Basic Numerical Analysis

October 30, 2012

Problem Set 4

1. A warm-up.

Write a simple program that solves the following equations for x_{i} :

$$
\left[\begin{array}{lllll}
5 & 2 & 2 & 0 & 0 \tag{1}\\
1 & 6 & 1 & 0 & 0 \\
1 & 0 & 2 & 0 & 0 \\
0 & 1 & 1 & 8 & 0 \\
0 & 0 & 0 & 4 & 5
\end{array}\right]\left[\begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4} \\
x_{5}
\end{array}\right]=\left[\begin{array}{l}
1 \\
2 \\
1 \\
3 \\
2
\end{array}\right] .
$$

Use Jacobi's method and Gauss-Seidel method. The true solutions are ($-3 / 23,6 / 23,13 / 23,25 / 92,21 / 115$). Report how many times of iterations your program needed to get sufficiently converged solutions.
2. Apply Crank-Nicholson scheme to solve the 1D diffusion equation

$$
\begin{equation*}
\frac{\partial T}{\partial t}=\frac{\partial^{2} T}{\partial x^{2}} \tag{2}
\end{equation*}
$$

subject to the boundary conditions

$$
\begin{equation*}
\frac{\partial T}{\partial x}=0 \text { at } x= \pm L, \tag{3}
\end{equation*}
$$

where the system is evolved on the domain $-L<x<L$. Set L to be sufficiently large. As a simplest case, set the initial condition $T=\exp \left(-x^{2} / 4\right)$ at $t=1$. First write down a matric equation for $T(i, t=1+\Delta t)$, where i runs the spatial coordinate. Try to use Gauss-Seidel to solve the matrix equation.
3. Burgers equation. Write a C program that advances the Burgers equation

$$
\begin{equation*}
\frac{\partial f}{\partial t}+f \frac{\partial f}{\partial x}=0 \tag{4}
\end{equation*}
$$

for the initial conditions

$$
f(t=0)=\left\{\begin{array}{cc}
1 & (x \leq-1) \tag{5}\\
-x & (-1<x<0) \\
0 & (x \geq 0)
\end{array}\right.
$$

Try a forward, a backward, and a central difference scheme.
The analytic solutions is

$$
\begin{align*}
f(x, t)= & 1(x \leq-1+t) \\
& -\frac{x}{1-t}(-1+t<x<0) \\
& 0 \quad(x \geq 0) . \tag{6}
\end{align*}
$$

Does your program give an accurate numerical solution?

