Theory of Elementary Particles homework IT (April 16)

e At the head of your report, please write your name, student ID number and a
list of problems that you worked on in a report (like “II-1, I1-3, IV-2”).

Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not
waste your time!

Keep your own copy, if you need one. Reports will not be returned.

. Follow-up [A]
Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a
gap that cannot be filled, state clearly what is yet to be proved or understood.

. In/out State Normalization and Ké&llen-Lehmann Spectral Representation [B|
A coefficient Z appearing in the Killen-Lehmann spectral representation,?
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In the following, let us see why this is the case.

(a) First, show i) that an integral
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converges if ¢° is (real positive)x (1 + i€), and ii) that a one-particle state in the free

5 = al]0)\/2E; ()

is proportional to the residue of a pole i/(¢° — Ej) in the complex ¢° plane. Under

theory

an understanding that ¢° is always chosen to be real positive (plus a little positive

imaginary part), one can also say that this is a residue of a pole at i/(¢*> — m?).

1To learn more, see [PS] section 7.2 or [W-I] Chap. 10.



(b)

(d)

Second, by using the result above, show that the inner product of
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As before, assume that p° and ¢ are both real and positive with an infinitesimally small

positive imaginary part. It is O.K. to assume for now that interactions switch off before
T_ and after T',.

In order to show this, one can use
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which is equivalent to (£2|€2) = 1.
Finally, show that the resiude of Eq. (6) at (7) is
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by using Eq. (1). This completes the proof of the normalization (2, 3).

(not a report problem) Normalization of multi-particle in-states / out-states is set as
follows. Firsct think of a theory where particles in a group 1 interact withing the group,
and those in another group 2 also do so within group 2, but not with particles in the
other group. Then the in-state witn one particle (spiecies n;) in the group 1 and one
particle (spiecies ny) in the group 2 should be set as follows:
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3. Time Evolution and Retarded Propagator [B]

When a Hamiltonian contains explicit time translational symmetry, vacuum state |2) does

not remain to be the lowest energy state. This means that

)™ # 1. (12)

We encounter such a situation, for example, when we work on a condensed matter system

with time-varying external field, or on field fluctuations in expanding universe.

(a)

Typical questions one might wish to ask in such a system will be time evolution of
observables in a state that started out as a vacuum at an earlier time. That is to study
t-dependence of

QO(, 1) )™. (13)
Find an equivalent expression that is given in terms of the interaction picture operator
O;(Z,t) and U (ty, to;t,) with appropriately chosen (1, s, t,).
If this time evolution problem is to be studied in perturbation theory, then the expression
obtained above should be expanded in a power series of V;(t'). Write down the first few
terms of this expansion, and confirm that the expression only involves commutators of
Vi(t')’s and Oy(Z,t) within (0| and |0).
Show that the propagator useful for this problem,
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This is the propagator in the retarded boundary condition; we should say that is a

reasonable choice, when we want to solve a time evolution problem. Note also that
both particle and anti-particle contribute to this propagator from ¢’ to .

4. Non-relativistic Propagator in Feynman Boundary Condition [B]

(a)

Using a 2-component fermion field (for non-relativistic electron) in the interaction pic-

ture
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for a free (bilinear) Hamiltonian
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calculate the propagator (Green function)
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(b) Explain the relation between this propagator and
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for 4-component spinor fields. [cf. homework problem I-2]
5. Tree Level Calculation I, Forward—-Backward Asymmetry [B]
Scattering amplitude M is defined by
Sfm,p};{n,q} - (27T)454<Zpi o Z q;) iM, (19)
( J

by factoring out the 4-momentum conservation, which always exists for any scattering pro-
cess in Lorentz invariant theories. Here, S¢ is the connected part of the S-matrix (cluster

decomposition). M is also called (invariant) matrix element.

(a) Compute the invariant matrix elements for the following s-channel scattering processes.

Assume that all the particles are massless.

i. IM]2 for [p+ ¢° = v — ¢ + ¢¢] in scalar QED; ¢ and ¢°, ¢’ and ¢'¢ are in
charge conjugation, and ¢ and ¢ are different scalar spiecies.

ii. \/\/l—|2 for [f +f — v — ¢+ ¢°]. Take an average in the initial state spin
configuration.

iii. S |M2 for [f+ f = v — f'+ ], like e + et — p~ + pt scattering. Sum over
the final state spin configuration, and take an average over the initial state spin
configuration.

(b) (If you have enough time) In the [f + f — v* — f’ + f'] scattering in the s-channel,
but in a theory where the coupling is
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compute i) [M(fr+ fr — f1 + fr)|? and i) IM(fL+ fr — fr+ f1)|?. Here, P, = (1—
v5)/2 and Pr = (1 + 75)/2 only keep left-handed and right-handed spinor components,

respectively.

(c) Draw a sketchy graph of those |M|? (with arbitrary normalization)? as a function
of cosf € [—1,+1]. For 2-body to 2-body scattering of massless particles, t/s =

2The purpose of this problem so far is for you to get experienced in manipulation of v matrices, as much as in
knowing the results. So, the answers are presented here.
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—sin?(0/2) and u/s = —cos?(6/2), where 6 is the scattering angle in the center-of-
mass frame, so that (s + ¢+ u) = 0. You will see that (u/t)? is a forward scattering
component, and (¢/s)? a backward scattering one. So, the copmutation in b) that the
forward scattering component (u/s)? and backward scattering component (¢/s)? have
different coefficients in >~ [ M2, that is, there is forward backward asymmetry, if g, # gr

and g}, # gp-

6. Topology [C]

If you have not studied algebraic topology at all yet, it is not a very bad idea to take a little
time to do so. Key words are simplicial complex, homology group, and Euler number. ....
and then,

(a) Confirm that the Euler numbers x of tetrahedron, hexahedron and octahedron are all

the same.

X = # [faces] — # [edges] + # [vertices| = Z(—)’# [ i-dim. objects | (23)

%

(b) Compute homology groups of S? (surface of a balloon) and T? (surface of a doughnut).
The Euler number of polyhedra above is the same as x = >_,(—)"b; of S2.



