Basic Numerical Analysis

November 13, 2012

Problem Set 6

1. A warm-up.

Write a simple program that does the Fourier- and inverse Fourier-trasnform for a data vector of an arbitrary size. Begin with small data, say,
$\mathrm{x}=(2,3,5,-1,-2.8,2.5,-1,0.1)$. Check if your code returns the same vector after FFT + inverse FFT. Try to use a publicly available library such as FFTW or one in Numerical Recipes.
2. Solve the 2D Poisson equation

$$
\begin{equation*}
\left(\frac{\partial^{2}}{\partial x^{2}}+\frac{\partial^{2}}{\partial y^{2}}\right) \phi=\rho(x, y) \tag{1}
\end{equation*}
$$

subject to the (somewhat artificial) boundary conditions

$$
\begin{equation*}
\phi=0 \tag{2}
\end{equation*}
$$

at the boundaries, where the system is defined on the domain $0<x<1,0<$ $y<1$. Let us use a Gaussian distribution $\rho(x, y)=\exp \left[-70\left((x-0.5)^{2}+\right.\right.$ $\left.(y-0.5)^{2}\right]$.
3. Solve the same equation as for 2 above but use a direct method. Namely, distribute mass (or charge) elements such that the distribution approxiates $\rho(x, y)$. Then sum up the potential generated by all the distributed mass elements (particles). Note the green function for the 2D Poisson equation is $\sim \log r$.
Advanced Write an MPI program to solve the same problem. Use 4 processors. Divide the domain equally in x-direction, such that processor 0 holds $0<x<=0.25$, processor 1 holds $0.25<x<=0.5, \ldots$
The mass (charge) distribution can be divided, but you may also use $\rho(0<$ $x<1 ; 0<y<1)$ as a shared information. MPIBcast and MPIAllgather should suffice.

