Theory of Elementary Particles

- At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like "II-1, II-3, IV-2").
- Pick up any problems that are suitable for your study. You are not expected to work on all of them!
- Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not waste your time!
- Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a gap that cannot be filled, state clearly what is yet to be proved or understood.

2. Complex Phase of Scattering Amplitudes [B]

Show, by counting the number of ($\pm i$)'s appearing in propagators, interaction verticies and momentum loop integrals (after Wick rotation), that those complex phases do not contribute to the complex phase of scattering amplitudes \mathcal{M}.
Note that an extra (i) is in the relation between the connected part of the S-matrix and the scattering amplitude \mathcal{M} :

$$
\begin{equation*}
S^{c}=(2 \pi)^{4} \delta^{4}\left(\sum_{i} p_{i}\right) i \mathcal{M} \tag{1}
\end{equation*}
$$

3. 1-Loop Calculation I, Pauli-Villars Regularization, Unitarity [C]

Let us consider a theory where a complex scalar field φ and a 4-component (Dirac) fermion Ψ has an interaction (called Yukawa interaction);

$$
\begin{align*}
\mathcal{L}_{\mathrm{kin}} & =\left(\partial_{\mu} \varphi^{*}\right)\left(\partial^{\mu} \varphi\right)-M_{\varphi}^{2}|\varphi|^{2}+\bar{\Psi}\left(i \gamma^{\mu} \partial_{\mu}-m\right) \Psi \tag{2}\\
\mathcal{L}_{\text {int }} & =\lambda \varphi \bar{\Psi}\left(\frac{1-\gamma_{5}}{2}\right) \Psi+\lambda^{*} \varphi^{*} \bar{\Psi}\left(\frac{1+\gamma_{5}}{2}\right) \Psi \tag{3}
\end{align*}
$$

(a) Compute the 1-loop contribution to the scalar self-energy $-i \Sigma\left(p^{2}, m^{2}\right)=i \mathcal{M}\left(p^{2}, m^{2}\right)$, that is, Figure 1 (a), and show that it is

$$
\begin{equation*}
\mathcal{M}=\frac{2|\lambda|^{2}}{16 \pi^{2}} \int_{0}^{1} d x \int_{0}^{\infty} d K_{E} \frac{K_{E}\left(K_{E}+x(1-x) p^{2}\right)}{\left[K_{E}+m^{2}-x(1-x) p^{2}\right]^{2}} \tag{4}
\end{equation*}
$$

here, p^{μ} is the momentum of the scalar field coming from the left, and K_{E} corresopnds to the invariant momentum square $\left(k^{\prime} \cdot k^{\prime}\right)$ in the Euclidean signature of shifted momentum

Figure 1: Scalar self-energy 1-loop diagram (a) and scalar decay diagram (b).
k^{\prime}. [Did you remember to include the extra (-1) factor for a fermion loop?] Confirm that this integral is approximately $\propto \int d K_{E}$ (unlike $\int d K_{E} K_{E}^{-1}$ or $\int d K_{E} 1 / K_{E}^{2}$) for $K_{E} \gg m^{2},\left|p^{2}\right|$.
(b) (momentum cut-off regularization) When the divergent integral \mathcal{M} above is made well-defined (finite) by replacing the integral over $K_{E} \in[0, \infty]$ with a finite range integral over $K_{E} \in\left[0, \Lambda_{0}^{2}\right]$, the 1-loop scalar self-energy is denoted by $-i \Sigma^{\text {mom. cutoff }}=$ $i \mathcal{M}^{\text {mom. cutoff }}$. Determine $\mathcal{M}^{\text {mom. cutoff }}$ by carring out the integration.
(c) (Pauli-Villars regularization) As an alternative to the momentum cut-off regularization, one can make the 1-loop divergent integral \mathcal{M} well-defined, by introducing other spiecies of "fermions" $\Psi_{j}(j=1,2 \cdots)$ that have exactly the same interaction with φ as $\Psi_{0}:=\Psi$. Those "fermions" are assumed to have mass M_{j} and signature of the 1-loop diagram (+ for ordinary bosons and - for ordinary fermions) that are either the same $\left(\gamma_{j}=+1\right)$ as or opposite $\left(\gamma_{j}=-1\right)$ from that of Ψ_{0} for each j. This regularization is called Pauli-Villars regularization. To see how this work, let us first consider introducing just $\Psi_{j=1}$ whose mass is M_{1} and the signature opposite $\left(\gamma_{1}=-1\right)$. Show that the K_{E} integral of

$$
\begin{equation*}
\mathcal{M}\left(p^{2}, m^{2}\right)-\mathcal{M}\left(p^{2}, M_{1}^{2}\right)=\sum_{j=0}^{1} \gamma_{j} \mathcal{M}\left(p^{2}, M_{j}^{2}\right) \tag{5}
\end{equation*}
$$

is still approximately $\propto d K_{E}$ for $m^{2},\left|p^{2}\right| \ll K_{E} \ll M_{1}^{2}$, but the integral becomes $\propto d K_{E} M_{1}^{2} / K_{E}$ approximately. This means that the Pauli-Villars regularization cannot render the divergent 1-loop integral \mathcal{M} finite, if we are to introduce only one spiecies of "fermion" $\Psi_{j=1}$.
(d) This 1-loop integral for the scalar self-energy diagram can be made finite, by introducing three "fermions" $\Psi_{j=1,2,3}$. The signature of $\Psi_{j=1,2}$ are set to be opposite from that of the original fermion Ψ_{0} (that is, $\gamma_{1,2}=-1$), and the signature of $\Psi_{j=3}$ to be the same as that of Ψ_{0} (that is, $\gamma_{3}=+1$). The 1-loop integral (including the contributions from
these "fermions") become finite, if we take their masses, M_{1}, M_{2}, M_{3}, in such a way that the following relation is satisfied:

$$
\begin{equation*}
m^{2}+M_{3}^{2}=M_{1}^{2}+M_{2}^{2} \tag{6}
\end{equation*}
$$

Compute $\mathcal{M}^{\text {P.V. }}\left(p^{2}, m^{2} ; M_{1}^{2}, M_{2}^{2}, M_{3}^{2}\right)$
$\lim _{\Lambda_{0} \rightarrow \infty}\left[\sum_{j=0}^{3} \gamma_{j} \mathcal{M}^{\text {mom. cutoff }}\left(p^{2}, M_{j}^{2}\right)\right]=\lim _{\Lambda_{0} \rightarrow \infty}\left[\mathcal{M}^{\text {mom. cut }}\left(p^{2}, m^{2}\right)-\mathcal{M}^{\text {mom. cut }}\left(p^{2}, M_{1}^{2}\right)-\cdots\right]$.
In this context of Pauli-Villars regularization, the momentum cutoff scale Λ_{0} plays the role of preregulator.
(e) In the case of $4 m^{2} \leq p^{2} \ll M_{j=1,2,3}^{2}$, the logarithm appearing in $\mathcal{M}^{\text {mom. cutoff }}$ and $\mathcal{M}^{\text {P.V. }}$ means that a branch cut has to be introduced along the real positive axis of the p^{2} complex plane. Show that

$$
\begin{equation*}
\frac{1}{i}\left[\mathcal{M}\left(p^{2}+i \epsilon, m^{2}\right)-\mathcal{M}\left(p^{2}-i \epsilon, m^{2}\right)\right]=\frac{2 \pi|\lambda|^{2}}{16 \pi^{2}} \sqrt{\frac{p^{2}-4 m^{2}}{p^{2}}}\left(p^{2}-2 m^{2}\right) \tag{7}
\end{equation*}
$$

Note that this result does not depend on the choice of regularization schemes.
(f) Compute the decay rate of φ (Feynman diagram Figure 1), $\Gamma(\varphi \rightarrow \Psi+\bar{\Psi})$, and confirm that $\left(2 M_{\varphi}\right) \times \Gamma$ is the same as (7). [This is one of consequesnces of the optical theorem.] Here, we assume that $M_{\varphi} \geq 2 m$, so that the scalar field can decay into the fermion pair.
(g) Because of this branch cut, we need to be a little more careful in phrasing how to compute the scalar self-energy 1-loop diagram. We define, for $p^{2}>4 m^{2}$, the scalar self-energy $\Sigma\left(p^{2}, m^{2}\right)$ to be $-\mathcal{M}\left(p^{2}, m^{2}\right)$ for p^{2} in the upper half complex plane, and the analytically continued one across the branch cut for p^{2} in the lower half plane. Show that the propagator with 1-loop 1PI correction,

$$
\begin{equation*}
\frac{i}{p^{2}-M_{\varphi}^{2}-\Sigma\left(p^{2}, m^{2}\right)+i \epsilon} \tag{8}
\end{equation*}
$$

has a pole at

$$
\begin{equation*}
p^{0} \simeq M_{\varphi}-\frac{1}{2 M_{\varphi}} \operatorname{Re} \mathcal{M}\left(M_{\varphi}^{2}, m^{2}\right)-i \frac{\Gamma}{2} \tag{9}
\end{equation*}
$$

for the $\vec{p}=\overrightarrow{0}$ case for simplicity. [This means that the propagator in the spacetime picture exhibits the time dependence $e^{-i M_{\varphi} t} \times e^{-\Gamma t / 2}$. After taking its absolute value square of this quantum mechanical amplitude, we obtain the $e^{-\Gamma t}$ dependence of an unstable particle.]

Figure 2: Fermion-photon vertex 1-loop correction.

4. 1-Loop Calculation II: Vertex Correction [C]

Compute the 1-loop correction (Figure 2), which should be added to the tree level contribution $i e \gamma^{\mu}$. Use higher covariant derivative regularization, or alternatively, follow the calculation of Peskin-Schröder section 6.3 (p.189-p.194).

