
Theory of Elementary Particles homework II (April 16)

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

2. In/out State Normalization and Källen–Lehmann Spectral Representation [B]

A coefficient Z appearing in the Källen–Lehmann spectral representation,1∫
d4(y − x) ⟨Ω|T {ϕ(y)ϕ(x)} |Ω⟩eik·(y−x) =

i Z

k2 −m2 + iϵ
+ (other singularities), (1)

also sets the normalization of in/out-states,

|p⃗⟩in =
1√

Z⟨Ω|0⟩T−

e−iH(t∗−T−)eiH0(t∗−T−) a†p⃗|0⟩
√
2Ep⃗, (2)

|p⃗⟩out =
1√

Z⟨Ω|0⟩T+

e−iH(t∗−T+)eiH0(t∗−T+) a†p⃗|0⟩
√

2Ep⃗. (3)

In the following, let us see why this is the case.

(a) First, show i) that an integral∫ T−

−∞
dx0

∫
d3x ϕ∗

I(x)|0⟩ e−iq·x (4)

converges if q0 is (real positive)×(1 + iϵ), and ii) that a one-particle state in the free

theory

|p⃗⟩free = a†p⃗|0⟩
√
2Ep⃗ (5)

is proportional to the residue of a pole i/(q0 − Eq⃗) in the complex q0 plane. Under

an understanding that q0 is always chosen to be real positive (plus a little positive

imaginary part), one can also say that this is a residue of a pole at i/(q2 −m2).
1To learn more, see [PS] section 7.2 or [W-I] Chap. 10.



(b) Second, by using the result above, show that the inner product of[
1

⟨Ω|0⟩T+

e−iH(t∗−T+)eiH0(t∗−T+) a†p⃗|0⟩
√

2Ep⃗

]†
=

[ √
2Ep⃗

⟨0|Ω⟩T+

⟨0|aq⃗ eiH0(T+−t∗)e−iH(T+−t∗)

]
and [

1

⟨Ω|0⟩T−

e−iH(t∗−T−)eiH0(t∗−T−) a†q⃗|0⟩
√
2Eq⃗

]
is the same as the residue of∫

d4y

∫
d4x eip·ye−iq·x ⟨Ω|T {ϕ(y)ϕ∗(x)} |Ω⟩ (6)

at the singularity
i

(p2 −m2)

i

(q2 −m2)
. (7)

As before, assume that p0 and q0 are both real and positive with an infinitesimally small

positive imaginary part. It is O.K. to assume for now that interactions switch off before

T− and after T+.

In order to show this, one can use

⟨0(T+)|Ω(T+)⟩⟨Ω(T−)|0(T−)⟩ = ⟨0|T
{
exp

(
−i

∫
dt′VI(t

′)

)}
|0⟩, (8)

which is equivalent to ⟨Ω|Ω⟩ = 1.

(c) Finally, show that the resiude of Eq. (6) at (7) is

(2π)3δ3(p⃗− q⃗)(2Ep⃗) Z, (9)

by using Eq. (1). This completes the proof of the normalization (2, 3).

(d) (not a report problem) Normalization of multi-particle in-states / out-states is set as

follows. Firsct think of a theory where particles in a group 1 interact withing the group,

and those in another group 2 also do so within group 2, but not with particles in the

other group. Then the in-state witn one particle (spiecies n1) in the group 1 and one

particle (spiecies n2) in the group 2 should be set as follows:

|{n1, p⃗1;n2, p⃗2}⟩in =
1√

Z1

√
Z2 [⟨Ω1| ⊗ ⟨Ω2|0⟩]T−

e−iH(t∗−T−)eiH0(t∗−T−)|{n1, p⃗1;n2, p⃗2}⟩free.

(10)

In theories where all the particles interact, therefore,

|{ni, p⃗i}i∈I⟩
in =

1

⟨Ω|0⟩T−

∏
i∈I

√
Zi

e−iH(t∗−T−)eiH0(t∗−T−)|{ni, p⃗i}i∈I⟩
free. (11)



3. Time Evolution and Retarded Propagator [B]

When a Hamiltonian contains explicit time translational symmetry, vacuum state |Ω⟩ does
not remain to be the lowest energy state. This means that

|Ω⟩in ̸= |Ω⟩out. (12)

We encounter such a situation, for example, when we work on a condensed matter system

with time-varying external field, or on field fluctuations in expanding universe.

(a) Typical questions one might wish to ask in such a system will be time evolution of

observables in a state that started out as a vacuum at an earlier time. That is to study

t-dependence of
in⟨Ω|O(x⃗, t)|Ω⟩in. (13)

Find an equivalent expression that is given in terms of the interaction picture operator

OI(x⃗, t) and U(t1, t2; t∗) with appropriately chosen (t1, t2, t∗).

(b) If this time evolution problem is to be studied in perturbation theory, then the expression

obtained above should be expanded in a power series of VI(t
′). Write down the first few

terms of this expansion, and confirm that the expression only involves commutators of

VI(t
′)’s and OI(x⃗, t) within ⟨0| and |0⟩.

(c) Show that the propagator useful for this problem,

[ϕ(x⃗, t), ϕ∗(y⃗, t′)]×Θ(t− t′), is given by

∫
d4p

(2π)4
ie−ip0(t−t′)+ip⃗·(x⃗−y⃗)

p2 −m2 + ip0ϵ
. (14)

This is the propagator in the retarded boundary condition; we should say that is a

reasonable choice, when we want to solve a time evolution problem. Note also that

both particle and anti-particle contribute to this propagator from t′ to t.

4. Non-relativistic Propagator in Feynman Boundary Condition [B]

(a) Using a 2-component fermion field (for non-relativistic electron) in the interaction pic-

ture

ψI(x⃗, t) =

∫
d3p

(2π)3

∑
r

ar,p⃗ ξr e
ip⃗·x⃗−iEp⃗t (15)

for a free (bilinear) Hamiltonian

H0 = ψ†

[
− ∂⃗ · ∂⃗

2m

]
ψ, (16)

calculate the propagator (Green function)∫
d3(x⃗− y⃗) d(t− t′) e−ik⃗·(x⃗−y⃗)eiω(t−t′) ⟨0|T

{
ψI(x⃗, t)ψ

†
I(y⃗, t

′)
}
|0⟩. (17)



(b) Explain the relation between this propagator and

i [/p+m]

p2 −m2 + iϵ
(18)

for 4-component spinor fields. [cf. homework problem I-2]

5. Tree Level Calculation I, Forward–Backward Asymmetry [B]

Scattering amplitude M is defined by

Sc
{m,p};{n,q} = (2π)4δ4(

∑
i

pi −
∑
j

qj) iM, (19)

by factoring out the 4-momentum conservation, which always exists for any scattering pro-

cess in Lorentz invariant theories. Here, Sc is the connected part of the S-matrix (cluster

decomposition). M is also called (invariant) matrix element.

(a) Compute the invariant matrix elements for the following s-channel scattering processes.

Assume that all the particles are massless.

i. |M|2 for [ϕ + ϕc → γ∗ → ϕ′ + ϕ
′c] in scalar QED; ϕ and ϕc, ϕ′ and ϕ

′c are in

charge conjugation, and ϕ and ϕ′ are different scalar spiecies.

ii. |M|2 for [f + f̄ → γ∗ → ϕ + ϕc]. Take an average in the initial state spin

configuration.

iii.
∑

|M|2 for [f + f̄ → γ∗ → f ′ + f̄ ′], like e− + e+ → µ− + µ+ scattering. Sum over

the final state spin configuration, and take an average over the initial state spin

configuration.

(b) (If you have enough time) In the [f + f̄ → γ∗ → f ′ + f̄ ′] scattering in the s-channel,

but in a theory where the coupling is

Lint = −gLΨγµAµ

(
1− γ5

2

)
Ψ− gRΨγ

µAµ

(
1 + γ5

2

)
Ψ, (20)

compute i) |M(fL+ f̄R → f ′
L+ f̄

′
R)|2 and ii) |M(fL+ f̄R → f ′

R+ f̄ ′
L)|2. Here, PL = (1−

γ5)/2 and PR = (1 + γ5)/2 only keep left-handed and right-handed spinor components,

respectively.

(c) Draw a sketchy graph of those |M|2 (with arbitrary normalization)2 as a function

of cos θ ∈ [−1,+1]. For 2-body to 2-body scattering of massless particles, t/s =
2The purpose of this problem so far is for you to get experienced in manipulation of γ matrices, as much as in

knowing the results. So, the answers are presented here.

a− i) |M|2 = e4
(t− u)2

s2
, ii) |M|2 = e4 s2−(t−u)2

s2 , iii)
∑

|M|2 = 2e4
(
u2

s2
+

t2

s2

)
, (21)

b− i) |M|2 = 4(gLg
′
L)

2

(
u2

s2

)
, ii) |M|2 = 4(gLg

′
R)

2

(
t2

s2

)
. (22)



− sin2(θ/2) and u/s = − cos2(θ/2), where θ is the scattering angle in the center-of-

mass frame, so that (s + t + u) = 0. You will see that (u/t)2 is a forward scattering

component, and (t/s)2 a backward scattering one. So, the copmutation in b) that the

forward scattering component (u/s)2 and backward scattering component (t/s)2 have

different coefficients in
∑

|M|2, that is, there is forward backward asymmetry, if gL ̸= gR

and g′L ̸= g′R.

6. Topology [C]

If you have not studied algebraic topology at all yet, it is not a very bad idea to take a little

time to do so. Key words are simplicial complex, homology group, and Euler number. ....

and then,

(a) Confirm that the Euler numbers χ of tetrahedron, hexahedron and octahedron are all

the same.

χ = # [faces]−# [edges] + # [vertices] =
∑
i

(−)i# [ i-dim. objects ] (23)

(b) Compute homology groups of S2 (surface of a balloon) and T 2 (surface of a doughnut).

The Euler number of polyhedra above is the same as χ =
∑

i(−)ibi of S
2.


