
Theory of Elementary Particles homework VI (May 21)

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

2. A Consequence of QED Ward Identity [B]

Wavefunction renormalization constant Z2 of a Dirac fermion with a pole mass p2 = m2 in

QED is given by

1 + δZ2 =: Z2 =
(1− A)

(1− A)2 + 2(A− 1)p2 ∂A
∂p2

− 2(M +B) ∂B
∂p2

∣∣∣∣∣
p2=m2

, (1)

where A(p2,M2) and B(p2,M2) characterize the fermion self-energy

−iΣ(p,M) := −i
[
A(p2,M2)/p+B(p2,M2)

]
. (2)

At 1-loop (O(e2)) level, the fermion self-energy (Figure 1 (a)) is given by

−iΣ(1)(p,M) =
−ie2

16π2

∫ 1

0

dx [−2(1− x)/p+ 4M ] ln

(
(1− x)Λ2 + xM2 − x(1− x)p2

xM2 − x(1− x)p2

)
,

=: −i
[
A(1)(p2,M2) /p+B(1)(p2,M2)

]
(3)

in the higher covariant derivative regularization for the photon propagator, and the wave-

function renormalization constant becomes

δ
(1)
Z2 =

[
A(1) + 2M2∂A

(1)

∂p2
+ 2M

∂B(1)

∂p2

]∣∣∣∣
p2=M2

(4)

at this O(e2) level.



(a) (b)

Figure 1: Fermion self-energy and fermion-photon vertex corrections at 1-loop.

On the other hand, fermion–fermion–photon vetex ieΓµ—including quantum corrections—is

known to be cast into the form

ieΓµ = ie

[
V1γ

µ − V2
4m

[γµ, γν ] qν

]
+ (∗ ∗ ∗)× (/p−m) +

(
/p′ −m

)
× (∗ ∗ ∗) ; (5)

here, we assume that the momentum of the fermion coming from below in Figure 1 (b) is

p, that of the fermion going out to the above p′, and the photon comes from the right with

momentum q = p′ − p. As a result of calculation in homework III-4, one will find, in higher

covariant derivative regularization, that

V
(1)
1 =

e2

8π2

∫
dxdy

{
ln

(
(1− x− y)Λ2 + (x+ y)2M2 − xyq2

(x+ y)2M2 − xyq2

)
(6)

+
[{
1− 4(1− x− y) + (1− x− y)2

}
M2 + (1− x)(1− y)q2

]
×[

1

(x+ y)2M2 − xyq2
− 1

(1− x− y)Λ2 + (x+ y)2M2 − xyq2

]}
,

V
(1)
2 =

e2

16π2

∫
dxdy (1− x− y)(x+ y)4M2 × (7)[

1

(x+ y)2M2 − xyq2
− 1

(1− x− y)Λ2 + (x+ y)2M2 − xyq2

]
Here, dxdy integral should be carried out in a trianglular region determined by 0 ≤ x, y ≤ 1,

x+ y ≤ 1.

Just like the wavefunction renormalization constant Z2 characterizes partial information of

self-energy diagrams, a parameter Z1 := 1/V1(q
2 = 0) is used to capture partial information

of vertex corrections ieΓµ. At 1-loop,

δ
(1)
Z1 = (Z1 − 1)1-loop =

[
1

1 + V
(1)
1 (q2 = 0)

− 1

]1-loop

= −V (1)
1 (q2 = 0). (8)

Problem: It is known from Ward identity in QED that Z1 = Z2 at all order in perturbation

theory. Verify this relation at 1-loop level. [that is, show that δ
(1)
Z2 = δ

(1)
Z1 .]



See [Peskin–Schröder] section 7.1, if necessary. It is also good to know that Mathematica is

sometimes quite useful.

3. Anomalous Magnetic Moment in Renormalized Perturbation Theory [B]

It will be easy to note that V
(1)
2 (q2) in (7) remains finite, when we take a Λ → ∞ limit. As

explained in the class, counter terms give rise only to the the ∝ ieγµ component as in the

first term of (5), not to the ∝ ie[γµ, γν ]qν component at 1-loop level. Thus, V
(1)
2 (q2) in (7)

itself becomes the final 1-loop result in renormalized perturbation theory (after replacing M

by the renormalized mass parameter me).

(a) Confirm that the ie[γµ, γν ]qν component in the fermion-fermion-photon matrix element

(amplitude) (5) is also obtained as a tree-level result, if there is an etxtra term in the

Lagrangian,

∆L = +
ier
8me

Ψ [γµ, γν ] Ψ V2Fµν , (9)

and ignore the 1-loop contribution we discussed above. Here, we take V2 here to be the

same as those in (5, 7).

(b) Therefore, the 1-loop correction due to the V
(1)
2 term in (5) plays the same role as

the additional term in the homework problem IV-7 eq. (24), with an identification

f2 = V
(1)
2 . Because the homework problem IV-7 shows that the extra contribution to

the anomalous magnetic moment is ∆g = 2f2, the 1-loop contribution from QED is

∆g ≃ 2V
(1)
2 (q2 = 0). Evaluate V

(1)
2 (q2 = 0) to show that

∆g(1) =
αe

π
,

(
where αe =

e2r
(4π)

)
(10)

4. Vacuum Polarization and Linear Response [C]

Let Jµ = Ψeγ
µΨe be the QED current of a Dirac fermion field corresponding to electron. We

call Π(q2) in

(ie)2
∫
d4xd4ye+iq′·xe−iq·y⟨0|T{Jµ(x)Jν(y)}|0⟩ = (2π)4δ4(q′−q)× i(q2ηµν−qµqν)Π(q2) (11)

vacuum polarization. Why is that? Let us see why in the following.

From the QED Lagrangian

LQED = −1

4
FµνF

µν − Aµj
µ
EM +Ψe [iγ

µ∂µ −m] Ψe, (12)



follows the Maxwell equation1

∂νF
νµ = jµEM, jµEM := −eJµ

e = −eΨeγ
µΨe. (14)

Here, we adopt a convention e > 0, and Ψe is the 4-component Dirac spinor field for the

electron.

(a) Using the convention of gamma matrices for the non-relativistic case,

γ0 =

(
1

−1

)
, γi =

(
τ i

−τ i
)
, (15)

and implementing the non-relativistic approximation

Ψe → e−imt

(
ψ

p⃗
2m
ψ

)
, (16)

confirm that

Jµ=0 → ψ†ψ, Jµ=i → ψ† p⃗

m
ψ = ψ†v⃗ψ, (17)

approximately. Thus, the Noether current Jµ is precisely the the sourse term of the

electromagnetism.

(b) Now, let us study the expectation value of this electromagnetic current under a classical

background of electromagnetic field. Because the coupling between the photon field and

the current can be written as

−Aµj
µ
EM = eAµJ

µ = e
√
Z3A

(r)
µ Jµ = er

Z1

Z2

A(r)
µ Jµ = erA

(r)
µ Jµ, (18)

it is the expectation value of (−erJµ), the source term of the renormalized gauge field

A
(r)
µ , that we really want to study.

From the homework problem II-3 (b), the expectation value is given by

−er ⟨Jµ(x)⟩ ≃ (−er)
∫
d4y Θ(x0 − y0) ⟨0| [Jµ(x), ierJ

ν(y)] |0⟩A(r)cl
ν (y) (19)

1Fundamental equations in the electromagnetism are written generally in this way:{
div E⃗ = a

ϵ0
ρ,

rot B⃗ = γ
c2

∂E⃗
∂t + aµ0

γ j⃗

{
div B⃗ = 0

rot E⃗+ 1
γ

∂B⃗
∂t = 0⃗

(ϵ0µ0) =
(γ
c

)2

, φ(x⃗) =
a

4πϵ0

∫
d3x⃗′ρ(x⃗′)

|x⃗− x⃗′|
. (13)

In the MKSA system, γ = 1 and a = 1. In the cgs-esu system, γ = 1 and (a/ϵ0) = 4π, while the cgs-Gauss system
sets γ = c and (a/ϵ0) = 4π.

Here, however, we set γ = c and (a/ϵ0) = 1. jµEM = (ρ, j⃗/c), Aµ = (φ,−A⃗), and F i0 = Ei, F 12 = −B3.



at the leading order of the background gauge field A
(r)cl
ν (y). Using a relation2 between

the retarded 2-point function and time-ordered 2-point function for two operators O1(x)

and O2(y),

Gret
12 (q) :=

∫
d4(x− y) eiq·(x−y) Θ(x0 − y0)⟨Ω| [O1(x),O2(y)] |Ω⟩, (20)

Gadv
12 (q) := −

∫
d4(x− y) eiq·(x−y) Θ(y0 − x0)⟨Ω| [O1(x),O2(y)] |Ω⟩, (21)

GT
12(q) :=

∫
d4(x− y) eiq·(x−y) ⟨Ω|T {O1(x)O2(y)} |Ω⟩, (22)

ImGT
12(q) = ImGret

12 (q) = ImGadv
12 (q), (23)

show that the current expectation value (which is supposed to be real valued) is given

by

−er ⟨Jµ(x)⟩ ≃ −
∫
d4y

∫
d4q

(2π)4
e−iq·(x−y) (q2ηµν − qµqν)Re

[
Πren(q

2)
]
A(r)cl

ν (y). (24)

(c) Let us now focus on charge density, µ = 0, under a static uniform electric field in the

(positive) (x3) direction. The classical gauge field background can be chosen as

A
(r)cl
ν=0 (y) = −E(y3), A

(r)cl
ν ̸=0 (y) = 0. (25)

Simplify the expression (24) for this gauge field background.

(d) Let us assume that the q2-dependence of Πren(q
2) is negligible compared with q-dependence

of other factors (such as e−iq·(x−y)) in the integrand. Now, suppose (hypothetically) that

the 1-loop correction Πren switches off at y+ < y3 and y3 < y−, and that it remains its

vacuum value Πren only in the interval y3 ∈ [y−, y+]. Thus, we are replacing Re [Πren(q
2)]

by Re [Πren]φ(y
3), where φ(y3) is a smooth function satisfying φ(y3) = 0 in y3 < y− − ϵ

and in y+ + ϵ < y3, while φ(y3) = 1 in y− + ϵ < y3 < y+ − ϵ. Derive the following result

under this set-up:

−er
⟨
Jµ=0(x)

⟩
≃ ERe [Πren]

∂2

∂(x3)2
(
x3φ(x3)

)
. (26)

Integrating this distribution of induced charges over the “boundary (region) of the

vacuum” x3 ∈ [x− − ϵ, x− + ϵ] and x3 ∈ [x+ − ϵ, x+ + ϵ], one can further see that the

surface density of the induced charge at the “boundary of the vacuum” is ±EΠren at

the boundary at x3 = x∓.

2See, for example, section 7 of A. Altland and B. Simons, “Condensed Matter Field Theory.”



(e) (not a problem) If we are to draw analogy with the electromagnetism, the result above

means that the vacuum state is polarized, with a polarization vector given by

P⃗ = −ΠrenE⃗. (27)

The induced charge is related to the polarization vector by divP⃗ = −ρind. For this

reason, it is quite appropriate to call Πren vacuum polarization.

Think of a condenser (used in electronics). When the surface density of electric charge

is ±ρ at the x3 = x∓ boundaries, the electric field wihin this condenser would be given

by E = ρ pointing to the positive x3 direction, if there were no polarization in the

vacuum. In reality, however, the electric field should become

E = ρ+ ρind ≃ ρ
(
1 + Π(1)

ren +O(e4)
)
≃ ρ

1− Π
(1)
ren +O(e4)

. (28)

This is, in effect, to replace3 (a/ϵ0) = 1 by 1/(1− Πren(q
2)).

For more negative Πren, electric field is shielded more by the vacuum polarization, and

the electric field becomes weaker. The homework problem IV-5 (d) shows (at 1-loop

level) that Re[Π
(1)
ren(q2)] becomes more and more positive for more spacelike qµ. (e.g.

q2 ∼ −|q⃗|2 with large |q⃗|.) Thus, electric charges are shielded the most for smaller

momentum q⃗.

3By summing up the geometric series of 1PI corrections to the photon 2-point function, we easily obtain this
1/(1−Π(q2)) modification to the propagator, although we cannot obtain the intuitive picture of “induced charge”
from that simple calculation.


