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Motivation

Technology advances make dedicated astrometric and direct
detection planet-finding space observatories a real possibility in the
near future.

Multiple mission concept studies have been carried out by a variety
of groups.

Multiple different mission scenarios and observing strategies have
been proposed.

Basic Questions

Given an instrument design, what is the expected science yield?

How can we best use returned data?
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Direct Detection Platforms

Coronagraphs - multiple
methods exist for removing
light from the star entering a
telescope’s aperture.

Occulters - a ‘starshade’ is
flown along with the telescope
to block out star-light.

Figure: Pupil mask for high contrast
imaging. [Vanderbei et al., 2003]

Figure: Schematic of a PIAA system.
[Guyon, 2003]

Figure: Proposed star-shade design.
[Spergel et al., 2009]
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Instrument Outputs and Constraints

Limiting ∆mag - maximum achievable difference in brightness
between star and planet.

Inner working angle (IWA) - minimum angular separation between a
star and planet.
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Figure: Schematic of a planetary observation.

The red circle represents
the instrument’s
projected IWA.

The planet is sufficiently
illuminated only on the
green portion of the
orbit.

Detection occurs on the
green part of the orbit
outside the red circle.
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Some Indirect Detection Platforms

Astrometry

Uses optical interferometry to
find angular distance between
two objects

Use set of reference stars to
find position of target star with
respect to centroid

Produces target star’s position
in plane of the sky

Radial Velocity

Uses spectroscopy to find
wavelengths of target star’s
emitted light

After accounting for other
effects, remaining changes in
wavelength are attributed to
doppler effect

Produces target star’s velocity
along the line of sight

Both methods require us to infer the
presence of planets from motion of
the target star - ‘Stellar Wobble’
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Direct Detection

3-1-3 (ψ, θ, φ) rotation
ψ, φ ∼ U([0, 2π)), θ ∼ U(cos θ)

r ,
˛

˛rp/s

˛

˛ =
a(1 − e2)

e cos(ν) + 1
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1 0 0
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0 0 0

3

5 rp/s

∆mag = −2.5 log
Fp

F⋆
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Astrometry and Radial Velocity

rs = r0 + rµ − rsc + rs/G

Fundamental astrometric observation is r̂s
(can be decomposed into two angles)

Fundamental radial velocity observation is ṙs
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Obscurational and Photometric Completeness
[Brown, 2005]

Figure: Probability density function of observable planets.
a ∈ [0.4, 30], e ∈ [0, 0.8], p ∈ [0.1, 0.5], R ∈ [4 ∗ 10−5, 4 ∗ 10−4]
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Single Visit Completeness
[Brown, 2005]

Figure: Candidate stars plotted over the cumulative distribution function for
‘Earth-like’ planets.
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The Distribution of ν

Let ν = g(M, e) and M = h(ν, e). Then, the cumulative distribution
function of ν̄ is:

Fν̄(ν) = P(g(M̄, ē) ≤ ν) =

Z

∞

−∞

P(g(M̄ , e) ≤ ν|ē = e)fē(e)de

where fē is the probability density function of ē.

M̄ and ē are independent so:

Fν̄(ν) =

Z 0

−∞

P(M̄ ≥ h(ν, e))fē(e)de +

Z

∞

0

P(M̄ ≤ h(ν, e))fē(e)de

Probability Density Function of ν

fν̄(ν) =

Z

∞

0

∂h

∂ν
fM̄(M)fē(e)de =

1

2π

Z 1

0

(1 − e2)3/2

(1 + e cos(ν))2
fē(e)de
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The Distributions of Other Parameters

We can apply the same procedure to other quantities of interest:

Probability Density Function of E

fĒ (E) =
1

2π

Z 1

0

(1 − e cos(E)) fē(e)de

Probability Density Function of r

fr̄ (r) =
1

2π

Z

∞
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Probability Density Function of β

fβ̄(β) = −
1
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0

Z π
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sin β
q

sin2 θ sin2 ν − (cos θ cos ν − cos β)2
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Improving Sampling for Monte Carlo

Figure: Analytical and simulated fν̄ . Figure: Analytical and simulated fr̄ .
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Detection Probability Over Multiple Observations

If observations are IID, probability of at least one detection in n visits is:

Pn(k > 0) = 1 −

(

n

0

)

p0(1 − p)n = 1 − (1 − p)n

where p is the single visit completeness.

Figure: Fraction of planets found as a
function of number of visits, with
various intervals between observations.

For optimal observing schedule,
probability of detection
approaches unity after 1/p
visits.

For non-optimal schedule, this
equation provides an upper
bound for detection probability.
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Integration Time
[Kasdin and Braems, 2006]

Sufficiently sampled optical systems allow for bayesian detection
techniques.
Let the photons received at pixel j be the random variable

zj = CpP̄j + Cb + ν

Construct SNR metric as
Ĉp

σb

Making a few assumptions

t =
1

b

(K − γ
√

1 + Q̃Ξ/Ψ)2

Q̃TAΨ

for
Φ(K ) = 1 − FAP Φ(γ) = MDP

Q̃ = Cp/Cb

∑

j P̄j . All other parameters are functions of the optical
system and the target irradiance.
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Integration Time vs. Sampling
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Figure: Normalized integration time as a function of half size PSF used and
pixel area for an open circular aperture.
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Approximating the Semi-Major Axis

Define parameter Ξ equal to the ratio s/a:

Ξ ,
1 − e2

e cos ν + 1

q

(cos ν sin ν + cos θ cosψ sin ν)2 + (sin(ν) sin(ψ))2

Figure: Probability density functions of Ξ.

The PDF of Ξ always has a
maximum at 1 (s = a).

The observed apparent
separation is the best estimate
for the semi-major axis.

The obscurational and
photometric limitations actually
make Ξ = 1 an even better
estimate.

Using these two estimates
produces a mean 16% error in
orbital period in simulation.
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Mission Analysis

Create descriptions of instruments, planetary orbits/properties and
observations.

Generate full mission simulations (timelines of observations and their
outcomes).

From these mission ensembles, extract distributions of science
yield/performance metrics:

All Detections - Total number of successful planetary observations
throughout a whole mission simulation (includes repeat detections).
Unique Detections - Number of individual planets found during a
mission simulation.
Unique Targets - Number of individual stars observed during a
mission simulation.
Spectral Characterizations - Number of observations where the
planet was observable for sufficient time to integrate to a predefined
S/N level.
Propellant Used - For occulters, the amount of propellant used by
the starshade for slewing and stationkeeping.
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Visits as a Graph
[Savransky and Kasdin, 2008]

Figure: Visit graph for 3 target pool.

Each set of possible transitions
on the visit graph can be
represented as a weighted
adjacency matrix.

The weights of the matrix
entries represent the ‘cost’ of
choosing the next star.

The cost of transitioning from target i to target j is calculated as:

Aij =





a1
cos−1(ui ·uj )

2π Binst + a2compj − a3e
t−tf Bunvisited+

a4Bvisited (1 − Brevisit) − a5Brevisit

(

Nj

Nreq

)

(Nj < Nreq) − a6
τj

visj



 (1−Bko)

20 / 31



Planet Finding Methods Tools Integrating Data Streams

Automated Visit Order

The amount of time spent on any one target depends on whether a
planet is detected.

The adjacency matrix must be continuously updated.
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Figure: Automatically generated visit order.
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Comparison of Mission Concepts with 4m Telescope
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Dynamic Filtering

Observations (z) at time k are a function of a state vector (x)
describing the positions of all orbiting planets, and time, with added
noise n of covariance R :

zk = f(xk , k) + n

The solution to this problem is a minimization with respect to x for
N observations of the cost function:

J =

N
∑

k=1

[zk − f(xk , k)]
T

R−1 [zk − f(xk , k)]

subject to the constraints of the physical system (i.e. Newtonian
dynamics) and any inherent constraints in the formulation of the
state (i.e., quaternion definition, eccentricity bounds, etc.).

We can re-formulate this as a recursive filter, using each observation
to update the estimate of the underlying state, and our knowledge of
the physical system to propagate the state in time.
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Dynamic Filtering (cont.)

Assume a Markov process with state x and observation z. Then

p(x0, x1 · · · xn, z1, z2 · · · zn) = p(x0)

n
∏

j=1

p(zj |xj)p(xj |xj−1)

Predict the next state given the observed history

p(xj |z1:k−1) =

∫

p(xj |xj−1)p(xj−1|z1:j−1)dxj−1

Update the state estimate given the current observation

p(xj |z1:j) =
p(zj |xj)p(xj |z1:j−1)

p(zj |z1:j−1)
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Extended Kalman Filter

˙̂x(t) = f(x̂(t), t) Ṗ(t) = F(t)P(t) + P(t)FT (t) + Q

x̂0 = E [x(0)] P0 = E [(x(0) − x̂0)(x(0) − x̂0)
T ]

F(t) = ∂f
∂x

∣

∣

x̂(t)
Q(t) = E [w(t)wT (τ)]

x̂+
ki

= x̂−k + Kki

(

yk − h(x̂+
ki−1

) − Hki
(x̂−k − x̂+

ki−1
)
)

x̂+
k0

= x̂−k

Kki
= P−

k HT
ki

(

Hki
P−

k HT
ki

+ Rk

)−1
Hki

= ∂h
∂x

∣

∣

x̂+
ki

P+
ki

= (I − Kki
Hki

) P−
k R(t) = E [v(t)vT (τ)]

Position and Velocity state makes it easy to describe open orbits

Introduce inequality constraints of the form DX̄ ≤ d to constrain
orbital specific energy

At each time step, solve quadratic programming problem of the form
minx̃

(

x̃TWx̃ − 2X̄TWx̃
)

s.t. Dx̃ ≤ d [Simon and Simon, 2006]

26 / 31



Planet Finding Methods Tools Integrating Data Streams

State

Let the state vector for a system of n planets be:

X =
[

r1 ṙ1 . . . rn ṙn rs/G ṙs/G

]T

with the state estimate propagation given by

r̈j = −
∑

k 6=j

µkrk/j

|rk/j |3
j = 1, . . . , n, s/G rk/j = rk − rj

Augment state with constant parameters to account for unknown proper
motion and stellar distance

X̄ =
[

r1 ṙ1 . . . rn ṙn rs/G ṙs/G rµ ̟
]T

̟ =
a

‖r0‖
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Filtering Astrometric and Radial Velocity Data - MJ
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Filtering Astrometric and Radial Velocity Data - M⊕
[Savransky and Kasdin, 2009]
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Adding in Direct Detections

The underlying dynamics remain the same regardless the observation -
only the observation changes:

zast =





1 0 0
0 1 0
0 0 0



 rs/G

zrv =





0 0 0
0 0 0
0 0 1



 ṙs/G

zdd =

















1 0 0
0 1 0
0 0 0



 rj

−2.5 log

(

p
(

R
‖rj‖

)2

Φ
(

cos−1 rj (3)
‖rj‖

)

)












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Open Questions

What are the true distributions of exoplanet parameters?

More realistically, what is the best way to represent what we
currently know about exoplanets?

Is there a better way to calculate the expected number of detections
over multiple observations?

Is astrometric + radial velocity data observable in the dynamic
formulation?
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