Theory of Elementary Particles

- At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like "II-1, II-3, IV-2").
- Pick up any problems that are suitable for your study. You are not expected to work on all of them!
- Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not waste your time!
- Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a gap that cannot be filled, state clearly what is yet to be proved or understood.

2. Sorting out Order by Order [B]

At 1-loop level in QED (without field or coupling renormalization), electron self-energy is given by

$$
\begin{align*}
-i \Sigma^{(1)}(p, M) & =\frac{-i e^{2}}{16 \pi^{2}} \int_{0}^{1} d x[-2(1-x) \not p+4 M] \ln \left(\frac{(1-x) \Lambda^{2}+x M^{2}-x(1-x) p^{2}}{x M^{2}-x(1-x) p^{2}}\right) \\
& =-i\left[A^{(1)}\left(p^{2}, M^{2}\right) \not p+B^{(1)}\left(p^{2}, M^{2}\right)\right] \tag{1}
\end{align*}
$$

where higher covariant derivative regularization is used for the (Feynman gauge) photon propagator. When the self-energy (sum of all the 1 particle irreducible diagrams) is $-i \Sigma(p, M)-$ $i\left[A\left(p^{2}, M^{2}\right) \not p+B\left(p^{2}, M^{2}\right)\right]$, the electron propagator is

$$
\begin{equation*}
\frac{i}{p-M-\Sigma(p, M)}=\frac{i}{(1-A) p-(M+B)}=\frac{i[(1-A) p p+(M+B)]}{(1-A)^{2} p^{2}-(M+B)^{2}} \tag{2}
\end{equation*}
$$

and the physical mass-square (the pole in p^{2} plane in the spectral representation) is defined as a solution of

$$
\begin{equation*}
\left(1-A\left(p^{2}, M^{2}\right)\right)^{2} p^{2}-\left(M+B\left(p^{2}, M^{2}\right)\right)^{2}=0 \tag{3}
\end{equation*}
$$

(a) Find the physical mass-square m^{2} up to the level of $\mathcal{O}\left(e^{2}\right)$ (and ignore $\mathcal{O}\left(e^{4}\right)$ corrections); in doing so, use $A^{(1)}\left(p^{2}, M^{2}\right)$ and $B^{(1)}\left(p^{2}, M^{2}\right)$ for $A\left(p^{2}, M^{2}\right)$ and $B\left(p^{2}, M^{2}\right)$, and substitute $p^{2}=m^{2}=m_{(0)}^{2}+e^{2} m_{(1)}^{2}+\mathcal{O}\left(e^{4}\right)$. The result should be (if I am not wrong...)

$$
\begin{equation*}
m^{2}=M^{2}+\left[2 M^{2} A^{(1)}\left(M^{2}, M^{2}\right)+2 M B^{(1)}\left(M^{2}, M^{2}\right)\right]+\mathcal{O}\left(e^{4}\right) \tag{4}
\end{equation*}
$$

(b) Show that

$$
\begin{equation*}
M^{2}-\left\{m^{2}-\left[2 m^{2} A^{(1)}\left(m^{2}, m^{2}\right)+2 m B^{(1)}\left(m^{2}, m^{2}\right)\right]\right\} \tag{5}
\end{equation*}
$$

is of order $\mathcal{O}\left(e^{4}\right)$. [note that the arguments of $A^{(1)}$ and $B^{(1)}\left(m^{2}, m^{2}\right)$ are m^{2}, not M^{2}. This means that

$$
\begin{align*}
M-m & =-\left[m A^{(1)}\left(m^{2}, m^{2}\right)+B^{(1)}\left(m^{2}, m^{2}\right)\right]+\mathcal{O}\left(e^{4}\right), \tag{6}\\
& =-\left[M A^{(1)}\left(M^{2}, M^{2}\right)+B^{(1)}\left(M^{2}, M^{2}\right)\right]+\mathcal{O}\left(e^{4}\right) . \tag{7}
\end{align*}
$$

3. Quantum Correction I: fermion propagator [B]
(a) Show that the denominator of the propagator of the renormalized fermion field $[p-m-\Sigma]$ can be written as follows at 1-loop level in the on-shell renormalized perturbation theory:

$$
\begin{equation*}
\left[\left(1+C\left(m^{2}\right)\right)-\Delta A\left(p^{2}, m^{2}\right)\right] \not p-\left[\left(1+C\left(m^{2}\right)\right) m+\Delta B\left(p^{2}, m^{2}\right)\right] \tag{8}
\end{equation*}
$$

(b) Confirm that $p^{2}=m^{2}$ is the zero of the denominator (that is, the pole of the propagator), and the residue is 1 at the pole, as expected.
(c) Expand $\Delta A\left(p^{2}, m^{2}\right), \Delta B\left(p^{2}, m^{2}\right)$ and $C\left(m^{2}\right)$ in m^{2} / Λ^{2} and $\left|p^{2}\right| / \Lambda^{2}$, assuming that $\Lambda^{2} \gg$ $m^{2},\left|p^{2}\right|$. Note that they remain finite in the large Λ^{2} limit! Note also that the propagator is not simply the one of the tree level $i /[p p-m]$ any more, but is quantum-corrected!!

4. Summing up Geometric Series for Photon Propagator [B]

Photon propagator is

$$
\begin{equation*}
\frac{-i}{q^{2}+i \epsilon}\left[\eta_{\mu \nu}+(\xi-1) \frac{q_{\mu} q_{\nu}}{q^{2}}\right] \tag{9}
\end{equation*}
$$

where ξ is a gauge parameter, and $\xi=1[\xi=0]$ corresponds to the Feynman gauge [Landau gauge], respectively. When the photon "self-energy" (sum of 1 particle irreducible diagrams: better known as vacuum polarization in this case; see homework V (or VI)) is given by

$$
\begin{equation*}
i\left(q^{2} \eta_{\mu \nu}-q_{\mu} q_{\nu}\right) \Pi\left(q^{2}\right) \tag{10}
\end{equation*}
$$

for some function $\Pi\left(q^{2}\right)$ of q^{2}, the quantum corrected photon propagator is of the form

$$
\begin{aligned}
& \frac{-i}{q^{2}+i \epsilon}\left[\eta_{\mu \nu}+(\xi-1) \frac{q_{\mu} q_{\nu}}{q^{2}}\right] \\
+ & \frac{-i}{q^{2}+i \epsilon}\left[\eta_{\mu \kappa}+(\xi-1) \frac{q_{\mu} q_{\kappa}}{q^{2}}\right] i\left(q^{2} \eta^{\kappa \lambda}-q^{\kappa} q^{\lambda}\right) \Pi\left(q^{2}\right) \frac{-i}{q^{2}+i \epsilon}\left[\eta_{\lambda \nu}+(\xi-1) \frac{q_{\lambda} q_{\nu}}{q^{2}}\right]+\cdots .
\end{aligned}
$$

Sum up this geometric series to show that it is the same as

$$
\begin{equation*}
\frac{-i}{\left(q^{2}+i \epsilon\right)\left(1-\Pi\left(q^{2}\right)\right)}\left[\eta_{\mu \nu}-\frac{q_{\mu} q_{n} u}{q^{2}}\right]+\xi \frac{-i q_{\mu} q_{\nu}}{q^{2} q^{2}} \tag{11}
\end{equation*}
$$

5. 1-Loop Calculation III: Photon Vacuum Polarization in Pauli-Villars [C]

Photon 1-loop "self-energy" (or vacuum polarization) in QED

$$
\begin{equation*}
\int d^{4} x d^{4} y e^{i q^{\prime} \cdot x} e^{-i q \cdot y}\langle 0| T\left\{\left(i e \bar{\Psi}_{I} \gamma^{\nu} \Psi_{I}\right)(x)\left(i e \bar{\Psi}_{I} \gamma^{\mu} \Psi_{I}\right)(y)\right\}|0\rangle=:(2 \pi)^{4} \delta^{4}\left(q^{\prime}-q\right) i \mathcal{M}^{\mu \nu} \tag{12}
\end{equation*}
$$

corresponds to the Feynman diagram in Figure 1 (a). Let us calculate this by using the Pauli-Villars regularization, and show that $i \mathcal{M}^{\mu \nu}$ is indeed of the form (10). To do this,
(a) show that, for a Dirac fermion with mass M,

$$
\begin{equation*}
i \mathcal{M}^{\mu \nu}\left(q^{2}, M^{2}\right)=\left(-4 i e^{2}\right) \int_{0}^{1} d x \int \frac{d^{4} k_{E}}{(2 \pi)^{4}} \frac{\left[\frac{1}{2}\left(k_{E}^{2}\right) \eta^{\mu \nu}\right]+\left[x(1-x)\left(q^{2} \eta^{\mu \nu}-2 q^{\mu} q^{\nu}\right)\right]+\left[M^{2} \eta^{\mu \nu}\right]}{\left[k_{E}^{2}+M^{2}-x(1-x) q^{2}\right]^{2}} \tag{13}
\end{equation*}
$$

after Wick rotation. k_{E}^{2} indicates that the 4-dim Euclidean metric is used in determining $k \cdot k$.
(b) Carry out angle and radial integration of 4 -dimensional $d^{4} k_{E}$ space; as a pre-regulator, introduce a cut-off in the range of integration, $k_{E}^{2} \leq \Lambda_{0}^{2}$. Note that this integral in the momentum cut-off regularization $i \mathcal{M}_{\text {mom. cut }}^{\mu \nu}\left(q^{2}, M^{2} ; \Lambda_{0}^{2}\right)$ does not have a form of (10) at all.
(c) The photon 1-loop "self-energy" (vacuum polarization) in the Pauli-Villars regularization is given by

$$
\begin{equation*}
i \mathcal{M}_{\mathrm{P} . \mathrm{V}}^{\mu \nu}\left(p^{2}, M^{2}\right)=\lim _{\Lambda_{0}^{2} \rightarrow \infty}\left[\sum_{j=0}^{3} \gamma_{j} \mathcal{M}_{\text {mom. cut }}^{\mu \nu}\left(q^{2}, M_{j}^{2} ; \Lambda_{0}^{2}\right)\right], \tag{14}
\end{equation*}
$$

just like in homework III-3. $\gamma_{0}=+1$ and $M_{0}^{2}=M_{2}$ by definition. We should take $\gamma_{1,2}=-1$ and $\gamma_{3}=+1$, and $M_{0}^{2}+M_{3}^{2}=M_{1}^{2}+M_{2}^{2}$ so that the integral remains finite, when the pre-regulator (momentum cutoff) is removed $\left(\Lambda_{0}^{2} \rightarrow \infty\right)$. Show that

$$
\begin{equation*}
i \mathcal{M}_{\mathrm{P} . \mathrm{V} .}^{\mu \nu}\left(p^{2}, M^{2}\right)=i\left(q^{2} \eta^{\mu \nu}-q^{\mu} q^{\nu}\right) \frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \ln \left(\prod_{j}\left[M_{j}^{2}-x(1-x) q^{2}\right]^{\gamma_{j}}\right) \tag{15}
\end{equation*}
$$

(d) (not a problem) If we take the Pauli-Villars regulator masses M_{1}^{2}, M_{2}^{2} and M_{3}^{2} much larger than the original Dirac fermion mass M^{2} and momentum flow q^{2}, the last logarithmic factor is approximately

$$
\begin{equation*}
\ln \left(\frac{M^{2}-x(1-x) q^{2}}{\bar{M}^{2}}\right), \quad \bar{M}^{2}:=M_{1}^{2} M_{2}^{2} / M_{3}^{2} \tag{16}
\end{equation*}
$$

In the Pauli-Villars regularization, $i \mathcal{M}^{\mu \nu}$ is in the form of (10) as expected from the gauge invariance of QED, and (at 1-loop,)

$$
\begin{equation*}
\Pi^{(1)}\left(q^{2}\right)=\frac{e^{2}}{2 \pi^{2}} \int_{0}^{1} d x x(1-x) \ln \left(\frac{M^{2}-x(1-x) q^{2}}{\bar{M}^{2}}\right) . \tag{17}
\end{equation*}
$$

6. Mass Correction of Non-relativistic Fermion (Heavy Quark Effective Theory)

Consider a non-relativisitic fermion with a (-1) unit of electric charge (just like an electron).
(a) Show (understand) that the 1-particle irreducible diagram (Figure 1 (b)) for mass correction and wavefunction renormalization is given at the leading order in $1 / M$ expansion by

$$
\begin{equation*}
i \mathcal{M}=-i \Sigma=\int \frac{d \omega}{(2 \pi)} \int \frac{d^{3} \vec{k}}{(2 \pi)^{3}}(i e) \frac{i}{\omega^{0}+\omega}(i e) \frac{-i}{\omega^{2}-|\vec{k}|^{2}+i \epsilon}, \tag{18}
\end{equation*}
$$

where the spacial momentum \vec{p} is set to $\overrightarrow{0}$, and $\omega^{0}=p^{0}-M$ is the energy flow of the external fermion field.
Note that only the $A_{0}=\varphi$ component of photon contributes at this leve of fermion mass non-relativistic expansion ($1 / M$ expansion). [c.f. homework I-2 and II-4] This mass / wavefunction correction from QED becomes that from non-Abelian gauge theories by replacing $(i e)^{2}$ with $\left(-i g \rho_{R}\left(t^{a}\right)\right)\left(-i g \rho_{R}\left(t^{a}\right)\right)=-g^{2} C_{2}(R) 1$. In the case of QCD and a quark, $C_{2}(R)=4 / 3$.
(b) It is necessary to regularize this integral, or otherwise the self-energy correction is not well-defined. So, we use the higher covariant derivativee regularization for the photon propagator, which is to modify the photon propagator in the following way:

$$
\begin{equation*}
\frac{-i}{\omega^{2}-\vec{k}^{2}+i \epsilon}=\frac{-i}{k^{2}+i \epsilon} \longrightarrow \frac{-i}{k^{2}-k^{4} / \Lambda^{2}} \rightarrow \frac{i \Lambda^{2}}{\left(k^{2}+i \epsilon\right)\left(k^{2}-\Lambda^{2}+i \epsilon\right)} \tag{19}
\end{equation*}
$$

Here, we have in mind a situation characterized by $\omega^{0} \ll \Lambda \ll M$. Do the Wick rotation, carry out $d^{3} \vec{k}$ integration and $d \omega$ integration. One will find that

$$
\begin{equation*}
-i \Sigma=\left.\frac{i}{16 \pi^{2}} \int_{0}^{1} d x \frac{e^{2} \Lambda}{\sqrt{x}} \frac{2 i}{\sqrt{1-A^{2}}} \ln \left[1-\frac{i \sqrt{1-A^{2}}}{A}\right]\right|_{A=\frac{\omega^{0}}{\sqrt{x} \Lambda}} \tag{20}
\end{equation*}
$$

(c) Expand the self-energy $\Sigma\left(\omega^{0} ; \Lambda\right)$ in ω^{0} / Λ, and keep only the terms that are in a nonnegative power of the regulator energy scale Λ. Show, if the range of $d x$ integration is limited to $[(\mu / \Lambda)]$, that

$$
\begin{equation*}
\Sigma(E ; \Lambda, \mu)=-\left(\frac{e^{2}}{8 \pi}\right) \Lambda+\left(\frac{e^{2}}{8 \pi^{2}}\right) \omega^{0} \ln \left(\frac{\Lambda^{2}}{\mu^{2}}\right) \tag{21}
\end{equation*}
$$

This corresponds to the decomposision of the fermion self-energy $\Sigma\left(p^{\mu} ; \Lambda\right)=B+A p$. The mass correction is linearly divergent in the regulator energy scale $\Lambda \ll M$, while the wavefunction renormalization is logarithmically divergent.

7. Magnetic and Electric Dipole Moment [B]

From the QED Lagrangian

$$
\begin{equation*}
\mathcal{L}_{\mathrm{QED}}=\bar{\Psi}\left[i \gamma^{\mu}\left(\partial_{\mu}-i e A_{\mu}\right)-M\right] \Psi-\frac{1}{4} F_{\mu \nu} F^{\mu \nu} \tag{22}
\end{equation*}
$$

one finds that there is a magnetic field-spin coupling in the Hamiltonian:

$$
\begin{equation*}
\Delta H=+\frac{e}{M} \vec{B} \cdot \vec{s}_{e}+\frac{e}{M} \vec{B} \cdot \vec{s}_{\vec{e}} ; \quad \quad \vec{s}_{e}=\psi^{\dagger} \frac{\vec{\tau}}{2} \psi, \quad \vec{s}_{\bar{e}}=\psi^{c \dagger} \frac{\vec{\tau}}{2} \psi^{c} . \tag{23}
\end{equation*}
$$

Here, 2-component spinor fields ψ and ψ^{c} correspond to $\psi^{(n)}$ and $\psi^{c(n)}$ with $n \geq 1$ in the homework problem I-2. See the homework problem I-2 for more information. It is conventional that the electron magnetic moment \vec{m} is characterized by $\Delta H=-\vec{m} \cdot \vec{B}$, and its relation to the electron angular momentum by a g-factor as in $\vec{m}=-\left(e / 2 m_{e}\right) g \vec{j}$. Thus, the tree-level QED gives rise to the celebrated result $g=2$.
(a) Consider a theory whose Lagrangian is given by

$$
\begin{equation*}
\mathcal{L}^{\prime}=\mathcal{L}_{\mathrm{QED}}+\frac{i e}{8 m_{e}} f_{2} \bar{\Psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \Psi F_{\mu \nu} \tag{24}
\end{equation*}
$$

where f_{2} is a dimensionless parameter. Show that there is an extra term in the Hamiltonian

$$
\begin{equation*}
\Delta H=\frac{e}{m_{e}} f_{2} \vec{B} \cdot\left(\vec{s}_{e}+\vec{s}_{\bar{e}}\right) . \tag{25}
\end{equation*}
$$

This means that $g=2+2 f_{2}$ for the electron field. For this purpose, it is sufficient to use $\Psi^{(0)}$ and $\psi^{(0)}$ and the convention of gamma matrices in homework I-2. One can also use

$$
\begin{equation*}
F_{\mu \nu}=\left(\partial_{\mu} A_{\nu}-\partial_{\nu} A_{\mu}\right), \quad F_{12}=F^{12}=-B^{3}, \quad F^{30}=-F_{30}=E^{3} . \tag{26}
\end{equation*}
$$

(b) Consider next a theory whose Lagrangian has yet another term

$$
\begin{equation*}
\mathcal{L}^{\prime \prime}=\mathcal{L}_{\mathrm{QED}}+\frac{e}{8 m_{e}} g_{2} \bar{\Psi}\left[\gamma^{\mu}, \gamma^{\nu}\right] \gamma_{5} \Psi F_{\mu \nu} \tag{27}
\end{equation*}
$$

where ${ }^{1} \gamma_{5}:=i \gamma^{0} \gamma^{1} \gamma^{2} \gamma^{3}$, and g_{2} is another dimensionless constant. Show that there is an extra term in the Hamiltonian of this theory:

$$
\begin{equation*}
\Delta H=-\frac{e}{m_{e}} g_{2} \vec{E} \cdot\left(\vec{s}_{e}+\vec{s}_{\bar{e}}\right) \tag{30}
\end{equation*}
$$

This means that electron has an electric dipole moment $\vec{d}=+\left(e / m_{e}\right) g_{2} \vec{s}$.

$$
\begin{gather*}
\gamma_{5}=\left(\begin{array}{ll}
& \mathbf{1} \\
\mathbf{1} &
\end{array}\right), \quad \text { if } \quad \gamma^{0}=\left(\begin{array}{ll}
\mathbf{1} & \\
& -\mathbf{1}
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
& \tau^{i} \\
-\tau^{i}
\end{array}\right), \tag{28}\\
\gamma_{5}=\left(\begin{array}{ll}
-\mathbf{1} & \\
& \mathbf{1}
\end{array}\right), \quad \text { if } \quad \gamma^{0}=\left(\begin{array}{ll}
& \mathbf{1} \\
\mathbf{1} &
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
-\tau^{i} & \tau^{i} \\
-
\end{array}\right), \tag{29}
\end{gather*}
$$

Figure 1: Self-energy graph of photon (a) and heavy fermion (b).

