

The Transit of Venus June 8, 2004

David Cortner

A PARIS, DE L'IMPRIMERIE ROYALE. M. DCCLXXIX.

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCL'XXIX. Guillaume Joseph Hyacinthe Jean Baptiste Le Gentil de la Galaisiere (1725-1792)

Destination captured

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCL'XXIX.

- Destination captured
- Waited 8 years

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCL'XXIX.

- Destination captured
- Waited 8 years
- Clouded out

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCLXXIX. Guillaume Joseph Hyacinthe Jean Baptiste Le Gentil de la Galaisiere (1725-1792)

- Destination captured
- Waited 8 years
- Clouded out
- Contracted dysentery

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCLXXIX. Guillaume Joseph Hyacinthe Jean Baptiste Le Gentil de la Galaisiere (1725-1792)

- Destination captured
- Waited 8 years
- Clouded out
- Contracted dysentery
- Shipwrecked

Chasing Venus: Observing the Transits of Venus, 1631-2004

A PARIS, DE L'IMPRIMERIE ROYATE. M. DCCL'XXIX.

- Destination captured
- Waited 8 years
- Clouded out
- Contracted dysentery
- Shipwrecked
- Declared dead; estate divided up

Chasing Venus: Observing the Transits of Venus, 1631-2004

The Transits of Exoplanets

Josh Winn Massachusetts Institute of Technology

In collaboration with: Josh Carter (MIT); Matt Holman (CfA); John Johnson (Caltech); Dan Fabrycky (CfA); Geoff Marcy (UCB); Ed Turner (Princeton); Yasushi Suto (Tokyo); Norio Narita (NAOJ)

Orbital period Transit times Planet mass Planet radius Stellar obliquity Orbital eccentricity Star spots Planetary emission spectrum Planetary absorption spectrum

......

.....

Planetary phase function Surface map Planetary reflectance spectrum **Orbital precession** Moons and rings Planetary oblateness and obliquity Planetary rotation rate Planetary aurorae Planetary magnetic field

......

......

How do planets form?

How do planets form?

How typical or unusual is the solar system?

Udalski et al. (the OGLE collaboration)

Udalski et al. (the OGLE collaboration)

Winn, Holman, & Fuentes (2007)

Scorecard

Kepler

- NASA Discovery mission
- Launched March 2009
- Earth-trailing orbit
- Monitor one field of 100,000 stars for 3.5 yr
- > 200 giant planets
- Many earthlike planets in the "habitable zone"

The "bloated" planets

- Early migration (Burrows et al. 2000)
- Insolation-driven, deeply penetrating gravity waves (Showman & Guillot 2002)
- Eccentricity tides (Bodenheimer et al. 2001, 2003; Liu et al. 2008, Pont 2009, Ibgui & Burrows 2009)
- **Obliquity tides** (*Winn & Holman 2005, ruled out by Fabrycky et al. 2007 and Levrard et al. 2007*)
- Thermal tides (Arras & Socrates 2009, disputed by Goodman 2009)
- High atmospheric opacity (Burrows et al. 2007)
- Inhibited convection of planetary interior (Chabrier & Baraffe 2007)

The "super-Neptune" HD 149026

The "super-Neptune" HD 149026

Why did the core not accrete gas efficiently?

G. Laughlin

The "super-Neptune" HD 149026

HD 149026 b Jupiter

Why did the core not accrete gas efficiently? Or, if it did, what happened to the gas?

G. Laughlin

The super-Neptune HD 149026b Discovery photometry: Sato et al. (2005)

The super-Neptune HD 149026b Follow-up photometry: Winn et al. (2008)

The super-Neptune HD 149026b *Spitzer* photometry: Nutzman et al. (2008)

The super-Neptune HD 149026b HST photometry: Carter et al. (2009)

Holman & Murray (2005); see also Agol et al. (2005)

Holman & Murray (2005); see also Agol et al. (2005)

G. Laughlin

Holman, Winn, Fabrycky, et al., in prep.

Ford & Gaudi (2006)

 Solar obliquity is 7° — how common or unusual is this?

- Solar obliquity is 7° how common or unusual is this?
- Specific reasons to expect misalignment:

- Solar obliquity is 7° how common or unusual is this?
- Specific reasons to expect misalignment:
 - Whatever perturbs eccentricities may also perturb inclinations

- Solar obliquity is 7° how common or unusual is this?
- Specific reasons to expect misalignment:
 - Whatever perturbs eccentricities may also perturb inclinations
 - Migration (gas-disk torque vs. planet-planet scattering, Kozai oscillations)

Planet-planet scattering scenarios

Rasio & Ford (1996)

Weidenschilling & Marzari (1996)

Lin & Ida (1997)

Planet-planet scattering scenarios produce a broad range of final inclinations

See also Yu & Tremaine (2001), Nagasawa et al. (2008), Juric & Tremaine (2008)

Ohta, Taruya, & Suto 2005; Gaudi & Winn 2007
theorized by J. R. Holt (1893) observed by F. Schlesinger (1909)

The Holt-Schlesinger effect

The Rossiter-McLaughlin effect

R. A. Rossiter (1896-1977)

Winn, Johnson, Albrecht et al. (2009)

See also Narita, Sato, Hirano, & Tamura (2009)

 $\cos\psi = \cos i_s \cos i_o + \sin i_s \sin i_o \cos \lambda$

 $\cos\psi = \cos i_s \cos i_o + \sin i_s \sin i_o \cos \lambda$

$$\Pr(\lambda \mid \psi, i_o = \pi/2) = \frac{2}{\pi} \frac{\cos \psi}{\cos \lambda \sqrt{\cos^2 \lambda - \cos^2 \psi}}$$

 $\Pr(\psi \mid \lambda) \propto \Pr(\lambda \mid \psi) \Pr(\psi)$

$$\Pr(\psi \mid \lambda) \propto \Pr(\lambda \mid \psi) \Pr(\psi)$$

 $1 \over \frac{1}{2} \sin \psi$

 $p(\mathbf{a}|\text{data}) \propto p(\text{data}|\mathbf{a})p(\mathbf{a})$

Ensemble results Model 2: Model 1: 1 – *f* σ isotropic + Fisher perfectly aligned distribution 150 50 100 50 100 150 0 0 ψ [deg] ψ [deg]

$$\Pr_{\mathrm{F}}(\psi \mid \kappa) = \frac{\kappa}{2\sinh\kappa} \exp(\kappa\cos\psi)\sin\psi$$

$$\kappa \to \infty$$
: $\Pr_{\mathrm{R}}(\psi \mid \sigma) = \frac{\psi}{\sigma^2} \exp\left(-\frac{\psi^2}{2\sigma^2}\right)$

 $p(\kappa) \propto (1+\kappa^2)^{-3/4}$

Evidence for 2 different modes of planet migration

Parameter estimation from time-series data with correlated errors: a wavelet-based method

> Josh Carter and Josh Winn Massachusetts Institute of Technology

The "Horne problem"

The "Horne problem" Expected discovery rate: >10 per month — *K. Horne, 2002*

The "Horne problem"

Expected discovery rate: >10 per month — *K. Horne, 2002*

Discovery rate up to 2005: 1.5 per year

The "Horne problem" Expected discovery rate: >10 per month

— *K. Horne,* 2002

Discovery rate up to 2005: 1.5 per year

Holman & Murray (2005); see also Agol et al. (2005)

A constant period is ruled out with 98% confidence

How to cope with correlated errors

How to cope with correlated errors $\mathcal{L} \propto \exp(-\chi^2/2)$ $\chi^2 = \sum_{i=1}^{N} \frac{r_i^2}{\hat{\sigma}^2}$ Ignore them

 $\hat{\sigma}_r$ = stddev of binned residuals

How to cope with correlated errors $\mathcal{L} \propto \exp(-\chi^2/2)$ $\chi^2 = \sum^N rac{r_i^2}{\hat{\sigma}^2}$ Ignore them $\chi^2 = \sum_{i=1}^{N} \frac{r_i^2}{\hat{\sigma}^2 + \hat{\sigma}_r^2} \quad \hat{\sigma}_r^2 = \frac{\hat{\sigma}_n^2 - \hat{\sigma}_1^2/n}{1 - 1/n} \quad \frac{\text{Time-}}{\text{averaging}}$

 $\hat{\sigma}_r$ = stddev of binned residuals

 $\chi^2 = \sum_{i=1}^{N} \frac{r_i^2}{\hat{\sigma}^2} \quad \begin{array}{c} \text{Minimize for} \\ \text{collection of} \\ \text{"permuted"} \end{array}$

Minimize for a light curves

Residual permutation (bootstrap)

 $\chi^2 = \sum_{i}^{N} \left(\frac{r_i}{\hat{\sigma}}\right)^2 \qquad \text{Ignores correlated} \\ \text{errors}$

 $\chi^2 = \sum_{i}^{N} \left(\frac{r_i}{\hat{\sigma}}\right)^2 \qquad \text{Ignores correlated} \\ \text{errors}$ N N $\chi^2 = \sum \sum r_i (\hat{\Sigma}^{-1})_{ij} r_j$ *i*=1 *j*=1

 $\chi^{2} = \sum_{i}^{N} \left(\frac{r_{i}}{\hat{\sigma}}\right)^{2}$ Ignores correlated errors N N $\chi^2 = \sum \sum r_i (\hat{\Sigma}^{-1})_{ij} r_j \quad \text{Too slow}$ *i*=1 *j*=1

We need to diagonalize the covariance matrix

$$1/f^{\gamma}$$
 noise

The wavelet transform is a neardiagonalizing operator for a covariance matrix describing white + $1/f^{\gamma}$ noise.

G. Wornell (1996) Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall)

The wavelet transform

The wavelet transform

The wavelet transform

The wavelet transform is a neardiagonalizing operator for a covariance matrix describing white + $1/f^{\gamma}$ noise.

G. Wornell (1996) Signal Processing with Fractals: A Wavelet-Based Approach (Prentice-Hall)

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} r_i (\hat{\Sigma}^{-1})_{ij} r_j$$

Too slow

 $\chi^2 = \sum_{i=1}^{N} \left(\frac{r_i}{\hat{\sigma}}\right)^2 \qquad \text{Ignores correlated} \\ \text{errors}$

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} r_i (\hat{\Sigma}^{-1})_{ij} r_j$$

Too slow

Ignores correlated errors

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} r_i (\hat{\Sigma}^{-1})_{ij} r_j$$

Too slow

It's fast!

 $\sigma_W^2 = \sigma_r^2 \ 2^{-\gamma m} + \sigma_w^2 \qquad \sigma_S^2 = \sigma_r^2 \ 2^{-\gamma} \ g(\gamma) + \sigma_w^2$

Ignores correlated errors

$$\chi^2 = \sum_{i=1}^{N} \sum_{j=1}^{N} r_i (\hat{\Sigma}^{-1})_{ij} r_j$$

Too slow

It's fast!

It works!

Compare to other methods using the "Number-of-sigma" statistic

Method	α	$\langle \hat{\sigma}_{t_c} \rangle$ (s)	$\langle \mathcal{N} \rangle$	$\sigma_{\mathcal{N}}$	$\operatorname{Prob}(\mathcal{N} > 1)$ (%)	Prob(better) ^a (%)
White	0	4.0	-0.011	0.97	31	
	1/3	4.2	+0.010	1.70	57	
	2/3	4.9	+0.012	2.69	73	
	1	5.8	+0.023	3.28	78	
Wavelet	0	4.5	-0.009	0.90	26	50
	1/3	6.9	-0.003	1.03	33	56
	2/3	11.2	-0.005	1.07	35	57
	1	15.7	-0.007	1.09	36	57
Time-averaging	0	4.4	-0.006	0.88	26	50
	1/3	6.8	+0.009	1.15	36	50
	2/3	11.6	-0.012	1.24	40	50
	1	17.6	+0.007	1.21	38	50
Residual-permutation	0	3.5	-0.012	1.16	37	50
	1/3	6.6	+0.013	1.24	37	50
	2/3	11.8	-0.014	1.28	38	49
	1	17.3	+0.008	1.30	38	48

Table 2Estimates of t_c from Data with Unknown Noise Properties

