GHz, Custom /2012 786432 8162.38 10066.33 3945.0
United States IBM
SuperMUC - iDataPlex DX360M4, Xeon
Leibniz Rechenzentrum E5-2680 8C 2.70GHz, Infiniband FDR /
4 Germany 2012 147456 2897.00 318505 34227
IBM

Tianhe-1A - NUDT YH MPP, Xeon

National Supercomputing Center in X5670 6C 2.93 GHz, NV\DIA 2050/

5 Tianjin 186368 2566.00 4701.00 4040.0

; 2010
China NUDT
DOE/SC/Oak Ridge National LXK oI e
6 Laboratory NVIDIA'2090 /5008 erconnect 298592 1941.00 2627.61 51420
United States
Cray Inc.
CINECA Fermi - BlueGene/Q, Power BQC 16C
7 1.60GHz, Custom /2012 163840 172549 2097.15 8219
Italy 1BM
JUQUEEN - BlueGene/Q, Power BQC
8 Forschungszentrum Juelich (FZ)) 36C 1.60GHz, Custom /2012 131072 138039 1677.72 6575
rmany IBM
Curie thin nodes - Bullx B510, Xeon E5-
9 CEATGCC-GENCI 2680 8C 2.700GHz, Infiniband QDR/ 77484 135000 166747 2251.0

France 2012
Bull

Basic structure
N

— file server

Network
Node| | |
2B BEHE
2E BEHE

a R a@

EE —
lIII

E
&/l

Data are distributed onto local memories

A cluster of PCs...

« 100 times faster if 100 nodes
connected ?

. There are some overhead

. Some (many) problems intrinsically
hard to be parallelized

. There are slow parts (bottlenecks)
In every program

Parallel programs

. High-end compilers
. e.g., High Performance Fortran

Data distribution, management, work
distribution are done automatically by
HPF compilers

Just a slightly different program (and
compiler options) for users

Message Passing

. Data distribution, transfer, work

distribution done explicitly by
commands (i.e., by a programmer)

- A special programming skill is

needed, but the product (programs)
can be used on virtually all parallel
machines.

. And, it’s free!

Message Passing

operation communication operation

Node O

— — —

. fJﬁ)
Node 1 —> —>

— \T) —
Node 2

- - -

MPI| Bcast

. Total grid size “N” to all cores

N —
26 B B

Basic MPl commands

Not always core-to-core
communication

MPI_Bcast - one to all
MPI_Allreduce : combine
MPI_Allgather : collect and make a

data vector

MPI Allreduce

densityO densityl density2 density3
af1f2] [3[1]2] [O]1]1] [1][3[1]

total den8|ty

MPI_Allgather

I
The mvNMer

operation is .-.-

MPI_Scatter L_vector

Domain decomposition

A simplest way is to devide
the domain equally onto the

number of processes.

| . For a homogenious
PEO*® PET o

distribution or regular grids,

2 ves © | work-load is also balanced.

|_ocal data
VN

— file server

network

| node | |

HE EE
] i S e W I

\/

Data [0O]1]0[0|1]0]1]1]0[1]0]1]

Domain decomposition

Systems evolve,

however.... Think about the situation
& like in the left occurs
ege when 10000 processes

O
PEO ° Ig%i’e are used.
Domain decomposition
itself is an important and
PE2 PE3 hard problem.

Dynamic relocation

S PEO ¢ | PET
00 D O
o choo - gkéoh
PEO ﬁEgE °
Ja) I O
PE2 PE3
PE2 |PE3

Move the domain boundaries such
that the number of elements (and
hence the work) is balanced.

Adaptive method

« Does “equal number of elements”
mean an equal amount of work ?

. Every program has “slow” parts.

. It is important to balance the work
done in the slowest part (say,
gravity calculation).

Actual problems

= 5

Which is better ? There’s no universal
answer. On the other hand, a simpler
algorithm works in many (if not all) cases.

Assoclated comm.

So far we have discussed the
balance of local tasks.
Sometimes (often),

data exchanges accompany with
dynamic load-balance.
Inter-node communication

takes time... How often should a
program check the balance ?

Note the above figures is in 2D.
In 3D, contact surfaces with other domains
increase.

Problem dependence

. For systems with long-interaction,
essentially all nodes need to know
the status of active elements

. With regulars grids, things might
appear easy. However, if there are
many boundaries in 3D
(imagine j, j+1, k, k+1 etc),
significant data transfer is needed.

Overall size

« Number of cores needed to be set
appropriately, perhaps in
proportion to the problem size.
e.g.) You wouldn’t use 100 cores
for N=100 grids.

« Parallel computing intrinsically
better suited for statistical studies.
Evolution of a single object is hard
to be followed with 1000 cores.

Incomplete parallelization

« Amdahl’s [aw

The efficiency is]

at most F + (1-F)/N
« Inter-node communication speed is
much dependent of the architecture

. For each process, waiting time is
really a waste of time.

Process grouping

file 1 file 2 file 3
| | |

of= 1| |4a|-|5]|]|8]]9
T~ > ——
2| 3] |6 | |7][10] |1

* Output

together, or piece by piece

Example MPI

No_PE_per_Group
BossCore = (Thi

//readin the mu
if(ThisCore ==
i=read_output
send_particle
}else{
receive_par

}

for(i=0; i< N_L

= NCore/FILE_PER_OUTPUT;
sCore/No_PR_per_Group)*No_PR_per_ Group;
ltiple output files

BossCore) {

_multi(pathname, output_number, ThisCore);

_data();

ticle_data();

ocal_Particle; i++){

local operation is here

BossCore

smiscore == 0 COre O does all the administration

//readin the header information
i=read_header_information(pathname, Header);

N_allocate=Header.Npart_all/NCore;
}

MPI_Bcast(&N_allocate, 1, MPI_INT, 0, MPI_COMM_WORLD);
MPI_Bcast(&Header, sizeof(struct io head), MPI_BYTE, 0, MPI_COMM WORLD);
if(ThisCore == BossCore){

for(icomm=0; icomm<No_PE_per_group; icomm++){
receiving core = BossCore + icomm;

MPI_Ssend(&N_send, 1, MPI_INT, receiving_core, tag_ngas, MPI_COMM WORLD);

MPI_Ssend(&Part_read[ipointer].x, N_send*sizeof(struct particle), MPI_BYTE,
receiving_core, tag_part, MPI_COMM WORLD);

ipointer += N_send;

Child Core

}else //other processors re

{

for(icomm=0; icomm<No_PE
receiving core = BossC

if(ThisCore == receiv
MPI_Recv(&N_part,

MPI_Recv(&Part[0].x
BossCore,

}

MPI_Barrier (MPI_COMM_WORLD);

ceive the particle info

_per_group; icomm++){

ore + icomm;

ing_core){ message from BossCore

1, MPI_INT, BossCore, tag ngas, MPI_COMM WORLD,

, N_part*sizeof(struct particle), MPI_BYTE,
tag_part, MPI_COMM WORLD, &status);

Wait for other processors

&status);

