20094 121 3H

The FULL MONTE CARLO:

A LIVE PERFORMANCE
(with STARS)

Xiao-Li Meng (#272)
Department of Statistics
Harvard University



Desired and Feared—What Do We Do Now and

Xiao-Li MENG

An intense debate about Harvard University’s General Edu-
cation Curriculum demonstrates that statistics, as a discipline, is
now both desired and feared. With this new status comes a set of
enormous challenges. We no longer simply enjoy the privilege
of playing in or cleaning up everyone’s backyard. We are now
being invited into everyone’s study or living room, and trusted
with the task of being their offspring’s first quantitative nanny.
Are we up to such a nerve-wracking task, given the insignificant
size of our profession relative to the sheer number of our hosts
and their progeny? Echoing Brown and Kass’s “What Is Statis-
tics?” (2009), this article further suggests ways to prepare our
profession to meet the ever-increasing demand, in terms of both
quantity and quality. Discussed are (1) the need to supplement
our graduate curricula with a professional development curricu-
lum (PDC); (2) the need to develop more subject oriented sta-
tistics (SOS) courses and happy courses at the undergraduate
level; (3) the need to have the most qualified statisticians—in
terms of both teaching and research credentials—to teach in-
troductory statistical courses, especially those for other disci-
plines; (4) the need to deepen our foundation while expanding
our horizon in both teaching and research; and (5) the need to
greatly increase the general awareness and avoidance of unprin-
cipled data analysis methods, through our practice and teaching,
as a way to combat “incentive bias,” a main culprit of false dis-
coveries in science, misleading information in media, and mis-
guided policies in society.

KEY WORDS: Communication skills; General education cur-

Over the Next 50 Years?

new General Education (Gen Ed) curriculum. One of the initial
categories of Gen Ed was Empirical Reasoning, with the fol-
lowing proposed requirement. Courses in this category must:

a. teach how to gather and assess empirical data, weigh ev-
idence, understand estimates of probabilities, draw infer-
ences from the data available, and also recognize when an
issue cannot be settled on the basis of the available evidence;

b. teach the conceptual and theoretical tools used in reasoning
and problem solving, such as statistics, probability theory,
mathematics, logic, and decision theory;

c. provide exercises in which students apply these tools to con-
crete problems in an area of general interest to undergradu-
ates; and

d. where practicable, familiarize students with some of the
mistakes human beings typically make in reasoning and
problem-solving.

Pleasantly surprised by this proposal, I wanted to know
which of my statistical colleagues were involved in drafting it.
So did my colleagues, as they thought that I must have had a
hand in this, representing our department. Given the language,
particularly (a), itis not illogical to infer a statistician’s involve-
ment.

No statisticians, at least by the current definition, were in-
volved. It was written by several social and natural scientists.
Naturally, my colleagues and I were delighted, at least until
the FAS faculty meeting in which it was voted on. With the
support from social and natural scientists, surely it would pass
with flying colors, right? Quite the contrary—it was defeated!
Our academic relatives in mathematics. applied mathematics.
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MARKOV CHAIN MONTE CARLO:

A Workhorse for Modern Scientific Computation

Markov chain Monte Carlo (MCMC) methods, originated in
computational physics more than half a century ago, have seen an
enormous range of applications in quantitative scientific
investigations. This is mainly due to their ability to simulate from
very complex distributions needed by all kinds of statistical models,
from bioinformatics to financial engineering to astronomy. This talk
provides an introductory tutorial of the two most frequently used
MCMC algorithms: the Gibbs sampler and the Metropolis-Hastings
algorithm. Using simple yet non-trivial examples, we demonstrate,
via live performance, the good, bad, and ugly implementations.
Along the way, we reveal the statistical thinking underlying their
designs, including the secret behind the greatest statistical magic...
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Monte Carlo Applications()v
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A Recent Thesis ...

Markov Chain Monte Carlo Applications in

Bioinformatics and Astrophysics

Hosung Kang
May, 2005
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So what’s the “average scale” between these two
extremes?
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Apparently 1t 1s about 2.5” by 67 ...
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Monte Carlo Integration(F:4})

m Suppose we want to compute

1= [ g(@)f(x)da,

where f(x) is a probability density(4;fi % ). If

we have samples(£4%) x4,...,x, ~ f(x), we can
estimate(fiitt) I by
1 n

In = — Z g(z;)

"i=1
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»
Monte Carlo Optimization({l:{t)

m  \We want to maximize p(x)
m  Simulate from @
f(x) / p(x).

As A —_ the simulated

more concentrated around @

the maximizer of p(x)

draws will be more and /\/L

WAL
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Simulating from a Distribution(#

|

L
LRy

N

m \What does it mean?

Suppose a random variable (K& %) X can only take two values:

P(X:O):% p(le)zg

Simulating from the distribution of X means that we want a collection
of 0’s and 1’s:

xl,xQ, cees I

such that about 25% of them are 0’s and about 75%of them are 1’s,
when n, the simulation size is large.

m The {X;, i = 1,...,n} don’t have to be independent(}i:7)
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Simulating from a Complex Distribution
m Continuous variable X,

described by a density
function f(x)

(AX))

."/'

M“‘
R
O:W.'.‘.%0.0:0:0.‘,0:&‘2‘\ (I
A IAKINRLS

m Complex:
the form of f(x)

the dimension of x

1
f(z,y) o e><|O(—§(962y2 + 22 4+ y? — 8z — 8y))

12
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»
Markov Chain Monte Carlo

2 = (-1 p®),

where {UW, t=1,2,...} are identically and independently distributed
(FAL[A] 53 A).

m Under regularity conditions (iF I} 5514:),

£ =20 p(2)

So We can treat {x¥, t= N,, ..., N} as an approximate sample from
f(x), the stationary/limiting distribution.

20094 12J] 3H
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Gibbs Sampler (Gibbs flif£:i%
m Target density: f(z,v)
m \We know how to simulate form the conditional
distributions
f(zly) and f(y|x)
m For the previous example,
F(@ ) oc exp(~ > @2y + 22 + 4% — 8z — 8y))
4 1 N(u,0?)
flely) = N(l +92' 1+ y2) Normal Distribution
. . (IEA& 5 17)
f(ylw)=N(1+x2,1+x2) “Bell Curve” g
!
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00:00
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The Greatest Statistical Magic

Estimate the errors in our estimate without knowing the truth

POPULATION
(of twins discordant on schizophrenia) POPULATION
DISTRIBUTION

i 3
T volume difference (cm”)

® R’
2 7 7
R u

/" other ™\

random sample) [ random |

n§ample.s‘
Actual
Data

Differences Differences
-2 Average: 0.199 -2 Average: T
(1) 9 SD: 0.238 SD: s
olpae ® B 21
1[0139
213
ilo e e e
3|09
6|7
SAMPLING
DISTRIBUTION OF

THE AVERAGE

T volume difference (c‘m3 )
1
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The relationship between the population distribution and the sampling
distribution of the average in random sampling

POPULATION
DISTRIBUTION

teo,
I

SAMPLING 3 ) SHAPE
DISTRIBUTION OF
THE AVERAGE

The shape of the sampling distribution
will be more nearly normal than the
shape of the population distribution.

Sample averages are closer
to the mean than single vaiues;
the sampling distribution has

DY) = \/%

The sampling distribution is
centered on the population mea

1 ) CENTER u 2 ) SPREAD
)

Graph is taken from Statistical Sleuth
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Statistical Inference

m Point Estimator: 9n = %Z?:l g(z®)

m Variance Estimator: V(gn) ~ %i,

™

02 =Var(g(xz)) estimated by 62 =231 (g9(zV)—gn)?

p = corr(g(x®), g(x®=D))  estimated by

A 1 Z? 2( (x(t)) _gn)(g(x(t 1)) Jn)

. |
1L S g0) — g0 S (e(@®) — gu)?

m Interval Estimator:
(Gn — tayV(Gn),  gn+tay/V(gn)),
where d = n%—_T_f) —1, and t; — 1.96 as n — oo.
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Data Augmentation (%44

m \We want to simulate from

16

1 o
exp{—a(w — 8x — 1122

f(z) o

)}

1
V1 + 22
But this is just the marginal distribution (i1 /7 4f) of

1
f(z,y) exp(—5<x2y2 + 22 4+ y? — 8z — 8y)).

© |
o

So once we have simulations:

{(x®, yO: t=1,2,...,N)},

we also obtain draws: z
x0:t=1,2,...,N)} )

m7
o

04

03

02

0.1

00
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A More Complicated Example

1
f(z,y) exp(—E(Iwa2 + 22 + y° — 8z — 8y))

)

i
NN
il

A
o
%?528383%““ \

(@, 9) = exp{— (2—4)2} exp{— (y—4)2} exp{ —]aly?}
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Metropolis-Hastings algorithm

m Simulate from an approximate (#zf2l) distribution q(z,|z,), then
Step 0: Select z();
Now fort=1,2,...,N, repeat
Step 1: draw z, from q(z,|z,=z")
Step 2: Calculate

2 )a(zD] 2
()z(Zl,Z(t)) — fig(%g;];(zllL(ig)

Step 3:set (t+1) — | %1, withp= min{a,1} (¥
z(t), with 1 —p %@g@)

m Discard the first N, draws

20094 12J] 3H
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M-H Algorithm: An Intuitive Explanation

Assume q<,2,’1|2,’2) = q(22lzl) , then OZ(Z]_,Z(t)) —_— —ff(iz(%)))

20094 12H 3H
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M-H: An Ugly Implementation

f(x,y) = D(z — 4)P(y — 4) exp{—5|z|y?}
[®(x) is the density function of N(0,1)]

We choose q(z|z,)=q(z)=®(x-4)D(y-4)(F 7 1F2F)

Step 1: draw x ~ N(4,1), y ~ N(4,1);
Dnote z,=(x,y)

Step 2: Calculate
p a(zy, 2(0) = SXPI=olel?)
1 exp{—5[z®|[y®]2}

Step 3: draw u ~U[0,1]

Let L+ _ [ 71, if w<min{l,a}
] 2%, otherwise

20094 12J] 3H
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Why is it so ugly?




Why is it so ugly?
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Mean =3 .21
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IA" N= 9000
coverag = 41% n= 62
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M-H: A Bad Implementation

Starting from some arbitrary (x(©),y(®)

Step 1: draw x ~ N(x®,1), y ~ N(y®, 1)
“random walk” 2z =2z +U,, y =4® + U,

U, Uy 4 N(0,1)

Step 2: dnote z,=(x,y), calculate

a(z1,2(M) = —ff((zz(%)))
Step 3: draw u ~ U[0,1]

Let (n+1) _ { z1, if u<min{l,a}

z n), otherwise

20094 12J] 3H
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Much Improved, but still bad!

a1



Much Improved, but still bad!
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MH: good implementation

Change proposal to
x (1) 1( Z
(3)=(o ) +=#(Z)
where,

1.58 —0.55 )

2 =12 ( —0.55 0.53
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MH: good implementation
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MH: good implementation
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coverag = 99%

n= 3795
neff= 795
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Further Discussion

m How large should N, and N be?

Not an easy problem!

m  Key difficulty:
multiple modes(Z 1) in unknown area

m  We would like to know all (major) modes, as well as their surrounding mass.
Not just the global mode (1% /E/1£)
We need “automatic, Hill-climbing” algorithms.

m The Expectation/Maximization (EM) Algorithm, which can be viewed as a

deterministic version of Gibbs Sampler.
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Drive/Drink Safely,

Don’t become a Statistic:

Go to Graduate School,

Become a Statistician!

49
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