
Parallel computing
using MPI

2012 Basic Numerical Analysis Massive parallel systems
• Current main architecture (top500.org)

• 100s to >10000 cores
• Consists of many “PCs”（CPU+ memory
+ network slot）. Some recent machines
have GPUs.

Top500 (June 2012)

国防科学技術大学にあるスパコン 「天河」
ローレンスリバモア研究所のセコイア

Basic structure
Network

Node

コアコア

コアCore

memory

file server

Data are distributed onto local memories

A cluster of PCs...
• 100 times faster if 100 nodes
connected ?

• There are some overhead

• Some (many) problems intrinsically
hard to be parallelized

• There are slow parts (bottlenecks)
in every program

Parallel programs
• High-end compilers

• e.g., High Performance Fortran
Data distribution, management, work
distribution are done automatically by
HPF compilers
Just a slightly different program (and
compiler options) for users

Message Passing
• Data distribution, transfer, work
distribution done explicitly by
commands (i.e., by a programmer)
• A special programming skill is
needed, but the product (programs)
can be used on virtually all parallel
machines.
• And, it’s free!

Message Passing
operation　 communication　operation

Node 0

Node 1

Node 2

Basic MPI commands
Not always core-to-core
communication
MPI_Bcast : one to all
MPI_Allreduce : combine
MPI_Allgather : collect and make a
 data vector

MPI_Bcast
e.g.
Total grid size “N” to all cores

Core0

0 1 2 3

MPI_Allreduce
0 1 2 3

1 1 2 3 1 2 1 1 1 1 3 1
density0 density1 density2 density3

3 6 6
total_density

reduce

MPI_Allgather
0 1 2 3

3 2 5 4
 L0 L1 L2 L3

L_vector

gather
3 2 5 4

The inverse
operation is
MPI_Scatter

Local data
network

node

コアコア

コアコア

memory

file server

Data 0 1 0 0 1 0 1 1 0 1 0 1

Domain decomposition
A simplest way is to devide
the domain equally onto the
number of processes.
 For a homogenious
distribution or regular grids,
work-load is also balanced.

PE0 PE1

PE2 PE3

Domain decomposition
Think about the situation
like in the left occurs
when 10000 processes
are used.
 Domain decomposition
itself is an important and
hard problem.

Systems evolve,
however....

PE0 PE1

PE2 PE3

Dynamic relocation

Move the domain boundaries such
that the number of elements (and
hence the work) is balanced.

PE0 　 　 PE1

PE2 　 　 PE3
PE0 PE1

PE2 PE3

Adaptive method
• Does “equal number of elements”
mean an equal amount of work ?

• Every program has “slow” parts.

• It is important to balance the work
done in the slowest part (say,
gravity calculation).

Actual problems

Which is better ? There’s no universal
answer. On the other hand, a simpler
algorithm works in many (if not all) cases.

Associated comm.
So far we have discussed the
balance of local tasks.
Sometimes (often),
data exchanges accompany with
dynamic load-balance.
Inter-node communication
takes time... How often should a
program check the balance ?

Note the above figures is in 2D.
In 3D, contact surfaces with other domains
increase.

Problem dependence
• For systems with long-interaction,
essentially all nodes need to know
the status of active elements

•With regulars grids, things might
appear easy. However, if there are
many boundaries in 3D
(imagine j, j+1, k, k+1 etc),
significant data transfer is needed.

Incomplete parallelization
• Amdahl’s law　
The efficiency is
at most

• Inter-node communication speed is
much dependent of the architecture

• For each process, waiting time is
really a waste of time.

1
F + (1-F)/N

Overall size
• Number of cores needed to be set
appropriately, perhaps in
proportion to the problem size.　　　　　　　　
e.g.）You wouldn’t use 100 cores
for N=100 grids.

• Parallel computing intrinsically
better suited for statistical studies.
Evolution of a single object is hard
to be followed with 1000 cores.

Process grouping

０　　 1

２　 　 3

4 5

6 7

 8 9

10 11

file 1 file 2 file 3

Output
together, or piece by piece

Example MPI

local operation is here

BossCore
Core 0 does all the administration

Child Core

message from BossCore

Wait for other processors

