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MUTATIONS OF POTENTIALS

SERGEY GALKIN, ALEXANDR USNICH

Abstract. In two-dimensional case we develop the theory of mutations of potentials and prove the Laurent phe-

nomenon. This is an extension of the theory of cluster algebras for case when number of directions of mutations
could be (much) higher than number of variables, but at least one function remains Laurent polynomial after all mu-

tations. The motivating examples are potentials that are Fukaya-Oh-Ohta-Ono mirror images of special Lagrangian

tori on del Pezzo surfaces and Auroux wall-crossing formula relating invariants of different tori.

1. Introduction

Let xi be coordinates on n-dimensional algebraic torus T = C∗n. Fix logarithmic volume form

(1) ω =
1

(2πi)n
dx1
x1
∧ · · · ∧ dxn

xn
=

1

(2πi)n
d log x1 ∧ · · · ∧ d log xn

On the space L = C[x1, x
−1
1 , . . . , xn, x

−1
n ] of Laurent polynomials W ∈ L consider the functionals of constant

term Tr(W ) =
∫
|xi|=1

Wω, constant term of d-th power gd(W ) = Tr(W d), and their generating functions G, Ĝ

sending Laurent polynomial W ∈ C[x1, x
−1
1 , . . . , xn, x

−1
n ] to power series of one variable:

GW (t) =
∑
d>0

gd(W )
td

d!
=

∫
|xi|=ε

et·Wω(2)

ĜW (t) =
∑
d>0

gd(W )td =

∫
|xi|=ε

1

1− tW
ω(3)

We are interested in the following problem

Problem 4. Describe image and fibers of functional G i.e. given power series G(t) ∈ L find the space LG = {W ∈
L|GW (t) = G(t)}.

As a first step in solving it we address the following problem

Problem 5. Find the group of fiberwise automorphisms of G, and more generally – describe transformations
preserving G i.e. find when GW = GW ′ .

Definition 6. Special Cremona group SCr = SCrn(C) is a subgroup of Cremona group Crn(C) =
Aut C(x1, . . . , xn) preserving volume form ω. Its elements are called special birational transformations. SCr2
is also called Symp. SCr is subgroup of index 2 in SCr+ = {f ∈ Cr|f∗ω = ±ω}.

Definition 7. A pair (W, f) ∈ (L,Cr) is called a special (Laurent) pair if f is a special birational transformation
and W ′ = f∗W is a Laurent polynomial.

Lemma 8. If (W, f) is a special pair, then GW = GW ′ .

Proof. Change of coordinate under the integral. �
Group Cr has maximal torus T and its normalizer N(T ) with “Weyl group” N(T )/T = GL(n,Z) acting by

monomial transformations. Group SCr+ inherits the same maximal torus and normalizer, while for SCr we have
NSCr(T )/T = SL(n,Z).

Symmetries of G contain the irrelevant continuous group T . To get rid of these symmetries we restrict our
attention to subspace LN ⊂ L of normal Laurent polynomials: Laurent polynomial W is non-degenerate if its
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Newton polytope (convex hull of characters with non-zero coefficients) is n-dimensional and contains 0 (trivial
character of T ) inside interior.

Definition 9. Nondegenerate Laurent polynomial W is normal if all its coefficients at the vertices of Newton
polytope are 1s.

Laurent polynomials we consider are normal.

Problem 10. Given normal Laurent polynomial W , find transformations f ∈ SCr such that f∗W is normal
Laurent polynomial.

There are obvious transformations of SL(n,Z). In next section we describe non-trivial transformations for n = 2.

1.1. Preliminaries. Let us briefly recall the results of [12]. Let S ⊂ Z2 be the set of primitive vectors in Z2, i.e.
vectors with coprime coordinates. For a vector u ∈ S we define a piecewice linear mutation to be an automorphism

of the set Z2 given by the formula:
µplu : v 7→ v +max(< u, v >, 0)u,

where < u, v > is a antisymmetric bilinear form on Z2, normalized in a way that the value on generators is
< (1, 0), (0, 1) >= 1.

For a vector u ∈ S we define a mutation in the direction u as a birational automorphism of P2 given by the
formula:

µ(m,n) : xayb 7→ xayb(1 + xny−m)an−bm

In particular the mutation in the direction (0, 1) is given by:

µ(0,1) : (x, y) 7→ (x,
y

1 + x
).

The tropicalization of this morphism gives a map:

µpl(0,1) : (a, b) 7→ (a, b−min(0, a)).

The geometric meaning of the tropicalization is the following. Suppose we have a toric surface X given by the
fan T . Then T ′ = µplv (T ) is another fan, defining toric surface X ′. Let Dv be the toric divisor on X corresponding
to the vector v, and s is the point on Dv with coordinate −1. Let D′−v be the toric divisor on X ′ corresponding

to the vector −v, and s′ is the point on D′−v with coordinate −1. Then by the results of [12], there is a surface X̃
and maps

π : X̃ → X,

π′ : X̃ → X ′,

where π is the blow-up of X at s, and π′ is the blow-up of X ′ at s′. This gives a resolution of birational isomorphism

µv = π′ ◦ π−1.
Moreover strict transform of toric divisors from X to X̃ equals strict transform of toric divisors from X ′. The

correspondence between toric divisors is given by the map µpl. Namely we have:

π∗stDt = π
′∗
stDµpl

v (t),

where π∗st denotes strict transform.

2. Mutations

2.1. Properties of potential. Consider a toric surface X with rational function W , called potential.
Let us introduce a curve C defined by the formula:

C −
∑
t

ntDt = (W ),

where
∑
t ntDt is the part of (W ) supported on toric divisors.

The open toric orbit has specific toric coordinates x, y, which we use as rational coordinates on X.
We denote Dt the divisor corresponding to the ray t ∈ Z2, as well as all its strict transforms. If t = (a, b), then

the function xb

ya gives a rational function Dt → P1, which we call the canonical coordinate. We consider it up to

taking its inverse. Each toric divisor has the point, where canonical coordinate equals −1. We denote the set of all
such points by Ω.
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To such a pair (X,C) we associate a set of vectors V ⊂ Z2 with multiplicities, which will encode the way the
curve C intersects toric divisors. If the curve C intersects divisor corresponding to a vector v transversally, then
vector v enters V the number of times equal to the multiplicity of intersection. If the intersection of C with such
divisor is not transversal, then we count the correct multiplicities using blow-ups. Let s ∈ Dv ⊂ X be a point
where the canonical coordinate equals −1, and C intersects Dv in s. Then we make a blow-up of X in s, and we
denote E1 the exceptional curve of the blow-up. Then we blow-up the point of intersection of E1 and the strict
transform of Dv, and we denote E2 the exceptional curve of the blow-up. We continue by induction, so that Ek
is the exceptional curve of the blow-up at intersection of Ek−1 and the strict transform of Dv. We denote nk the
index of intersection of the strict transform of C with the curve Ek\(Ek∩Ek+1). In the last formula we just remove
one point of intersection of Ek with Ek+1. Of course, there will be only finite number of Ek which intersect C, so
we need to consider only finite number of blow-ups. Then vector kv enters set V with multiplicity nk.

Example 11. We consider P2 with potential W9 = x + y + 1
xy . The curve defined by the equation W = 0 is an

elliptic curve, intersecting toric divisors at toric points. Let us consider a toric surface X0 given by fan:

(2,−1), (1,−1), (0,−1), (−1,−1), (−1, 0), (−1, 1), (−1, 2), (0, 1), (1, 0).

This surface is a blow-up of P2 at 6 points, and the strict transform of W = 0 is the smooth elliptic curve C0

that intersects transversally 3 toric divisors D(2,−1), D(−1,−1), D(−1,2). In particular, the set V for the pair (X0, C0)
is V0 = {(2,−1), (−1,−1), (−1, 2)}.

Definition 12. By analogy with cluster mutations, we define the seed to be a triple (X,W, V ), where X is a toric
surface, W is a rational function on X, called potential, and V = {v1, . . . , vn} is a tuple of vectors in Z2.

The seed can be mutated in either of n directions vi.

Definition 13. The cluster mutation µi of seed (X,W, V ) in i’th direction is a new seed (X ′,W ′, V ′) defined as
follows.
V ′ = µi(V ) = {v′1, . . . , v′n} such that v′i = µseedvi (vi) = −vi and v′j = µseedvi (vj) = µplvi(vj) for j 6= i.

X ′ is the toric surface, whose fan is obtained from the fan of X by applying µplvi .
The function W ′ is the pull-back of W under birational isomorphism µvi .

Note, that if compose mutation in direction v with mutation in direction −v, then we obtain the seed, which is
related to the original seed by the action of a unipotent element of SL(2,Z).

We choose initial seed (X0,W, V0), and then we start to apply mutations in different directions. In this way we
obtain the set of seeds.

Definition 14 (Property U). We say that seed (X,W, V ) satisfy property U if the following conditions hold

(1) C is an effective divisor i.e. W is a Laurent polynomial;
(2) C = A+B, where A is the irreducible non-rational curve and B is supported on rational curves;
(3) The intersection of C with toric divisors belongs to the set Ω;
(4) If t ∈ V , then the intersection index kt = (C ·Dt) > nt
(5) For toric divisor Dt intersection index (A ·Dt) equals to number of i such that vi = t

Given a seed (X,W, V ) we can define curve C by the equation

C − ΣtntDt = (W ),

where ΣvnvDv is the part corresponding to toric divisors. Recall, that there is surface X̃ and maps

π : X̃ → X,

π′ : X̃ → X ′,

where π is a blow-up of the point on Dv ⊂ X, and π′ is a blow-up of the point on Dv′ ⊂ X ′.
For the seed (X ′, F ′, V ′) we have the curve C ′ given by

C ′ − Σtn
′
tDt = (W ′).

Now we prove the following

Lemma 15. If seed (X,F, V ) satisfy property 14 then its mutation (X ′, F ′, V ′) also satisfy property 14.
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Proof. The birational transformation µu : X → X ′ is decomposed as a blow-up π and blow-down π′. Let E be the
exceptional curve of π, and E′ the exceptional curve of π′. After blowing up π at the intersection of C and Du we
have:

(π∗F ) = π∗stC + (ku − nu)E + ΣvnvDv.

The divisor C ′′ = π∗C + (ku − nu)E is effective, because ku > nu. From the other side

(π∗F ′) = (π∗F ) = (π′)∗stC
′ + (k′−u − n−u)E′ + Σv′nv′Dv′ .

In [12] we proved, that canonical coordinates on toric divisors are preserved by µu. It implies that the set Ω ⊂ X
of points with coordinate −1 maps by µu to the corresponding set on X ′, except for points on divisors Du, D−u,
where we are making blow-ups. But C ′ can intersect Du, D−u only at the set Ω, which proves the first statement
of the lemma.

From (2.1) we deduce that
C ′′ = (π′)∗stC

′ + (k′−u − n−u)E′.

As divisor C ′′ is effective, we have that k′−u > n−u. The intersection index of C ′ with Dt for t /∈ {u,−u} is the
same as the corresponding intersection of C. This implies the second statement of the lemma. Moreover as strict
transform of C ′ is effective, then C ′ is effective as well.

We also have:
C ′ = π′∗ ◦ (π∗stC + (kv − nv)E),

which implies that C ′ contains elliptic curve A′ = π′∗ ◦ π∗st(A), and possibly additional rational curve π′(E), which
proves the third statement. C ′ intersects toric divisors

The strict transform π∗st(A) only intersects divisors Dv, Dw. So divisor A′ = π′∗ ◦ π∗st(A) can only intersect
Du′ , Dv′ , Dw′ . �

Theorem 16. If seed (X,W, V ) satisfies property 14 then function W in all the seeds is a Laurent polynomial.

Proof. Lemma 15 implies that the divisor of W defines effective curve on the open toric orbit, in other words it has
poles only on the locus of toric divisors. Therefore, W is a Laurent polynomial. �

3. Examples

Consider next 10 normal Laurent polynomials:

W9 = x+ y +
1

xy
(17)

WQ = x+ y +
1

x
+

1

y
(18)

W8 = x+ y +
1

xy
+ xy(19)

W7 = (1 + x+ y)(1 +
1

xy
)− 1(20)

W6 = (1 + x)(1 + y)(1 +
1

xy
)− 2(21)

W5 = (1 + x+ y)(1 +
1

x
)(1 +

1

y
)− 3(22)

W4 =
(1 + x)2(1 + y)2

xy
− 4(23)

W3 =
(1 + x+ y)3

xy
− 6(24)

W2 =
(1 + x+ y)4

xy
− 12(25)

W1 =
(1 + x+ y)6

xy2
− 60(26)

Proof of the next lemma is straightforward
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Lemma 27. Laurent polynomials satisfy property U 14 with the last condition properly modified.

Theorem 16 implies that

Corollary 28. All consecutive mutations of potentials Wn (from example 17) are Laurent polynomials.

Projective plane and Markov’s triplets. Triplets of positive integer numbers (x, y, z) satisfying Markov’s
equation

(29) x2 + y2 + z2 = 3xyz

are in charge of two numerologies for the projective plane P2.
These numbers are the ranks of exceptional bundles for full exceptional collections in the derived category of

coherent sheaves ([6]) and their squares are the weights of Prokhorov–Hacking’s degenerations of the plane to
weighted projective plane P(x2, y2, z2) ([7]).

We don’t know yet an explicit construction relating degenerations of the surface with exceptional collections
(however there is one proposed in [8]).

In this article we introduce two more interrelated hierarchies ruled by Markov’s triplets — a hierarchy of Laurent
polynomials and a derived hierarchy of cluster collections. The origin of our hierarchies is a Laurent polynomial
x+ y + 1

xy mirror dual to P2.

Although our main theorem and material in sections 1, 2 is of purely algebro-geometric origin and do not involve
mirror symmetry or degenerations, our motivation lies in these two fields so we briefly describe the history and
impact of the problem in the next paragraph.

Toric degeneration ansatz. Batyrev proposed a method to construct Laurent polynomials mirror dual to Fano
varieties using small toric degenerations ([2]).

By generalized toric degeneration ansatz we mean the following:

Conjecture 30. Given a good toric degeneration X of smooth Fano variety Y one may construct its mirror dual
reflection as a Laurent polynomial W associated with X.

Definition 31. We say that Laurent polynomial W is associated with toric variety X if Newton polytope of W is
the fan polytope of X.

To make 30 explicit one has to specify the definitions of good toric degeneration, mirror duality and (hopefully)
provide a constructive way to find the coefficients of W .

In original Batyrev’s setup good stays for small toric degeneration: that is a degeneration to a toric Fano variety
with Gorenstein terminal singularities and an extra condition of preserving Picard group.

This notion for good is too restrictive — in particular all terminal surfaces are smooth, so small toric degeneration
of surfaces cover only trivial case of smooth toric del Pezzo surfaces (i.e. 5 del Pezzo surfaces of degree d > 6).

One may weaken the restriction by considering toric degenerations with Gorenstein non-terminal singularities,
or weaken even further by considering toric degenerations with canonical singularities. In case of surfaces these two
conditions are equivalent 1

In [5] we have shown that indeed toric degeneration ansatz for surfaces can be generalized to this setting and
proven ad hoc: there are 16 toric del Pezzo surfaces with du Val singularities (including 5 smooth), every smooth
del Pezzo surface of degree d > 3 admits degeneration to one of these, for every of these degenerations one may
construct a Laurent polynomial that is mirror dual to smooth del Pezzo surface in question (in the sense of variations
of Hodge structures).

Gorenstein degenerations for quadric and surfaces of degrees 4,5,6,7 are not unique and this ambiguity provides
us with the key observation

Conjecture 32 ([5]). Laurent polynomials constructed from different toric degenerations of the same surface 2 are
related to each other by birational transformations preserving the logarithmic volume form ω = ∧dxi

xi
.

Unfortunately del Pezzo surfaces of degree 1 and 2 do not admit any Gorenstein toric degenerations. However if
one completely omits any restriction on the singularity (except normality 3) then each family of del Pezzo surfaces

1Moreover, toric du Val singularities are just singularities of type An.
2Similar equivalence between mirror pairs obtained from some degenerations of partial flag manifolds constructed by Alexeev and

Brion was observed by Rusinko ([11]).
3Despite degenerations to reducible varieties proved to be extremely useful and powerful tool , all degenerations we consider in this

article have normal singularities.
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admits infinitely many toric degenerations, and it turns out all of them are suitable for constructing a mirror dual
Laurent polynomial. In other words, we will show that for del Pezzo surfaces any degeneration to normal toric
Fano surface is good: in what follows we justify the toric degeneration ansatz for all possible toric degenerations of
the projective plane i.e. we prove the following

Theorem 33. For every Q-Gorenstein toric degeneration of the projective plane there is reflection of the projective
plane associated with the degenerate toric surface.

Definition 34. We say that Laurent polynomial W is a reflection of projective plane if for all integer d > 0 constant
term of W d equals 3d!

d!3 .

We construct polynomials W by systematically exploiting the observation 32. Special birational transformations
were studied in the work [12]. Once one correctly defines the transformations in question (we call them mutations)
the only remaining issue is to prove the Laurent phenomenon that states

Theorem (Theorem 16 in section 2). All mutations of initial potential are also Laurent polynomials.

It turns out potential should satisfy rather strong conditions 14 that are interesting on their own.
Whole hierarchy of toric degenerations is known only in the case P2. In this we can prove the toric degeneration

ansatz 30

Proof. Let W ′ be a consecutive mutation of W9 (from example 17). Theorem 16 implies W ′ is Laurent polynomial.
Lemma 8 implies Tr(W ′d) = Tr(W d

9 ) = 3d!
d!3 . It remains to compute the Newton polytope of W ′.

Suppose that (u, v, w) are vectors from the seed V in the clock-wise order. Consider the triple of positive integers

(a, b, c) = (< u, v >,< v,w >,< w, u >).

Mutation µu sends (u, v, w) to (v,−u,w+ < u,w > u). The triple (a, b, c) goes to

(a, c, ac− b).

Lemma 35. (a, b, c) are positive numbers for all the seeds.

Proof. For the starting seed (X0,W, V0) we have (a, b, c) = (3, 3, 3). Note, that transformation (a, b, c) 7→ (a, c, ac−b)
is the same, as the law for producing Markov numbers. This triple verify the formula:

a2 + b2 + c2 = abc.

For fixed a, c it is a quadratic equation on b. So we can find another root by formula: b′ = ac − b or b′ = a2+c2

b .
The second formula implies that this numbers are always positive. �

This lemma implies, that vectors (u, v, w) from the seed are not colinear. From the other side Lemma (14) implies
that elliptic curve A intersects toric divisors only at Du, Dv, Dw. Let eu, ev, ew be the corresponding indexes of
intersection. Then the intersection theory on toric surfaces implies, that

euu+ evv + eww = 0.

As we know that (u, v, w) are not colinear, we deduce that eu, ev, ew are non-zero, thus A has non-zero intersection
with Du, Dv, Dw. In particular, vectors (u, v, w) can be reconstructed from (X,F ).
�
For other del Pezzo surfaces full classification of degenerations is known only for degenerations to surfaces with

Picard number 1 ([8]). We can show that all smoothable toric del Pezzo surfaces with ρ = 1 are associated with
some of Laurent polynomials described in 28. Moreover we conjecture that answers to degeneration problem and
Laurent phenomena problem coincide

Conjecture 36. Let W ′ be a Laurent polynomial derived from polynomial Wd (listed in 17) by a sequence of
mutations. Then toric surface associated with W ′ is smoothable to Sd. Conversely, if del Pezzo surface of degree d
has a degeneration to toric Fano surface X then X is associated with one of mutations W ′ of Wd.

We conclude with some open problems, conjectures and (counter)examples our investigation has lead us to.
Next problem is related to Conjectures 1 and 2 of [12] (now theorems of Jeremy Blanc [3]).

Problem 37 (”Sarkisov program”). Show or disprove that any special Laurent pair f∗W = W ′ can be decomposed
into a chain of mutations.

Problem 38 (Integrality of coefficients). Why coefficients of Laurent polynomials remain integral?
6



One of the ways we tried to settle positivity led us to formulate the

Problem 39 ( SCrd(Z) =? ). Define the notion of special Cremona group over ring of rational integers, then show
or disprove that H (group generated by mutations in all directions) is a group of finite index there.

Problem 40 (Positivity of coefficients). Why coefficients of Laurent polynomials remain positive?

Positive solution to the next problem will also settle 38 and 40

Problem 41. Find interpretation of Laurent polynomials as Zn-graded dimensions of some vector space.

Provisional vector space should be related to some geometry of varieties in question.

Problem 42 (special birational is mirror to deformation). Given a special Laurent pair f∗W = W ′, show (or dis-
prove) that respective toric Fano varieties are deformation-equivalent. That is construct a flat family over connected
base with one fiber isomorphic to T (W ) and another fiber isomorphic to T (W ′).

Example 43 (42 for plane). Consider two degenerations X0 = P(x2, y2, z2) and X ′0 = P(x2, y2, z′2) with associated
Laurent polynomials related by mutation (so zz′ = x2 + y2). Then X0 and X ′0 are elements in 1-parameter family
of degree z · z′ surfaces in P(x2, y2, z, z′).

Next problem was suggested by Hori. from physics viewpoint Landau–Ginzburg model should have compact
compact Calabi–Yau fibers. Katzarkov argued that all relatively minimal compact smooth models of mirror should
be equivalent (related by fiberwise flops). Nevertheless one wants to have some canonical construction of mirror
symmetry: given a Fano variety to construct a smooth variety with potential and compact fibers. By definition
algebraic variety is glued from affine charts along some glueing morphisms that are defined on some open parts of
the charts (i.e. birational transformations). So it is very natural to consider tori of different toric degenerations as
open charts and special birational transformations as glueing morphisms.

Problem 44 (Glueing). Construct a fiberwise-compact canonical mirror of a Fano variety as a glueing of open
charts given by (all) different toric degenerations.

Problem 45 (Make toric degeneration ansatz explicit). Given smooth Fano variety Y and its toric degeneration
X provide explicitly a normal Laurent polynomial associated with X and mirror dual to Y .

We believe it is possible to provide ansatz for surfaces using only Y , but for higher dimensions next example
shows one has at least to use at least some direction in the deformation space of X.

References

[1] Denis Auroux. Mirror symmetry and T-duality in the complement of an anticanonical divisor.

[2] Victor Batyrev. Toric degenerations of Fano varieties and constructing mirror manifolds. arxiv:alg-geom/9712034v1 The Fano Con-
ference, 109–122, Univ. Torino, Turin, 2004.

[3] Jeremy Blanc. Symplectic birational transformations of the plane. arXiv:1012.0706

[4] Michael Carl, Max Pumperla and Bernd Siebert. A tropical view of Landau-Ginzburg models. in preparation
[5] Sergey Galkin. Toric del Pezzo surfaces and pencils of elliptic curves with low ramification.

http://www.mi.ras.ru/∼galkin/papers/2d.pdf (Russian), 2008.

[6] Alexey Gorodentsev and A. Rudakov. Exceptional vector bundles on the projective spaces. Duke Math. J. 54 (1987), no. 1, 115–130.
[7] Paul Hacking and Yuri Prokhorov. Degenerations of del Pezzo surfaces I. arXiv:math/0509529v1

[8] Paul Hacking and Yuri Prokhorov. Smoothable del Pezzo surfaces with quotient singularities. arXiv:0808.1550v2 Compos. Math.

146 (2010), no. 1, 169–192.
[9] Boris Karpov and Dmitri Nogin. Three-block exceptional collections over Del Pezzo surfaces. arXiv:alg-geom/9703027v1 Izv. Ross.

Akad. Nauk Ser. Mat. 62 (1998), 3–38. Translation in Izv. Math. 62 (1998), 429–463.
[10] Yuichi Nohara and Kazushi Ueda. Toric degenerations of integrable systems on Grassmannians and polygon spaces arXiv:1111.4809

[11] Joe Rusinko. Equivalence of mirror families constructed from toric degenerations of flag varieties. arXiv:math/0610563. Transform.

Groups 13 (2008), no. 1, 173–194.
[12] Alexandr Usnich. Symplectic automorphisms of CP2 and the Thompson group T. arXiv:math/0611604v3

7

http://arxiv.org/abs/alg-geom/9712034
http://arxiv.org/abs/1012.0706
http://kolloquium.math.uni-hamburg.de/home/siebert/preprints/LGtrop.pdf
http://www.mi.ras.ru/~galkin/papers/2d.pdf
http://arxiv.org/abs/math/0509529
http://arxiv.org/abs/0808.1550
http://arxiv.org/abs/alg-geom/9703027
http://arxiv.org/abs/1111.4809
http://arxiv.org/abs/math/0610563
http://arxiv.org/abs/math/0611604

	1. Introduction
	1.1. Preliminaries

	2. Mutations
	2.1. Properties of potential

	3. Examples
	Projective plane and Markov's triplets
	Toric degeneration ansatz

	References

