
FIVE LECTURES ON FANO MIRRORS

SERGEY GALKIN

Abstract. These are the notes for my first two (out of five) lectures on mirror constructions for
Fano varieties at Anmyundo castle, Korea (June 7 and 8, 2011). First lecture is introductory and
contains some examples, second lecture is about certain inequalities and their extremes. Third
lecture was about understanding of mirror symmetry, mirror construction for minuscule varieties,
historical overview of the field and toric degeneration hypothesis. Fourth lecture was on mutations
of potentials and incarnations of Markov’s equations. In the end of the course we constructed
mirrors for 105 families of Fano threefolds and 10 families of del Pezzo surfaces. Evening discussions
(that have to be added in the appendix) discuss some motivations, examples, corollaries, hints for
the exercises and some challenging open problems.
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1. First lecture: examples and background on algebraic geometry.

Mirror symmetry is an experimentally observed duality between algebraic and symplectic ge-
ometries 1 .
Constructions of mirrors for Fano varieties are interesting on their own, however they are of utter

importance in the following research program (Coates - Corti - Galkin - Golyshev - van Straten -
. . . ): classify Fano varieties by classifying their mirrors. Moreover, to succeed in this program we
need constructions of mirror objects before we even know if the Fano variety itself exists or even
what is a Fano variety or mirror symmetry.
First of all I’ll demonstrate some constructions of this kind, (later in the school we’ll see their

meaning and how it works).

1.1. Examples.

Example 1 (1d). Draw a dot. Then draw a star and two arrows: from the star to the dot, and
from the dot to the star. Write 1 near the star and x near the dot. Take sum over two edges of

Date: June 21, 2011.
1 Faithful practioners of the field believe that every algebro-geometric structure has a symplectic mirror-dual,

and every symplectic structure (supported on some algebro-geometric object) has mirror-dual algebro-geometric.
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the quotients of the letter written in the end by the letter written in the beginning: W = x
1
+ 1

x
.

Then W is a mirror for the projective line P1.

Example 2 (Potentials associated with quivers). More generally: start from any quiver (oriented
graph) without cycles, add a new vertex star and draw extra edges from star to all vertices without
any incoming arrow, and extra arrow to star from all vertices without any outgoing arrow; assign
1 to the star and independent variables to the vertices and consider the sum over all edges of the
quotients of respective variables. Some quivers produce mirrors to some Fano varieties.

Example 3 (1d-bis). Consider a map F : C∗ → C∗: F (x) = 1
x
. It is 2-periodic: F 2 = Id. Take

sum of all iterations. W = x+ F (x) = x+ 1
x
. Then W is a mirror for the projective line P1.

One can also consider a 2-periodic map x → q
x
to construct W = x+ q

x
.

Example 4 (2d). Consider a rational map FN,r(x, y) = (y,
PN,r(y)

x
) where PN,r is one of the

following:

(1) P4;2 = 1
(2) P3;3 =

1
y

(3) P6,1 = y
(4) P5,1 = 1 + y

Then FN,r has finite order N and sum of its iterations is a mirror for del Pezzo surface SN,r of
index r and degree

∫
[S]

c1(S)
2 = rN .

Exercise 5. Note that any rational endomorphism can be considered as endomorphism of field of
rational functions C(x, y). You can do these two exercises in any order:

(1) Show that maps FN,r are birational, i.e. they have inverse rational map G: FG = GF = Id.
(2) Check that FN,r has order N .

Exercise 6. Prove that F constructed from any P cannot have order 2, and if it has order 3 or 4
then it lies in one-dimensional deformation of P3,3 (respectively of P4;2).

Example 7 (3d). Consider a rational map Fn(x, y, z) = (y, z, Pn(y,z)
x

) where Pn is one of the
following:

(1) 1
(2) 1

yz

(3) 1 + y + z

Then Fn has finite order and sum of its iterations is a mirror for Fano threefold (P1)3, P3, V16.

Exercise 8. Compute the orders.

Example 9 (Projective spaces Pn). (1) Draw An graph with edges oriented from left to right,
add a star, draw an edge from the star to the left vertex and an edge from right vertex to
the star. Write x1,. . . ,xn near the vertices and 1 near the star. Consider sum over edges
like in the first example: W = x1

1
+ x2

x1
+ · · ·+ 1

xn
. This function W : (C∗)n → C is a mirror

to the projective space Pn.
(2) Consider a map F (y1, . . . , yn) = (y2, . . . , yn,

1
y1...yn

). Take the sum of iterations: W ′ =

y1 + · · ·+ yn +
1

y1...yn
.

Exercise 10. Find a change of coordinates on the torus that maps W to W ′.
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1.2. Background on varieties: curves, surfaces, Calabi–Yau, Fano... Every variety has the
tangent bundle TX , its dual cotangent bundle Ω

1
X = T ∗

X , canonical line bundle KX = ωX = detΩ1
X

and its dual anticanonical line bundle −KX = detTX .
Naturality of these bundles makes them more important than the arbitrary ones.
Classification of curves C by their genus g (or equivalently any of: topological Euler characteristic

χtop(C) = deg TC = 2−2g or canonical degree degKC = 2g−2, or arithmetic genus dimH1(OC) =
g)
There is a trichotomy:q g = 0: projective line P1, canonical degree degKC = −2 is negative; curvature is positive.q g = 1: elliptic curves E, canonical class is trivial; curvature is zero.q g > 1: higher genera curves C, canonical class is ample; curvature is negative.

For each g there is a moduli space of dimension 3g − 3 + dimAut(C). Note there are infinitely
many g > 0.
Hodge decomposition of cohomology Hn(X,Z) ⊗ C =

∑
p+q=n H

p,q(X,C) where Hp,q(X,C) is

p-holomorphic and q-antiholomorphic part, or equivalently Hp(X,Ωq
X).

Symmetries of Hodge diamond of Kaehler (and hence projective) varieties: (Z/2Z)2.
Hodge diamond for curves. Serre duality: H0(C, ωC) = H1(C,OC)

∗

Note that there is an extra symmetry when g = 1. This is the mirror symmetry ! Elliptic curves
are mirror dual to elliptic curves.
Trichotomy for projective varieties with Pic(V ) = Z:q −KV is ample: Fano varietiesq KV = 0: (generalized) Calabi–Yau varietiesq KV is ample: varieties of general type.

Note that there are more intermediate options for varieties with PicV ̸= Z (e.g. product of a line
with a curve of higher genus).

Example 11 (varieties with K = 0). (1) Abelian varieties, e.g. products of elliptic curves.
These exist in every dimension > 1.

(2) Holomorphic symplectic varieties (also known as hyperkahler manifolds): K3 surfaces (e.g.
Kummer surfaces), Hilbert schemes of n points on K3 surfaces, and their deformations.
These exist in even dimensions > 2.

(3) Honest Calabi-Yau varieties (π1(V ) = 0 and h2,0(V ) = 0), e.g. quintic in P4. These exist
in any dimension > 3.

Bogomolov’s theorem says that up to unramified covers any variety with K = 0 is product of
these three types.

Example 12. Quotients of K3 surfaces by involutions acting without fixed points are called
Enriques surfaces.

Remark 13 (Mirror symmetry). Note that Hodge diamonds of abelian and holomorphic symplectic
varieties have extra symmetry with respect to line with angle 45 degree. This is not generally true
for honest Calabi–Yau threefolds, but it has been noticed that many of them come in pairs V and
V ′ so that their Hodge diamonds are mirror-symmetric to each other.

Kodaira dimension of variety V defined as an integer number κ(V ) such that for some C > 1

we have C−1 <
dimH0(V,ωn

V )

nκ(V )i < C for big n. In case H0(V, ωn
V ) = 0 for all n number κ(V ) is defined

to be −∞. Kodaira dimension is either −∞ or in interval from 0 to dimV . This is birational
invariant of variety.
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Enriques’s classification of complex projective surfaces:q κ = 2: general type, KS is numerically effective (KS · C > 0 for any curve C ⊂ S).q κ = 1: some elliptic surfaces (e.g. product of elliptic curve with curve of genus g > 1).q κ = 0: K3, Enriques, abelian, bi-elliptic (7 families).q κ = −∞: rational surfaces or ruled surfaces over curve of genus g > 0.

Note that on the right we list minimal models, one can also blow them up.

Remark 14. Some elliptic surfaces have Kodaira dimension less than 1. In this lectures of particular
importance will be rational elliptic surfaces, which can be obtained by blowing up the base loci of
a pencil of elliptic curves on the plane.

Definition 15 (Iskovskikh). Smooth complex projective variety V is called a Fano variety if its
anticanonical bundle −KV = detTV is ample, i.e. some its multiple gives the embedding of V into
the projective space.

Fano varieties in dimension two are also called del Pezzo surfaces.
Maximal r ∈ Z such that −KV = rH for some ample divisor H ∈ Pic(V ) is called (Fano) index

of Fano variety.
Varieties V with r(V ) > dimV − 1 are sometimes called del Pezzo varieties.

Exercise 16. What could be Kodaira dimension of a Fano variety?

Theorem 17 (del Pezzo, Castelnuovo?). Any del Pezzo surface is either P1 × P1 or blowup of
0 6 n 6 8 points in generic position on the projective plane P2. Generic position means: no three
points lie on a line, no 6 on a conic, and similarly for singular cubics.

In particular all del Pezzo surfaces (over C) are rational; note that in dimensions > 3 some Fano
varieties are irrational. 2

After second Ionut’s lecture on J-function...
I was asked what is mirror symmetry for Fano. The point of these lectures is that in order to

succeed in the original program we need some constructions that can be used by people who don’t
even know what is a Fano variety.
However after Ionut’s lecture it is a pleasure to give a pre-definition. Let V be a Fano variety

of dimension D.

Definition 18. Consider very small J-function, that is small JV restricted to anticanonical di-
rection with z = 1. Define G-function GV =

∫
[V ]

JV ∪ [pt] as the fundamental term of very small

J-function. For Laurent polynomial W (y1, . . . , yD) define its G-function as GW (t) =
∫
|yi|=1

etWω,

where ω = 1
(2πi)D

dy1
y1

∧ · · · ∧ dyD
yD

. Laurent polynomial W is said to be pre-shard of the mirror for

Fano variety V if GV = GW (this is A = B′ type equality). 3

Exercise 19. Prove that yesterday’s examples of mirrors for Pn are indeed pre-shards of the mirror
for it.

Material from night exercise session.
Recall

2End of the first lecture. Then first Brett’s lecture on exploded manifolds.
3W is called Lax operator L in the original work of Eguchi-Hori-Xiong, and condition GV = GW is essentially

equation 4.26 from hep-th/9605225. Przyjalkowski calls this kind of W as very weak Landau–Ginzburg model.
4
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Theorem 20 (Kodaira’s vanishing theorem). If L is an ample line bundle on V then H i(V,L ⊗
KV ) = 0 for any i > 0.

Exercise 21. If V is a Fano variety then H i(V,OV ) = 0 for i > 0

Exercise 22. There is no smooth projective variety V ′ with Hodge diamond mirror symmetric to
diamond of Fano variety V .

This means mirror of a Fano variety cannot be a projective variety. Instead mirror to Fano
variety is a pencil of varieties with K = 0, or in fact even simpler object – just a function
(Laurent polynomial). It is not the geometry of the total space, but rather variation of the levels
that matters. However the pencil should be a very special one: its fibers are Calabi–Yau varieties
mirror dual to anticanonical sections of our Fano.
Exponential short exact sequence

0 → Z → O → O∗ → 0

gives an exact sequence of cohomologies

H1(V,O) → H1(V,O∗) → H2(V,Z) → H2(V,O)

Since by Kodaira vanishing H1(V,O) = H2(V,O) = 0 the map c1 : Pic(V ) → H2(V,Z) is an
isomorphism.

Remark 23. Also all Fano varieties are simply-connected and group H2(V,Z) equals to Zρ, where
ρ is Picard number.
So, rational, algebraic, numerical and homological equivalences of divisors on Fano varieties

coincide.

Remark 24. Same is true for honest Calabi–Yau varieties. However for K3 surfaces the map c1 is
merely an inclusion and is never an isomorphism.

Exercise 25. Draw Hodge diamonds of Fano curves, surfaces and threefolds.

Recall that projective space Pn = An+1/C∗ inherits (n + 1) homogeneous coordinates (X0 :
X1 : · · · : Xn), and in the chart X0 ̸= 0 it is parametrized by n inhomogeneous coordinates
x1 =

X1

X0
, . . . , xn = Xn

X0
.

Consider n-form ω = 1
(2πi)n

dx1

x1
∧ dx2

x2
∧ · · · ∧ dxn

xn
. This is a holomorphic volume form on the

torus (C∗)n. However it is a meromorphic volume form on the projective space. Similarly one may
consider n-form ω′ = dx1 ∧ · · · ∧ dxn; ω

′ is holomorphic on the affine space and also meromorphic
on Pn.

Exercise 26. Find divisors (ω) and (ω′).

Exercise 27 (Projective space). Compute the canonical line bundle of the projective space Pn and
show it is a Fano variety. Hint: either consider determinants of the (dual) Euler sequence

0 → OPn → OPn(1)⊕(n+1) → TPn → 0

or use the last exercise.

Example 28. Consider a hypersurface i : X ⊂ Pn in the projective space Pn given by zeroes of
homogeneous equation of degree d in n+ 1 variables. Use the short exact sequence

0 → TX → TPn|Y → O(d) → 0

to compute the anticanonical bundle of X.
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Exercise 29. (1) Show that three-dimensional quintic is an honest Calabi–Yau variety.
(2) Show that any smooth section of anticanonical bundle on Fano variety V is a generalized

Calabi–Yau variety, and if dimV > 4 then it is honest.

So smooth hypersurface of degree d 6 n in Pn is a Fano variety of index (n+1−d), hypersurface
of degree d = n + 1 is Calabi–Yau variety and hypersurface of degree d > n + 1 is a variety of
general type.
Next theorem is of fundamental importance:

Theorem 30 (Kollar, Miyaoka, Mori). In any given dimension D there are only finitely many
deformation classes of Fano varieties.

Remark 31. The main reason why this holds is because Fano varieties have lots of rational
curves on them: they are rationally connected, which means there is a rational curve passing
through any two generic points. We would like to see Gromov–Witten theory as some qualitative
analogue of Mori’s theory (to be explained later).

Deformation is a flat projective morphism over connected (irreducible) base with fibers being
our varieties.
Note that Fano varieties could be also deformation equivalent to infinitely many different non-

Fano varieties.

Exercise 32. (1) Show that P1 × P1 is a deformation of F2 = PP1(O ⊕O(2))
(2) Consier Hirzebruch surfaces Fa = PP1(O ⊕ O(a)). Show that Fa is deformation of Fa+2b

for any b > 0, but surfaces with odd and even a’s are not deformations of each other. Hint:
moreover, they are not diffeomorphic; consider intersection form in the second cohomology.

(3) Show that all Hirzebruch surfaces with even a (resp. with odd a) are symplectomorphic to
each other.

Remark 33. Minimals models of rational surfaces are: P2, P1 × P1 and Fn for n > 2.

2. Second lecture: inequalities and their extremes.

By Ehresman’s theorem deformation-equivalent smooth projective varieties are diffeomorphic.
Moreover Fano varieties from the same deformation class with symplectic form choosen in anti-
canonical class are symplectomorphic (symplectic geometry is topological).
Since Fano variety with symplectic form in anticanononical class is rigid as symplectic variety,

its mirror should be a rigid object in algebro-geometric world.

Question 34. How to single out mirrors for Fano D-folds from the space of all Laurent polynomials
in D variables?

In these lectures we will discuss two experimentally observed properties: extremality and muta-
bility (clusterity/troicity).
Inequalities and extremes.
Natural source of ”rigid” objects are extremal ones.
We think about extremality as a condition when some natural inequality is saturated (becomes

equality).
Our point is that extremal objects are of the highest interest.
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Example 35. There is a famous inequality between arithmetic mean and geometric mean: if
X1, . . . , Xn are real positive numbers, then

X1 + · · ·+Xn

n
> (X1 · · · · ·Xn)

1
n

and the equality holds only if X1 = · · · = XN .
Put xi =

Xi

Xn
and consider the modified equality:

(x1 + · · ·+ xn−1 + 1)n

x1 . . . xn−1

= nnλ

Then this is the (shifted rescaled) shard of the mirror for hypersurface of degree n − 1 in Pn−1.
The original equality (λ = 1) corresponds to its singular (conifold) fiber.

Exercise 36. Prove it.

Exercise 37. Play this game with some other inequality between means (arithmetic, geometric,
harmonic, etc).

Now let us be more serious and consider the equation

(38) a+ b = c

Is there any natural inequality associated with 38?

Theorem 39 (Stothers (1981), Mason (1983)). If a, b, c ∈ C[x] are coprime polynomials then
number of distinct roots of abc is at least their greatest degree plus one.

Proof. Rational function f = a
c
can be considered as a map f : P1 → P1. Degree d of this map

(number of preimages of the generic point) equals to maximal degree of a, b and c. For y ∈ C we
have a(y) = 0 ⇐⇒ f(y) = 0, b(y) = 0 ⇐⇒ f(y) = 1 and c(y) = 0 ⇐⇒ f(y) = ∞. f(∞) could
be 0 or 1 or ∞ or neither. So up to point ∞ ∈ P1 all distinct roots of abc correspond to distinct
points in f−1{0, 1,∞}. Now the theorem follows from the following

Lemma 40. Let f : C → P1 be a map of degree d from Riemann surface of genus g to P1. Let N
denote number of distinct points in the preimage f−1{0, 1,∞}. Then
(41) N > d+ 2− 2g,

and the inequality is saturated ⇐⇒ map f is unramified outside {0, 1,∞}.

Proof. Recall Hurwitz formula, for map of degree d from curve C to curve C ′ one has the equality

(42) degKC = deg f · degKC′ +
∑
P∈C

eP

where eP is the local ramification index in point P . In our case

2g − 2 = d · (−2) +
∑

eP

For any fiber number of points in it counted with multiplicity (1 + eP ) equals to degree d. So
d equals number of distinct points plus sum of all ramification indices in the fiber. Respectively
3d equals N plus sum of all ramifications in these 3 fibers. Combine it with Hurwitz formula to
obtain

(43) N = (d+ 2− 2g) + EU
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where EU is the sum of all ramification indices over U = P1\{0, 1,∞}. Thus inequality 41 is
equivalent to

(44) EU > 0

which is obvious, so the lemma and the theorem are proven. � �
Exercise 45. Prove ”Fermat’s last theorem for polynomials”: if three polynomials of one variable
X, Y, Z ∈ C[u] and integer n > 3 satisfy equation Xn + Y n = Zn then all these polynomials are
constants.

Definition 46. Rational functions on curve C that saturate inequality 41 are called Belyi func-
tions. Equivalently these are the maps ramified over at most three points.4 They have this name
after famous

Theorem 47 (Belyi (1979)). Curve C is defined over a number field ⇐⇒ it supports some Belyi
function.

We will say Belyi function is pure if all ramification indices over 1 equals 2, and very pure if
additionally all ramification indices over 0 equals 3.

Definition 48 (Grothendieck (1984)). (1) Dessin d’enfant is the tiling of orientable surface
by black and white triangles.

(2) Pure dessin is a graph embedded into orientable surface, such that its complement is union
of contractible faces.

(3) Very pure dessin is a trivalent pure dessin.

Exercise 49. (1) Orientation on the surface induces a cyclic order on the sets of edges adjacent
to every vertex. Given a graph with this collection of cyclic orders - reconstruct the surface.

(2) Draw all very pure dessins on with 2 vertices
(3) Draw all very pure dessins on sphere with 4 vertices.
(4) Make a list of gonalities of their faces.

Definition 50 (Grothendieck). (1) Cartographic group is a free group Z ⋆ Z = π1(U),
(2) pure cartographic group is Z ⋆ (Z/2Z) = π1(P(1, 2)\{0, 1}),
(3) very pure cartographic group is (Z/3Z) ⋆ (Z/2Z) = PSL(2,Z) = π1(P(2, 3)\{1}).

Proposition 51. There are bijections between the following classes of objects:

(1) Belyi functions of degree d,
(2) Dessins d’enfant with d white and d black triangles,
(3) Homomorphisms of cartographic group into Sd.

Similarly (very) pure Belyi functions of degree d correspond to (trivalent) graphs with d
2
edges

correspond to representations of (very) pure cartographic group into Sd.

Proof. q From Belyi function to the graph: consider the preimage of the real line (or real
interval [0, 1].q From Belyi function to representation: consider the monodromy ρ : π1(U) → Aut(f−1t).

�
Exercise 52. Finish the proof.

Exercise 53. Find Belyi functions corresponding to dessins from exercise 49.

4Up to PGL(2) change of coordinate on the target P1.
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This is the proto-typical example of our philosophy: the extremal objects (that saturate some
inequality) have rigid, combinatorial (and arithmetic) nature.
By the way, W = x+ 1

x
is a Belyi map, of course.

We think about extremal Laurent polynomials as a special higher-dimensional generalization of
Belyi functions.

Exercise 54. Recall Frey’s trick and the relation between Szpiro’s inequality and abc conjecture.

The emblematic example is that of rational elliptic surfaces (RES).

Exercise 55. (1) Show that RES has 8 moduli, one less than tuple of 12 points on P1.
(2) Show that generic RES has 12 distinct singular fibers.

Question 56 (Szpiro). What is the minimal number C ′(π) of singular fibers for non-isotrivial
elliptic surface π : S → P1?

Theorem 57 (Beauville (1981)). C ′(π) > 3

Proof. Consider local system R1π∗Z and note that moduli space of curves is hyperbolic. �
This inequality is not strong enough. Let us formulate a stronger and more precise one.
Assume our surface has a section (Jacobian).
Weierstrass model for rational elliptic surface is given as

(58) y2 = x3 + Ax+B

where A and B are homogeneous polynomials of two variables (X : Y ) of degrees 4 and 6
respectively.
Recall (see page2 of the Russian handout) Kodaira’s classification of the singular fibers of min-

imal Neron-Kodaira’s model of elliptic surface (no (−1)-curves in fibers). Singular fibers are
classified either by their local monodromy T or by local valuations a, b, δ of A, B and discrimi-
nant ∆ = 27B2 + 4A3. Fibers of type In (n > 1) are semi-stable, others are not. In and I∗n has
multiplicative type, others additive.

Theorem 59 (Beauville (1981-1982)). If π : S → P1 is non-trivial elliptic surface with all singular
fibers being semi-stable. Then

(1) C ′(π) > 4
(2) If C ′(π) = 4 then π : S → P1 is one of 6 explicitely written Shioda’s modular elliptic

surfaces (see page3 of the Russian handout).

Note that 4 coincides with naive parameter count: 12 − 8 = 4, if one thinks that collisions of
two fibers happens in codimension one and they are independent.

Exercise 60 (Charts and shards). (1) Find some charts isomorphic to (C∗)2 inside S\π−1∞,
i.e. rewrite these families as families of pencils of some Laurent polynomials. For the first
example: divide by XY Z, put Z = 1, X = x1, Y = x2, t → −1

t
, the resulting family is

1− tW = 0 where W = x1 +
x2

x1
+ 1

x2
.

(2) Show that Laurent polynomials you constructed in the previous example are pre-shards of
the mirrors for del Pezzo surfaces of degrees 9, 8, 6 and 5.

Fibers of additive type have local monodromy of finite order. Map from Kodaira-Neron model
to Weierstrass model contracts rank r root system of (−2)-curves.

Definition 61 (The defects). Consider the defect (local conductor) c defined in any of the following
ways:
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(1) cP = (δP − rP )
(2) cP = 2−rkLTP , where L = R1π∗Z is a local system of rank 2 and LTP is the space invariant

with respet to the local monodromy TP .
(3) c equals 0 for nonsingular fibers, 1 for semi-stable fibers and 2 for non-semistable fibers.

Define global defect (conductor) C as the sum of defects of all singular fibers.

Exercise 62. Prove the equivalence of first two definitions of local defects.

We can generalize Beauville’s theorem as follows

Theorem 63 (Miranda–Persson (1986)). Let π : S → P1 be any elliptic surface, then

(1) C(π) > 4
(2) C(π) = 4 ⇐⇒ S is either one of 6 Beaville’s surfaces, or one of 6 explicit rational surfaces

with 3 singular fibers, or isotrivial surface with 2 singular fibers. (See page 4 of the Russian
handout)

These surfaces are also called extremal rational elliptic surfaces.

Proof. Note that

(64) deg∆ =
∑
P

δP =
∑

χtop(SP ) = χtop(S) = 12χ(S,OS)

Let MW (S) be the Mordell–Weil group of sections s : P1 → S s.t. πs = IdP1 . Pic(S) is generated
by sections and irreducible components of the fibers, and Shioda-Tate’s formula measures this
explicitly:

(65) ρ(S) = 2 +
∑
P

rP + rkMW (S)

Consider the difference between 64 and 65:

(66) C(π : S → P1) = 12χ(S,OS)− ρ(S) + 2 + rkMW (S)

Note that

(67) ρ(S) 6 h1,1(S) = 10χ(S,OS)

Since χ(S,OS) = 1 + pg(S)

(68) C(S) > 4 + 2pg(S)

Moreover, the last inequality is saturated only if ρ(S) = h1,1(S) and MW (S) is finite group.
This proves the first statement and also shows that extremal elliptic surface is rational (pg(S) =
h2,0(S) = 0).
For the second statement consider j-invariant as a map from the base to P1. This map is a

Belyi function. In Beauville’s cases this Belyi function is very pure and is one from exercise 53
corresponding to one of 6 trivalent graphs on sphere from exercise 49. For Miranda–Persson’s cases
- look for not very pure Belyi functions. �
Exercise 69. Fill the gaps in the proof.

Exercise 70 (Charts and shards 2). For Miranda–Persson’s examples

(1) Find charts like in exercise 60,
(2) Show the respective Laurent polynomials are pre-shards of the mirrors for del Pezzo surfaces

of degrees 1, 2, 3 and 4.
10



Note that in inequality C(π) > 4 left hand side depends only on local system L = R1π∗Z and
right hand side equals 4 = 2 · 2 = 2 · rkL.
So this is a special case of Golyshev’s inequality :

(71)
∑
P

(rkL− rkLTP ) > 2 rkL

and if the inequality is saturated we call local system L extremal local system.
As we have seen from exercises 60 and 70 extremal local systems seem to have something to do

with mirror symmetry.
We speculate the following hypothesis: LetW be a ((pre-)shard of) the mirror for a Fano variety.

Then W is extremal Laurent polynomial i.e. local system R
q
W∗ tend to have non-trivial extremal

subquotient.

Remark 72. There are exceptional pecularities in even dimension. Note, we haven’t yet constructe
the mirrors for two del Pezzo surfaces (of degrees 7 and 8). These surfaces are toric and one can
construct their mirrors W8 = xy + x + y + 1

xy
and W7 = xy + x + y + 1

x
+ 1

y
and check that they

are not extremal.

Exercise 73. Mordell-Weil group for W7 and W8 should have rank 1. Describe it explicitly.

Now we are going to prove Golyshev’s inequality.

Extremality is acyclicity:

Euler-Poincare. Let F be a constructible sheaf of C–vector spaces on a complex analytic smooth
projective curve C. Denote by U an open subset over which F is locally constant, j the open
embedding. Let u be a point in U and let C \ U = U0 = {ui}. Denote by Fu the fiber of F over
u. This turns Fu into a π1(U)–module. One has the Euler–Poincare formula:

χ(C,F ) =
∑

(−1)rhr(C,F ) = (2− 2g) dimFu −
∑

(dimFui
− dimFu).

e.g. Milne Etale cohomology, V.2.12.
Comments: recall that a sheaf F of finite dimensional C-vector spaces on an analytic variety V

is constructible if there exists a stratification of V by analytic subspaces such that the restriction
of F on every stratum is locally constant. A locally constant sheaf on U is the same as a local
system and is given by a rep of π1(U, u) as follows: consider the fiber Fu, then any loop defines the
monodromy in GL(Fu). Vice versa, a rep of π1(U, u) defines a locally constant sheaf as follows:
denote by Ũ the universal cover of U and quotient Ũ × Fu by the action of π1(U, u).
Thus, a constructible sheaf on a proper analytic curve C roughly ‘consists of’ the skyscraper

constituents, the locally constant sheaf FU on a sufficiently small dense open subset j : U −→ C,
and the information on how FU extends to C \ U .
Derived categories of constructible sheaves (i.e. cohomologically bounded cohomologically con-

structible complexes up to quasiisomorphisms) are respected by six operations. In particular,
direct images of constructible sheaves are again constructible.
For a local system L on U , it is easy to describe a fiber of the sheaf j∗F over any point ui: by

definition, it is isomorphic to the invariants of Fu under the action of the loop around ui (local
monodromy).
Proposition: Let L be a non-constant irreducible [in our situation, typically self–dual] local

system on U ⊂ P 1. Then the inequality R(L) > 2 rkL holds.
11



Proof. Let F = j∗L. Note that i) H0(F ) = 0, since H0(P1, F ) = H0(U,L) = invariants of π1(U)
acting on Lu; ii) by e.g. Milne Etale cohomology V.2.2 c) H2(C, j∗L) is dual to H0

c (C, j∗L
∨)), and

the latter space is isomorphic to the invariants of π1(U) acting on L∨
u , hence is zero as well.

Hence, in our situation, with C = P1 and H0(C,F ) = 0 and H2(C,F ) = 0, the Euler-Poincare
formula becomes

−h1(X,F ) = 2 dimLu −
∑

(dimLui
− dimLu),

and 2 rkL−R 6 0, q.e.d.

Thus, for non-constant irreducibles, extremal ⇐⇒ H1(X,F ) = 0 .
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