
Theory of Elementary Particles homework XI (July ??)

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Follow-up [A]

Fill non-trivial gaps in derivations, calculations etc. during the lecture. If you encounter a

gap that cannot be filled, state clearly what is yet to be proved or understood.

2. Phase Space of a 3-Particle Finate State, Dalitz Plot [B]

Consider a process ending up with a 3-particle state, where the particles a, b and c are all

different species. The phase space integral of this final state is∫
d3p⃗a
(2π)3

1

2Ep⃗a

∫
d3p⃗b
(2π)3

1

2Ep⃗b

∫
d3p⃗c
(2π)3

1

2Ep⃗c

(2π)4δ4(pin − pa − pb − pc) |M|2, (1)

whereM is a Lorentz-invariant matrix element. If the initial state is a 1-particle state, decay

rate of a particle X, Γ(X → a + b + c), is obtained by multiplying 1/(2mX) to (1). If the

initial state is a 2-particle state, cross section of two particles A and B, σ(A+B → a+b+c),

is given by the integral (1) above multiplied by
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(a) Let us use the center-of-mass frame of the initial state. In the case of a scalar (i.e.,

spinless) particle decay, there is no special direction in the initial state, and hence the

matrix element M has SO(3) symmetry. Thus, the phase space integral (1) can be

reduced to an integral over 2 coordinates in such a situation; 3 × 3 − 4 − 3 = 2. Now,

here is a problem. If all the three particles a, b and c in the final state are massless, and

if we take the energy of two particles in the final state, Ea = |p⃗a| and Eb = |p⃗b|, why
is it that the integration region in the (Ea, Eb) plane is limited to the shaded region in

Figure 1 (a)?
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Figure 1: 3-body decay phase space (a), and its Feynman diagram (b1). The soft and collinear
divergence of this graph is cancelled by those in (b2).

(b) Where in this triangular region are the two particles b and c collinear? Where is the

particle c soft? [This 3-body phase space can be used also for the process e− + e+ →
γ(∗) → q + q̄ + g Figure 1 (b1) (if the direction of the e+e− beam axis is ignored, and

the spin of e−e+ averaged). This triangular space of the 3-body phase space integration

looks quite similar to the space of Feynman parameters in the virtual vertex correction

to the process e−e+ → q + q̄. Figure 1 (b2).]

(c) In the case of a scalar particle X, the decay rate—1/(2mX) times eq. (1)—becomes1

dΓ =
1

(2π)3
1

8mX

dEadEb|M|2. (3)

Assuming that the matrix element |M|2 does not have any particular structure (such as

poles) as a function of (Ea, Eb), and further assuming that |M|2 ∼ 1, derive an estimate

of the 3-body decay rate of this particle X. If we are to apply similarly crude argument

for 2-body decay processes, which is to assume that |M|2 ∼ (mX/2)
2, what is the 2-

body decay rate? [From this, one will see that 3-body decay rates of a given particle

are generally 1/8π2 ∼ 10−2 times smaller than 2-body decay rates of the same particle,

if there is no particular enhancement / suppression effects from the matrix elements.]

(d) (not a problem) In reality, the matrix element is not usually structureless. Especially

in the case most of the decay process goes through X → a + a′, a′ → b + c, then such

decay events appear on a line of Ea = const.. The dot-distribution of a 3-body decay of

X on the (Ea, Eb) plane—called Dalitz plot—was introduced for the purpose of finding

such structures in matrix elements from experimental data.

1If you have a plenty of time, you can also try to derive this from (1). Ref.: e.g., “Kinematics” review article in
the “Review of Particle Physics” from Particle Data Group.
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Figure 2: Are the 2 graphs IR divergent?
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Figure 3: parton–lepton QED interaction at tree level: t-channel diagram in (a) and s-channel
diagram in (b).

3. IR sensitivity (pinch surface) and power counting [B]

In QED with a massless fermion, are the graphs Figure 2 (a) and (b) IR finite or divergent?

If they are (or either one of them is) IR divergent, from which region of the space of Feynman

parameter (and loop momenta) does the divergence arise? Here, assume that fermions and

vector boson are massless.

4. DIS 1 (tree): 2→ 2 t-channel Parton Scattering [B]

(a) Compute the spin-averaged (for initial states) spin-summed (for final states) Lorentz-

invariant matrix element of e−+q → e−+q scattering (Figure 3 (a)). The result should

be ∑
|M|2 = 2(e4Q2

q)

(
ŝ2

t2
+

û2

t2

)
, (4)

where ŝ, t and û are the Mandelstam variables of the e− + q → e− + q scattering. [Note

that the matrix element of s-channel scattering (Fig. 3 (b)) e−+ e+ → q+ q̄ [homework



II-5] and the one we obtain above are identical after replacing ŝ↔ t. This phenomenon

is called crossing symmetry.]

(b) Rewrite the (spin-averaged/summed) matrix element by using the kinematical variables

of DIS (deep inelastic scattering) such as Q2, y, x and s, rather than referring to

momenta of the quark parton p̂µ and (p̂+ q)µ.

5. DIS 2 (tree): Tree-level OPE and its Evaluation [B]

The twist-2 (parton) contribution to the DIS (deep inelastic scattering) structure functions

is characterized best in the language of OPE (operator product expansion). The DIS cross

section is given in terms of the following matrix element

iT µν ≡ (iQq)
2
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}
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(a) Before evaluating the matrix element of operators in the hadron states ⟨h(p⃗)| and |h(p⃗)⟩,
let us first work on the operators inside. There are two separate series of twist-2 oper-

ators contributing at tree level to the OPE of the two QED currents. One is
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and the other is
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Here,
←→
D ≡

−→
Dµ−

←−
Dµ. See the lecture note for derivation of the expressions above. The

denominators in the two expressions above can be approximated by

1(
q ± i

2

←→
D

)2 →
1(

q2 ± iqµ
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D µ

) . (8)

Expanding these denominators into a power series of ∓(1/q2)q · i
←→
D , and using the

relation

γργλγσ =
[
ηρλγσ + ησλγρ − ηρσγλ

]
− iϵρλσκγ5γκ, (9)

rewrite the operators ∆(q) [· · · ] and ∆(q̄) [· · · ] as a sum of local operators.



(b) Let us now insert those local operators in the hadron bra and ket. Let us denote the

matrix elements of the twist-2 operators as follows:2
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]
|h(p⃗)⟩ = 0; (10)

the latter holds true when the hadron state is not polarized (when the hadron spin is

not pointing to a particular direction). Use this to show that the twist-2 contributions

are given by the following:

∆(q)+(q̄)T
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]
+
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(c) (not a problem) From this result, we can derive T2 = 2xT1, and
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2
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6. Cutkosky rule: exercise [B]

Cutkosky rule tells you how to compute imaginary part of a forward scattering amplitude;

the prescription is that, for 2ImMαα,

• write down the foward amplitude iMαα first, using Feynman rule,

• introduce a line cutting the Feynman diagram into two parts somewhere in the middle

(see Figure 4 for example)

• multiply (−1),

• replace all the cut propagators

i

(p2a −m2
a + iϵ)

by (2π)δ(p2a −m2
a), (13)

2To be more precise, the left hand sides should be replaced by matrix elements of those operators with λ1 · · ·λj

made symmetric and traceless. Similarly, on the right hand side, terms proprotional to the hadron mass and
ηλσ(p)λσ(q) should be subtracted in order to make it traceless. We ignore this, for now, however. It is O.K. for the
purpose below just to use the right hand side for the matrix element on the left hand side.



(a) (b)

Figure 4: Forward amplitudes in a φ3 theory, with cut lines.

• sum up for all possible ways of introducing a cut line.

A proof is found, e.g., in Peskin–Schröder textbook section 7.3.

Let us confirm that this prescription is right by using explicit examples. For simplicity, we

use scalar φ3 theory.

(a) Let us first use a forward amplitude given in Figure 4 (a). Compute, first, 2ImM by

directly extracting the imaginary part ofM; use

1

i

(
1

x+ iϵ
− 1

x− iϵ

)
= −(2π)δ(x). (14)

As an alternative method, the Cutkosky rule above can be used to calculate 2ImM.

Check that the both results are the same.

(b) Let us now move on to another amplitude Figure 4 (b). Verify that what we obtain

after applying the Cutkosky rule to the cut diagram Figure 4 (b) is
∫
dΠ|M|2; we can

then see from the optical theorem that it is the same as 2ImM.

7. DIS 3: the relation between Im M and Im T [B]

Because of the optical theorem, the DIS total cross section is given by

σDIS ≃
1

4k · p
2ImM(e− + h→ e− + h), (15)

where kµ and pµ are momenta of e− and the target hadron h (such as proton), respectively.



(a) Use the prescription in the previous problem for 2ImM(e−h→ e−h) and 2ImT µν(γ∗h→
γ∗h) to show3 that

σDIS ≃
1

4k · p

∫
d4k′

(2π)4
e4

(q2)2
2
[
kµk

′
ν + k′

µkν − ηµν(k · k′)
]
(2π)δ4((k′)2)2ImT µν ,

=
1

4k · p

∫
d3k⃗′

(2π)3
1

2Ek⃗′

e4

(q2)2
2
[
kµk

′
ν + k′

µkν − ηµν(k · k′)
]
2ImT µν . (16)

Here, we assume that the incoming e− beam is not polarized, so that we can take a spin

average.

(b) If neither the e− nor hadron h is polarized, there is no special azimuthal angle around

the e−–h collision axis. Thus, the integration over the azimuthal angle can be carried

out first. Show that the integration measure becomes∫
d3k⃗′

(2π)3
1

2Ek⃗′
−→ 1

4(2π)2

∫
dQ2dy. (17)

[hint: This integration measure is Lorentz invariant. Thus, it is OK to use any Lorentz

frame. The rest frame of the target hadron will be useful.]

8. DIS 4 (tree): Light Ray Opeartor for pdf with Cutkosky rule [B]

The DIS structure functions are given (at tree level) by simple expressions involving quark

and anti-quark PDF. In the lecture, this relation was derived by showing that the Mellin

transform of both the structure functions and the q + q̄ PDF become the same thing: the

matrix elements of twist-2 spin j operators. This relation between the structure function

and PDF can be seen more directly, however, by using the Cutkosky rule.

For simplicity, let us focus on a linear combination of the two DIS structure functions,

2ImT µνηµν = 2π/x(F2 − 6xF1). At tree level, this is supposed to be −(4π)(Qq)
2[fq + fq̄],

where fq and fq̄ are the quark and anti-quark PDF’s.

Use the expressions (6) and (7) and apply the Cutkosky rule in order to rewrite 2Im∆(q)T
µν

and 2Im∆(q̄)T
µν in terms of quark and anti-quark PDF, respectively. Note that one can use

/DΨ = 0, D2Ψ = 0, and the fact that

(2π)δ(A) =

∫ +∞

−∞
dλeiλA. (18)

9. DIS at tree level in parton model (DIS 5) [B]

3This argument, which relies on the Cutkosky rule, provides an alternative justification for the relation between
σDIS and ImTµν . This argument is easier and more intuitive than the one adopted in the lecture, while this one
relies on perturbative (quark and gluon) picture.



(a) Show that the tree-level results F1(x;Q
2) = (Q2

q/2)[fq+fq̄] and F2(x;Q
2) = 2xF1(x;Q

2)

are obtained in the parton model, which is to replace the hadron bra and ket, ⟨h(p⃗)| · · · |h(p⃗)⟩,
by ∫ 1

0

dξ

ξ
[ fq(x)⟨q(ξp⃗)| · · · |q(ξp⃗)⟩+ fq̄(x)⟨q̄(ξp⃗)| · · · |q̄(ξp⃗)⟩ ] . (19)

(b) Show that the deep inelastic scattering process regarded as q–e− scattering,∫
dσDIS =

∫
dξ

[
fq(ξ)σ(q(ξp⃗) + e−(k)→ q + e−) + fq̄(ξ)σ(q̄(ξp⃗) + e− → q̄ + e−)

]
,

(20)

reproduces the correct expression for the DIS differential cross section dσ2/dxdQ2. Use

the result of the homework problem “DIS-1” (XI-4).

10. DIS 6 (NLO): Remaining δ(1− x/z) Part of the Splitting Function [C]

In the lecture, by evaluating the 4 real gluon emission diagrams, a partial contribution to

the quark-to-quark splitting function

∆Pqq(χ) =
αs

2π
C2(R)

1 + χ2

(1− χ)
(21)

was derived. By including the vertex corrections and external line (quark line) wavefunction

renormalization, and defining the factorization scale dependent PDF, fq(x;µF ), properly,

derive the remaining contribution to the splitting function:4

Pqq(χ) =
αs

(2π)
C2(R)

[
1 + χ2

(1− χ)+
+

3

2
δ(1− χ)

]
. (22)

During the course of deriving this expression, make sure that the soft divergence cancels. See

any one of standard textbooks covering QCD (e.g. Peskin–Schrëder, pink textbook) for the

definition of 1/(1− χ)+ in the expression above.

4It is easier to arrive at the expression above by using a condition
∫ 1

0
dχ Pqq(χ) = 0, but it is more illuminating

to derive by identifying the collinear divergence hidden in the vertex correction and wavefunction renormalization.


