
Theory of Elementary Particles homework IV (May 07)

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

2. Sorting out Order by Order [B]

At 1-loop level in QED (without field or coupling renormalization), electron self-energy is

given by

−iΣ(1)(p,M) =
−ie2

16π2

∫ 1

0

dx [−2(1− x)/p+ 4M ] ln

(
(1− x)Λ2 + xM2 − x(1− x)p2

xM2 − x(1− x)p2

)
,

=: −i
[
A(1)(p2,M2) /p+B(1)(p2,M2)

]
(1)

where higher covariant derivative regularization is used for the (Feynman gauge) photon prop-

agator. When the self-energy (sum of all the 1 particle irreducible diagrams) is −iΣ(p,M)−
i [A(p2,M2) /p+B(p2,M2)], the electron propagator is

i

/p−M − Σ(p,M)
=

i

(1− A)/p− (M +B)
=
i [(1− A) /p+ (M +B)]

(1− A)2p2 − (M +B)2
, (2)

and the physical mass-square (the pole in p2 plane in the spectral representation) is defined

as a solution of

(1− A(p2,M2))2p2 − (M +B(p2,M2))2 = 0. (3)

(a) Find the physical mass-square m2 up to the level of O(e2) (and ignore O(e4) correc-

tions); in doing so, use A(1)(p2,M2) and B(1)(p2,M2) for A(p2,M2) and B(p2,M2), and

substitute p2 = m2 = m2
(0)+ e

2m2
(1)+O(e4). The result should be (if I am not wrong...)

m2 =M2 +
[
2M2A(1)(M2,M2) + 2MB(1)(M2,M2)

]
+O(e4). (4)



(b) Show that

M2 −
{
m2 −

[
2m2A(1)(m2,m2) + 2mB(1)(m2,m2)

]}
(5)

is of order O(e4). [note that the arguments of A(1) and B(1)(m2,m2) are m2, not M2.

This means that

M −m = −
[
mA(1)(m2,m2) +B(1)(m2,m2)

]
+O(e4), (6)

= −
[
MA(1)(M2,M2) + B(1)(M2,M2)

]
+O(e4). (7)

3. Quantum Correction I: fermion propagator [B]

(a) Show that the denominator of the propagator of the renormalized fermion field [/p−m−Σ]

can be written as follows at 1-loop level in the on-shell renormalized perturbation theory:[
(1 + C(m2))−∆A(p2,m2)

]
/p−

[
(1 + C(m2))m+∆B(p2,m2)

]
. (8)

(b) Confirm that p2 = m2 is the zero of the denominator (that is, the pole of the propagator),

and the residue is 1 at the pole, as expected.

(c) Expand ∆A(p2,m2), ∆B(p2,m2) and C(m2) inm2/Λ2 and |p2|/Λ2, assuming that Λ2 ≫
m2, |p2|. Note that they remain finite in the large Λ2 limit! Note also that the propagator

is not simply the one of the tree level i/[/p−m] any more, but is quantum-corrected!!

4. Summing up Geometric Series for Photon Propagator [B]

Photon propagator is
−i

q2 + iϵ

[
ηµν + (ξ − 1)

qµqν
q2

]
, (9)

where ξ is a gauge parameter, and ξ = 1 [ξ = 0] corresponds to the Feynman gauge [Landau

gauge], respectively. When the photon “self-energy” (sum of 1 particle irreducible diagrams:

better known as vacuum polarization in this case; see homework V (or VI)) is given by

i
(
q2ηµν − qµqν

)
Π(q2) (10)

for some function Π(q2) of q2, the quantum corrected photon propagator is of the form

−i
q2 + iϵ

[
ηµν + (ξ − 1)

qµqν
q2

]
+

−i
q2 + iϵ

[
ηµκ + (ξ − 1)

qµqκ
q2

]
i(q2ηκλ − qκqλ)Π(q2)

−i
q2 + iϵ

[
ηλν + (ξ − 1)

qλqν
q2

]
+ · · · .

Sum up this geometric series to show that it is the same as

−i
(q2 + iϵ)(1− Π(q2))

[
ηµν −

qµqnu

q2

]
+ ξ

−iqµqν
q2q2

. (11)



5. 1-Loop Calculation III: Photon Vacuum Polarization in Pauli–Villars [C]

Photon 1-loop “self-energy” (or vacuum polarization) in QED∫
d4xd4yeiq

′·xe−iq·y⟨0|T
{(
ieΨIγ

νΨI

)
(x)
(
ieΨIγ

µΨI

)
(y)
}
|0⟩ =: (2π)4δ4(q′ − q) iMµν (12)

corresponds to the Feynman diagram in Figure 1 (a). Let us calculate this by using the

Pauli–Villars regularization, and show that iMµν is indeed of the form (10). To do this,

(a) show that, for a Dirac fermion with mass M ,

iMµν(q2,M2) = (−4ie2)

∫ 1

0

dx

∫
d4kE
(2π)4

[
1
2
(k2E)η

µν
]
+ [x(1− x)(q2ηµν − 2qµqν)] + [M2ηµν ]

[k2E +M2 − x(1− x)q2]
2

(13)

after Wick rotation. k2E indicates that the 4-dim Euclidean metric is used in determining

k · k.

(b) Carry out angle and radial integration of 4-dimensional d4kE space; as a pre-regulator,

introduce a cut-off in the range of integration, k2E ≤ Λ2
0. Note that this integral in the

momentum cut-off regularization iMµν
mom. cut(q

2,M2; Λ2
0) does not have a form of (10)

at all.

(c) The photon 1-loop “self-energy” (vacuum polarization) in the Pauli–Villars regulariza-

tion is given by

iMµν
P.V(p

2,M2) = lim
Λ2
0→∞

[
3∑

j=0

γjMµν
mom. cut(q

2,M2
j ; Λ

2
0)

]
, (14)

just like in homework III-3. γ0 = +1 and M2
0 = M2 by definition. We should take

γ1,2 = −1 and γ3 = +1, and M2
0 +M2

3 = M2
1 +M2

2 so that the integral remains finite,

when the pre-regulator (momentum cutoff) is removed (Λ2
0 → ∞). Show that

iMµν
P.V.(p

2,M2) = i(q2ηµν−qµqν) e
2

2π2

∫ 1

0

dx x(1−x) ln

(∏
j

[
M2

j − x(1− x)q2
]γj) . (15)

(d) (not a problem) If we take the Pauli–Villars regulator masses M2
1 , M

2
2 and M2

3 much

larger than the original Dirac fermion mass M2 and momentum flow q2, the last loga-

rithmic factor is approximately

ln

(
M2 − x(1− x)q2

M
2

)
, M

2
:=M2

1M
2
2/M

2
3 . (16)

In the Pauli–Villars regularization, iMµν is in the form of (10) as expected from the

gauge invariance of QED, and (at 1-loop,)

Π(1)(q2) =
e2

2π2

∫ 1

0

dx x(1− x) ln

(
M2 − x(1− x)q2

M
2

)
. (17)



6. Mass Correction of Non-relativistic Fermion (Heavy Quark Effective Theory) [C]

Consider a non-relativisitic fermion with a (−1) unit of electric charge (just like an electron).

(a) Show (understand) that the 1-particle irreducible diagram (Figure 1 (b)) for mass cor-

rection and wavefunction renormalization is given at the leading order in 1/M expansion

by

iM = −iΣ =

∫
dω

(2π)

∫
d3k⃗

(2π)3
(ie)

i

ω0 + ω
(ie)

−i
ω2 − |⃗k|2 + iϵ

, (18)

where the spacial momentum p⃗ is set to 0⃗, and ω0 = p0 −M is the energy flow of the

external fermion field.

Note that only the A0 = φ component of photon contributes at this leve of fermion mass

non-relativistic expansion (1/M expansion). [c.f. homework I-2 and II-4] This mass /

wavefunction correction from QED becomes that from non-Abelian gauge theories by

replacing (ie)2 with (−igρR(ta))(−igρR(ta)) = −g2C2(R)1. In the case of QCD and a

quark, C2(R) = 4/3.

(b) It is necessary to regularize this integral, or otherwise the self-energy correction is not

well-defined. So, we use the higher covariant derivativee regularization for the photon

propagator, which is to modify the photon propagator in the following way:

−i
ω2 − k⃗2 + iϵ

=
−i

k2 + iϵ
−→ −i

k2 − k4/Λ2
→ iΛ2

(k2 + iϵ)(k2 − Λ2 + iϵ)
. (19)

Here, we have in mind a situation characterized by ω0 ≪ Λ ≪M . Do the Wick rotation,

carry out d3k⃗ integration and dω integration. One will find that

−iΣ =
i

16π2

∫ 1

0

dx
e2Λ√
x

2i√
1− A2

ln

[
1− i

√
1− A2

A

]∣∣∣∣
A= ω0

√
xΛ

(20)

(c) Expand the self-energy Σ(ω0; Λ) in ω0/Λ, and keep only the terms that are in a non-

negative power of the regulator energy scale Λ. Show, if the range of dx integration is

limited to [(µ/Λ)], that

Σ(E; Λ, µ) = −
(
e2

8π

)
Λ +

(
e2

8π2

)
ω0 ln

(
Λ2

µ2

)
. (21)

This corresponds to the decomposision of the fermion self-energy Σ(pµ; Λ) = B + A/p.

The mass correction is linearly divergent in the regulator energy scale Λ ≪ M , while

the wavefunction renormalization is logarithmically divergent.

7. Magnetic and Electric Dipole Moment [B]



From the QED Lagrangian

LQED = Ψ [iγµ(∂µ − ieAµ)−M ] Ψ− 1

4
FµνF

µν , (22)

one finds that there is a magnetic field–spin coupling in the Hamiltonian:

∆H = +
e

M
B⃗ · s⃗e +

e

M
B⃗ · s⃗ē; s⃗e = ψ† τ⃗

2
ψ, s⃗ē = ψc† τ⃗

2
ψc. (23)

Here, 2-component spinor fields ψ and ψc correspond to ψ(n) and ψc(n) with n ≥ 1 in the

homework problem I-2. See the homework problem I-2 for more information. It is conven-

tional that the electron magnetic moment m⃗ is characterized by ∆H = −m⃗ · B⃗, and its

relation to the electron angular momentum by a g-factor as in m⃗ = −(e/2me)gj⃗. Thus, the

tree-level QED gives rise to the celebrated result g = 2.

(a) Consider a theory whose Lagrangian is given by

L′ = LQED +
ie

8me

f2 Ψ [γµ, γν ] Ψ Fµν , (24)

where f2 is a dimensionless parameter. Show that there is an extra term in the Hamil-

tonian

∆H =
e

me

f2B⃗ · (s⃗e + s⃗ē) . (25)

This means that g = 2 + 2f2 for the electron field. For this purpose, it is sufficient to

use Ψ(0) and ψ(0) and the convention of gamma matrices in homework I-2. One can also

use

Fµν = (∂µAν − ∂νAµ), F12 = F 12 = −B3, F 30 = −F30 = E3. (26)

(b) Consider next a theory whose Lagrangian has yet another term

L′′ = LQED +
e

8me

g2 Ψ [γµ, γν ] γ5Ψ Fµν , (27)

where1 γ5 := iγ0γ1γ2γ3, and g2 is another dimensionless constant. Show that there is

an extra term in the Hamiltonian of this theory:

∆H = − e

me

g2 E⃗ · (s⃗e + s⃗ē) . (30)

This means that electron has an electric dipole moment d⃗ = +(e/me)g2s⃗.

1

γ5 =

(
1

1

)
, if γ0 =

(
1

−1

)
, γi =

(
τ i

−τ i

)
, (28)

γ5 =

(
−1

1

)
, if γ0 =

(
1

1

)
, γi =

(
τ i

−τ i

)
, (29)



(a) (b)

Figure 1: Self-energy graph of photon (a) and heavy fermion (b).


