
Theory of Elementary Particles homework III (April 23)

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

2. Complex Phase of Scattering Amplitudes [B]

Show, by counting the number of (±i)’s appearing in propagators, interaction verticies and

momentum loop integrals (after Wick rotation), that those complex phases do not contribute

to the complex phase of scattering amplitudes M.

Note that an extra (i) is in the relation between the connected part of the S-matrix and the

scattering amplitude M:

Sc = (2π)4δ4(
∑
i

pi) iM. (1)

3. 1-Loop Calculation I, Pauli–Villars Regularization, Unitarity [C]

Let us consider a theory where a complex scalar field φ and a 4-component (Dirac) fermion

Ψ has an interaction (called Yukawa interaction);

Lkin = (∂µφ
∗)(∂µφ)−M2

φ|φ|2 +Ψ(iγµ∂µ −m)Ψ, (2)

Lint = λφΨ

(
1− γ5

2

)
Ψ+ λ∗φ∗Ψ

(
1 + γ5

2

)
Ψ. (3)

(a) Compute the 1-loop contribution to the scalar self-energy −iΣ(p2,m2) = iM(p2,m2),

that is, Figure 1 (a), and show that it is

M =
2|λ|2

16π2

∫ 1

0

dx

∫ ∞

0

dKE
KE(KE + x(1− x)p2)

[KE +m2 − x(1− x)p2]2
; (4)

here, pµ is the momentum of the scalar field coming from the left, andKE corresopnds to

the invariant momentum square (k′ ·k′) in the Euclidean signature of shifted momentum



(a) (b)

Figure 1: Scalar self-energy 1-loop diagram (a) and scalar decay diagram (b).

k′. [Did you remember to include the extra (−1) factor for a fermion loop?] Confirm

that this integral is approximately ∝
∫
dKE (unlike

∫
dKEK

−1
E or

∫
dKE1/K

2
E) for

KE ≫ m2, |p2|.

(b) (momentum cut-off regularization) When the divergent integral M above is made

well-defined (finite) by replacing the integral over KE ∈ [0,∞] with a finite range

integral over KE ∈ [0,Λ2
0], the 1-loop scalar self-energy is denoted by −iΣmom. cutoff =

iMmom. cutoff . Determine Mmom. cutoff by carring out the integration.

(c) (Pauli–Villars regularization) As an alternative to the momentum cut-off regular-

ization, one can make the 1-loop divergent integralM well-defined, by introducing other

spiecies of “fermions” Ψj (j = 1, 2 · · · ) that have exactly the same interaction with φ as

Ψ0 := Ψ. Those “fermions” are assumed to have mass Mj and signature of the 1-loop

diagram (+ for ordinary bosons and − for ordinary fermions) that are either the same

(γj = +1) as or opposite (γj = −1) from that of Ψ0 for each j. This regularization is

called Pauli–Villars regularization. To see how this work, let us first consider introduc-

ing just Ψj=1 whose mass is M1 and the signature opposite (γ1 = −1). Show that the

KE integral of

M(p2,m2)−M(p2,M2
1 ) =

1∑
j=0

γjM(p2,M2
j ) (5)

is still approximately ∝ dKE for m2, |p2| ≪ KE ≪ M2
1 , but the integral becomes

∝ dKEM
2
1/KE approximately. This means that the Pauli–Villars regularization cannot

render the divergent 1-loop integral M finite, if we are to introduce only one spiecies of

“fermion” Ψj=1.

(d) This 1-loop integral for the scalar self-energy diagram can be made finite, by introducing

three “fermions” Ψj=1,2,3. The signature of Ψj=1,2 are set to be opposite from that of

the original fermion Ψ0 (that is, γ1,2 = −1), and the signature of Ψj=3 to be the same

as that of Ψ0 (that is, γ3 = +1). The 1-loop integral (including the contributions from



these “fermions”) become finite, if we take their masses, M1,M2,M3, in such a way that

the following relation is satisfied:

m2 +M2
3 = M2

1 +M2
2 . (6)

Compute MP.V.(p2,m2;M2
1 ,M

2
2 ,M

2
3 )

lim
Λ0→∞

[
3∑

j=0

γjMmom. cutoff(p2,M2
j )

]
= lim

Λ0→∞

[
Mmom. cut(p2,m2)−Mmom. cut(p2,M2

1 )− · · ·
]
.

In this context of Pauli–Villars regularization, the momentum cutoff scale Λ0 plays the

role of preregulator.

(e) In the case of 4m2 ≤ p2 ≪ M2
j=1,2,3, the logarithm appearing in Mmom. cutoff and MP.V.

means that a branch cut has to be introduced along the real positive axis of the p2

complex plane. Show that

1

i

[
M(p2 + iϵ,m2)−M(p2 − iϵ,m2)

]
=

2π|λ|2

16π2

√
p2 − 4m2

p2
(p2 − 2m2). (7)

Note that this result does not depend on the choice of regularization schemes.

(f) Compute the decay rate of φ (Feynman diagram Figure 1), Γ(φ → Ψ+Ψ), and confirm

that (2Mφ)×Γ is the same as (7). [This is one of consequesnces of the optical theorem.]

Here, we assume that Mφ ≥ 2m, so that the scalar field can decay into the fermion pair.

(g) Because of this branch cut, we need to be a little more careful in phrasing how to

compute the scalar self-energy 1-loop diagram. We define, for p2 > 4m2, the scalar

self-energy Σ(p2,m2) to be −M(p2,m2) for p2 in the upper half complex plane, and the

analytically continued one across the branch cut for p2 in the lower half plane. Show

that the propagator with 1-loop 1PI correction,

i

p2 −M2
φ − Σ(p2,m2) + iϵ

(8)

has a pole at

p0 ≃ Mφ − 1

2Mφ

ReM(M2
φ,m

2)− i
Γ

2
(9)

for the p⃗ = 0⃗ case for simplicity. [This means that the propagator in the spacetime

picture exhibits the time dependence e−iMφt × e−Γt/2. After taking its absolute value

square of this quantum mechanical amplitude, we obtain the e−Γt dependence of an

unstable particle.]



Figure 2: Fermion-photon vertex 1-loop correction.

4. 1-Loop Calculation II: Vertex Correction [C]

Compute the 1-loop correction (Figure 2), which should be added to the tree level con-

tribution ieγµ. Use higher covariant derivative regularization, or alternatively, follow the

calculation of Peskin–Schröder section 6.3 (p.189–p.194).


