Theory of Elementary Particles homework VI (May 21)

At the head of your report, please write your name, student ID number and a
list of problems that you worked on in a report (like “II-1, I1-3, IV-2”).

Pick up any problems that are suitable for your study. You are not expected to work
on all of them!

Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!
Keep your own copy, if you need one. Reports will not be returned.

. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

. A Consequence of QED Ward Identity [B]

2

Wavefunction renormalization constant Z, of a Dirac fermion with a pole mass p*> = m? in
QED is given by
(1-A)
1405 = Z, = , 1
2T - A2 24 - 1)p22s —2(M + B)3E e 1)
where A(p?, M?) and B(p?, M?) characterize the fermion self-energy
—i%(p, M) := —i [A(p*, M*)p + B(p*, M?)] . (2)
At 1-loop (O(e?)) level, the fermion self-energy (Figure 1 (a)) is given by
—ie? ! 1—2)A? +2M? — 2(1 — x)p?
—ixW(p, M) = Ze/d —2(1 - ) [
= —i[AD Q" M) p+ BO@?, M?)] (3)

in the higher covariant derivative regularization for the photon propagator, and the wave-

function renormalization constant becomes

M M
) = [A(1)+2M28A 05 ]

p2=M2

at this O(e?) level.



(a) (b)

Figure 1: Fermion self-energy and fermion-photon vertex corrections at 1-loop.

On the other hand, fermion—fermion—photon vetex iel'*—including quantum corrections—is
known to be cast into the form
Va

iel™ = ie {Vw’* =, qy] + (k) X (P—m) + (P —m) x (x5 %); (5)

here, we assume that the momentum of the fermion coming from below in Figure 1 (b) is
p, that of the fermion going out to the above p’, and the photon comes from the right with
momentum ¢ = p’ — p. As a result of calculation in homework III-4, one will find, in higher
covariant derivative regularization, that
O e dxdy{ ln<(1—x—y)A2+(ZB+y)2M2_xyq2> .
872 (z + y)2M? — zyg?
+{1-41-z—-y)+ (1L —-az—y?} M+ (1 —2)(1 —y)¢*] x

1 1
[(x—l—y)QM? — xyq? B (1—z—y)A2+ (z+y)>M? —xyqz} }’
2

(&
A = / drdy (1 —x —y)(z + y)4M? x (7)

1 1
[(x +y)P M2 —ayg? (1 - —y)A2 + (v +y)2M? - xyoﬂ}
Here, dzdy integral should be carried out in a trianglular region determined by 0 < z,y < 1,
r+y <1

Just like the wavefunction renormalization constant Z, characterizes partial information of
self-energy diagrams, a parameter Z; := 1/V;(¢*> = 0) is used to capture partial information
of vertex corrections iel'*. At 1-loop,

1-loop

1
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Problem: It is known from Ward identity in QED that Z; = Z, at all order in perturbation
theory. Verify this relation at 1-loop level. [that is, show that 5(212) = 5(le)]



See [Peskin—Schroder| section 7.1, if necessary. It is also good to know that Mathematica is

sometimes quite useful.

3. Anomalous Magnetic Moment in Renormalized Perturbation Theory [B]

It will be easy to note that \/'2(1)((12) in (7) remains finite, when we take a A — oo limit. As
explained in the class, counter terms give rise only to the the o iey* component as in the
first term of (5), not to the o ie[y*,~"]q, component at 1-loop level. Thus, ‘/2(1)(q2) in (7)
itself becomes the final 1-loop result in renormalized perturbation theory (after replacing M

by the renormalized mass parameter m,).

(a) Confirm that the ie[y",~"]q, component in the fermion-fermion-photon matrix element
(amplitude) (5) is also obtained as a tree-level result, if there is an etxtra term in the
Lagrangian,

16, —

AL = +3 N TaRl I 9 9)

e

and ignore the 1-loop contribution we discussed above. Here, we take V5 here to be the

same as those in (5, 7).

(b) Therefore, the 1-loop correction due to the VQ(l) term in (5) plays the same role as
the additional term in the homework problem IV-7 eq. (24), with an identification
fo = \/2(1). Because the homework problem IV-7 shows that the extra contribution to
the anomalous magnetic moment is Ag = 2f5, the 1-loop contribution from QED is
Ag ~ 2V (2 = 0). Evaluate V" (g% = 0) to show that

2
(1) — %e =&
Ag , (where Qe (47r)) (10)

4. Vacuum Polarization and Linear Response [C]

Let J# = U ~*U, be the QED current of a Dirac fermion field corresponding to electron. We
call TI(¢?) in

(ie)? / d'wd'ye ™ e V(0| T{J" (x)J" (y)}]0) = (21)"6"(¢' —q) ¥ i(¢*" —¢"¢")L(¢?) (11)

vacuum polarization. Why is that? Let us see why in the following.

From the QED Lagrangian

1 Y . — .
Loep = —ZFWF“ — Ayjbg + Ve [in#0, — m] ¥, (12)



follows the Maxwell equation?

O, F"" = nga ng = —eJl = _eﬁﬂﬂ‘l’e' (14)

e

Here, we adopt a convention e > 0, and V¥, is the 4-component Dirac spinor field for the

electron.

(a) Using the convention of gamma matrices for the non-relativistic case,

and implementing the non-relativistic approximation

W, — e ™ < 5 v ) ; (16)

2m
confirm that .
T2 gty T gt Ry =y, (17)
m
approximately. Thus, the Noether current J* is precisely the the sourse term of the

electromagnetism.

(b) Now, let us study the expectation value of this electromagnetic current under a classical
background of electromagnetic field. Because the coupling between the photon field and

the current can be written as

Z
~ A = eApd" = e/ ZAD T = e, AD T = e AT, (18)

2

it is the expectation value of (—e,J"), the source term of the renormalized gauge field
AP that we really want to study.

From the homework problem II-3 (b), the expectation value is given by

—e (JH(2)) = (—er) /d4y O(a® —y°) (O [J*(x), ie, J" ()] [0) A (y) ~ (19)

!Fundamental equations in the electromagnetism are written generally in this way:

divE = 2p, divB =0 72 . a [ dBRpER)
{ _ loal?: apo { (€opo) = (E) ) p(X) = (13)

rotﬁ_czﬁ—i—T‘] rotﬁ—k%%—?:ﬁ Cdmey ) XX

In the MKSA system, v = 1 and a = 1. In the cgs-esu system, v = 1 and (a/ep) = 4w, while the cgs-Gauss system
sets v = ¢ and (a/ep) = 4.
Here, however, we set v = ¢ and (a/ep) = 1. jhy = (p.i/¢), Au = (¢, —A), and Fi® = Ei, F12 = _B3,



at the leading order of the background gauge field A% (y). Using a relation? between
the retarded 2-point function and time-ordered 2-point function for two operators Oy (x)

and Os(y),
G = [d'a=y) et 66— (@) 0@, 0] 1), (20
Gi'la) = ~ [ dia=y) 1 B~ (@ [O1(x). O] 1), (21)
Ghio) = [ da—y) e QT {00} ), (22

ImGT,(q) = ImGi5 (q) = ImG5" (q), (23)

show that the current expectation value (which is supposed to be real valued) is given
by

ey (JH(a)) = — / dy / (;ZT‘i @ (g — i) Re [Ten(e?)] AD(y). (24)

(c¢) Let us now focus on charge density, 4 = 0, under a static uniform electric field in the
(positive) (z3) direction. The classical gauge field background can be chosen as

A ) = —B(y), AU (y) = 0. (25)

Simplify the expression (24) for this gauge field background.

(d) Let us assume that the ¢>--dependence of I, (¢?) is negligible compared with g-dependence
of other factors (such as e*(*¥) in the integrand. Now, suppose (hypothetically) that
the 1-loop correction II,., switches off at y, < y® and y® < y_, and that it remains its
vacuum value I, only in the interval * € [y_, y,]. Thus, we are replacing Re [[1;en(¢?)]
by Re [[en] 0(y3), where o(y?) is a smooth function satisfying ¢(y?) =0iny® <y_ —e
and in yy + ¢ < y3, while (y3) = 1 in y_ + ¢ < y> <y, — €. Derive the following result
under this set-up:

e (J*70@)) =~ BRe[u] 5 (i:%)? (e o(a™) (26)

Integrating this distribution of induced charges over the “boundary (region) of the
vacuum” =2 € [r_ — €,2_ + €] and 2* € [z, — €, 24 + €], one can further see that the
surface density of the induced charge at the “boundary of the vacuum” is +FETl,, at

the boundary at 2 = z.

2See, for example, section 7 of A. Altland and B. Simons, “Condensed Matter Field Theory.”



(e) (not a problem) If we are to draw analogy with the electromagnetism, the result above

means that the vacuum state is polarized, with a polarization vector given by
P = —I,E. (27)

The induced charge is related to the polarization vector by divP = —pPind- For this
reason, it is quite appropriate to call Il,, vacuum polarization.

Think of a condenser (used in electronics). When the surface density of electric charge
is +p at the 2° = 2+ boundaries, the electric field wihin this condenser would be given
by E = p pointing to the positive 22 direction, if there were no polarization in the

vacuum. In reality, however, the electric field should become

p
E=p+pna=p 1+ +O(e) =~ : (28)
( ) 1 — T + O(et)

This is, in effect, to replace® (a/ey) = 1 by 1/(1 — Ien(q?)).

For more negative Il,.,, electric field is shielded more by the vacuum polarization, and
the electric field becomes weaker. The homework problem IV-5 (d) shows (at 1-loop
level) that Re[HEQl(qQ)] becomes more and more positive for more spacelike ¢*. (e.g.
q* ~ —|q)* with large |q|.) Thus, electric charges are shielded the most for smaller

momentum ¢.

3By summing up the geometric series of 1PI corrections to the photon 2-point function, we easily obtain this
1/(1 —1I(¢?)) modification to the propagator, although we cannot obtain the intuitive picture of “induced charge”
from that simple calculation.



