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Memo: This note is approximately a write-up version of a series of informal lectures for (not

so much math-inclined) particle-theory major graduate students at U. Tokyo in 2016. Primary

objectives of the series was for those students to get acquainted with minimum basic concepts in

algebraic geometry (so that they can use algebraic geometry, or at least they do not do knee-jerk

rejection against it).

Given those objectives in that year, priority was not to intimidate those students too much.

Materials were therefore kept almost to the absolute minimum; applications to arithmetic geometry

are entirely thrown away, and the ground field is fixed to C. We neither assumed that the students

were already familiar with homology algebra, nor tried to step too much into the subject. The

latter must be regarded as an important omission by those interested in short-distance behaviour

of string theory. This informal lecture series in 2016 was for [1 hour] × [11 weeks]; in a re-run

in 2019 ([1.5hour] x [11 weeks]), materials in addenda sections (§1.5 + §3.5) were also included

partially, as students were more math lovers. Elliptic functions are treated only lightly in the

appendix, because string students are already familiar to some extent. Section 7 is intended to fill

the gap between basic principles of algebraic geometry and many existing literatures on the toric

technique, which are often addressed to those who wish to use, than to understand.

This note gives priority to motivations, intuitions, and typical examples, than to precision,

logic, rigorousness, definitions, and pathological examples. jargon is a jargon to be defined shortly

after in the text. jargon is a jargon being defined there. Definitions will not be given to jargons∗
with ∗ in this lecture note.

Many apologies for scientific and grammatical errors in this note.
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1 Basic Concepts

1.1 Ring–Geometry Correspondence

Ring–geometry correspondence is one of key concepts in mathematics. When a geometry is given,

C-valued functions on that geometry forms a ring, so one can work out the ring of functions of

that geometry. The ring-geometry correspondence is an observation that, morally speaking, this

ring of functions retains all the information of the original geometry. This observation is stated

in a more precise manner in this section 1.1 for Affine varieties.

Definition 1.1.1. When a geometry X ⊂ Cn is given by a finite number of polynomial equations

on Cn, it is called an Affine variety.

Definition 1.1.2. Definitions for group, ring, field are omitted. We never consider a ring or field

that is not commutative in this lecture note.

An ideal of a ring R is a subring I of R where arbitrary r ∈ R and x ∈ I satisfy r · x ∈ I.

Example 1.1.3. i) In a ring R = Z, the set of all the integers divisible by a non-zero integer m,

that is, I := {n ∈ Z | m|n} ⊂ R, forms an ideal.

ii) More generally, for any ring R and a set of its element x1, · · · , xk ∈ R, the subset {∑finite
i ri ·

xi | ri ∈ R} is an ideal of R, and is denoted by (x1, · · · , xk). The set of elements x1, · · · , xk are

called generators. An ideal generated by a single element is callded a principal ideal.

iii) In the ring R = Z, the integers divisible by m is regarded as an ideal (m) in this notation.

For a set of integers x1, · · · , xk we can define their GCD; as ideals in R = Z, (x1, · · · , xk) =

(GCD(x1, · · · , xk)). All the ideals in R = Z are principal ideals for that reason.

iv) The ring of C-coefficient polynomials with n independent variables is denoted by C[x1, · · · , xn].

When there is just one variable x1, we can define division of one polynomial by another, and also

the remainder of the division. Euclidean algorithm can be used to find a GCD then. So, all the

ideals in the ring R = C[x1] are also principal ideals. Rings with this property are called principal

ideal ring. The rings C[x1, · · · , xn] with n > 1 are the typical examples of non-principal ideal

rings. An ideal (x− a, y − b) of a ring C[x, y], for example, is not a principal ideal.

v) for more information, see Addenda 1.5.1.

Functions in the ring C[x1, · · · , xn] are called regular functions on Cn. Exponential and trigono-

metric functions are holomorphic everywhere in Cn, but are not included in this ring. It is the

ring of regular functions, rather than that of holomorphic functions, that we pay attention to in

algebraic geometry; those functions are not “liked” in algebraic geometry, because their singular-

ity at infinity is not in the form of a simple pole. It does not invite too much troubles in many

situations, though, by thinking that regular functions and holomorphic functions are much the
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same thing. C(x1, · · · , xn) is the field of rational functions with n-variables; here, only a function

obtained as a ratio of two regular functions is regarded as a rational function on Cn.

1.1.4. Let X ⊂ Cn be an Affine variety, and {f1, · · · , fk} be a set of polynomial equations defining

X. Then IX := {g1f1 + · · ·+ gkfk | gi ∈ C[x1, · · · , xn]} forms an ideal of C[x1, · · · , xn]. IX is the

set of all the regular functions on Cn that vanish entirely on X. Now, two regular functions on

Cn, ϕ1 and ϕ2, become the same after restricted to X ⊂ Cn, if and only if (ϕ1 − ϕ2) ∈ IX . So,

we declare that the ring of regular functions on an Affine variety X ⊂ Cn is the quotient ring

C[x1, · · · , xn]/IX . The ring of regular functions on an Affine variety X is denoted by C[X]. So,

C[X] = C[x1, · · · , xn]/IX .

Note that the definition of regular functions on an Affine variety X involves how X is embedded

into Cn. Such spaces as Cn in this case to which X is embedded and which is used to define the ring

of regular functions are called ambient spaces. Does this mean that the ring of regular functions

“on X” depends on how it is embedded into a subvariety of some Cm’s? We will come back to

this question later (see 1.2.4).

1.1.5. Suppose that an Affine variety X1 ⊂ Cn is the zero locus of a polynomial f1 ∈ C[x1, · · · , xn];

X1 = {x ∈ Cn | f1(x) = 0}. Similarly, let another Affine variety X2 be the zero locus of another

polynomial f2 ∈ C[x1, · · · , xn]. Then C[X1] = C[x1, · · · , xn]/(f1) and C[X2] = C[x1, · · · , xn]/(f2).

Now, what is the ring of regular functions of their intersection X1 ∩ X2 and that of their union

X1∪X2? As for X1∩X2, we can think of {f1, f2} as the set of defining polynomials of (X1∩X2) ⊂
Cn, so IX1∩X2 = (f1, f2), and C[X1 ∩ X2] = C[x1, · · · , xn]/(f1, f2). As for X1 ∪ X2, we can use

f1f2 as its defining polynomial. So, IX1∩X2 = (f1f2), and C[X1 ∪X2] = C[x1, · · · , xn]/(f1f2).

Let I1 and I2 be ideals of a ring R. Then we can introduce two ideals of R:

I1I2 := {rx1x2 | r ∈ R, x1 ∈ I1, x2 ∈ I2} , (1)

I1 + I2 := {r1x1 + r2x2 | r1,2 ∈ R, x1 ∈ I1, x2 ∈ I2} . (2)

Using those notations, one can state that, for two Affine varieties X1 and X2 of Cn, not neces-

sarily codimensionC = 1, the ring of regular functions of their intersection and union is given by

C[x1, · · · , xn]/(IX1 + IX2) and C[x1, · · · , xn]/IX1IX2 , respectively.

1.1.6. When an Affine variety X ⊂ Cn is given as the zero locus of a polynomial f1f2, which is

not an irreducible element of C[x1, · · · , xn], X consists of two pieces {f1 = 0} and {f2 = 0}. Such

an Affine variety is called reducible, and those that are not irreducible. When X is irreducible, the

corresponding ideal IX ⊂ R = C[x1, · · · , xn] is a prime ideal of R, and R/IX is a domain.
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Definition 1.1.7. A proper ideal P of a ring R is prime (already P = R is excluded), when the

following condition is satisfied: Whenever x, y ∈ R satisfy xy ∈ P , either x ∈ P or y ∈ P .

In a ring R, a non-zero element a ∈ R is a zero divisor, if there exists a non-zero element b ∈ R
so that ab = 0. (an example: R = C[x, y]/(xy); x, y ∈ R are zero divisors.)

A ring R is a domain, if it does not have a zero divisor.

Suppose that the ideal IX of an Affine variety X ⊂ Cn is not prime. This then means that

there exists regular functions f1, f2 ∈ R = C[x1, · · · , xn] so that f1f2 ∈ IX but neither f1 nor

f2 vanishes entirely over X. Now we can define two ideals I1 := (f1, IX) and I2 := (f2, IX) and

consider two Affine varieties X1 and X2 given as the vanishing locus of all the elements in I1 and

I2, respectively. X1 and X2 must be a proper subset of X, and X1 and X2 are distinct. So, X is

not irreducible. [This means that, when X is irreducible, IX is prime: justification for 1.1.6]

Exercise 1.1. A proof of the statement that “the quotient ring R/I is a domain if and only if I

is prime” is left as an exercise.

1.1.8. A point in Cn corresponding to the coordinate (x1, · · · , xn) = (a1, · · · , an) ∈ Cn is also

regarded as an irreducible Affine variety in Cn. The corresponding ideal is Ia := (x1−a1, · · · , xn−
an). The ring of regular functions on this Affine variety is C[x1, · · · , xn]/Ia ∼= C; only the C-values

of polynomials at that point remain to be relevant information at that subvariety. More generally,

an Affine variety is a point if and only if the corresponding ideal is a maximal ideal.

Definition 1.1.9. An ideal m of a ring R is a maximal ideal, if any ideal of R containing m as a

proper subset is R itself.

Exercise 1.2. A proof of a statement that “the quotient ring R/I is a field if and only if I is a

maximal ideal” is also left as an exercise.

1.1.10. Let X ⊂ Cn be an Affine variety, and C[X] = C[x1, · · · , xn]/IX the ring of regular

functions on X. Then its irreducible Affine subvarieties of X and prime ideals of C[X] are in one-

to-one correspondence. As a part of this correspondence, there is also one-to-one correspondence

between points in X and maximal ideals of C[X]. So, the ring C[X] has full geometric information

of X.

Definition 1.1.11. For an irreducible Affine variety X, C(X) denotes the field of fractions of a

domain R = C[X]. Any element in C(X) is called a rational function on X.
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1.2 Contravariant Nature

We have seen how geometry of a given Affine variety is reflected in algebra of the ring of its regular

functions. Let us now see how geometry of maps between Affine varieties is described in algebra

of betrween the corresponding rings of regular functions.

1.2.1. Let us first think of a map from Cn = {(x1, · · · , xn)} to Cm = {(y1, · · · , ym)}. In the

geometric intution, a map φ : Cn → Cm is dictated by specifying how yi (for i = 1, · · · ,m)

depends on (x1, · · · , xn). In algebraic geometry, we restrict our attention only to polynomial

dependence on (x1, · · · , xn). Namely, we consider a class of maps realized by

φ : Cn 3 (x1, · · · , xn) 7−→ (φ1(x), · · · , φm(x)) = (y1, · · · , ym) ∈ Cm (3)

for m polynomials φi ∈ C[x1, · · · xn] (i = 1, · · · ,m). Now, we can think of pulling back regular

functions on Cm to Cn by φ:

φ∗ : C[y1, · · · , ym] 3 f 7−→ (f ◦ φ) ∈ C[x1, · · · , xn]. (4)

This map φ∗ is realized by sending the generators of C[y1, · · · , ym] by

φ∗ : yi 7−→ φi ∈ C[x1, · · · , xn]. (5)

φ∗ is a homomorphism between the ring of regular functions, and the direction of the arrow is

oppsite from that of φ. Conversely, if ψ∗ is a homomorphism from C[y1, · · · , ym] to C[x1, · · · , xn],

then ψ∗ must send each one of yi’s to some polynomials denoted by ψi ∈ C[x1, · · · , xn]. These

ψi’s (i = 1, · · · ,m) define a map from Cn to Cm.

1.2.2. Consider two Affine varieties X ⊂ Cn and Y ⊂ Cm. We hope that something we call a

regular map φ from X to Y is such that the pull-back of a regular function of Y under φ∗ is also

a regular function of X. So, this means that a regular map is in one-to-one correspondence with

a ring homorphism

φ∗ : C[y1, · · · , ym]/IY = C[Y ] −→ C[X] = C[x1, · · · , xn]/IX . (6)

Put more intuitively, a regular map is specified by picking up m polynomials φi ∈ C[x1, · · · , xn]

modulo IX ; φi’s (i = 1, · · · ,m) are used map the ambient space Cn of X into the ambient spacee

Cm of Y ; the umbiguity in the choices of φi’s (modulo IX) does not introduce any ambiguity in

where in Cm the subvariety X is sent; we have to make sure, however, that the image of X is

within the vanishing locus of IY (i.e., the subvariety Y ).
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1.2.3. When a regular map φ : X −→ Y is an injection (embedding), φ∗ : C[Y ] −→ C[X] is

surjective. When a regular map φ : X −→ Y is a surjection, φ∗ : C[Y ] −→ C[X] is injective. One

can use the simple injection φ : C ↪→ C2 (φ∗ : C[x, y] → C[x] by φ∗(x) = x, φ∗(y) = 0) and the

simple projection φ : C2 → C (φ∗ : C[x] ↪→ C[x, y] by φ∗(x) = x) to see that.

1.2.4. Two Affine varieties X ⊂ Cn and Y ⊂ Cm are regarded the same (isomorphic) in algebraic

geometry, if and only if there is a pair of regular maps f : X → Y and g : Y → X so that

g ◦ f = idX and f ◦ g = idY . This is the way algebraic geometry sees geometry;1 this is how

varieties are distinguished from one another. In particular, a way a variety is embedded into an

ambient space (including the holomorphic coordinates in the ambient space, and the polynomial

equations for the variety) is an important part of the property (identity) of the variety. So, in

algebraic geometry, we do not take a perspective that there would be an abstract geometry X a

priori without referring to how X is embedded into an ambient space and characterized by a set

of polynomial equations.

1.3 Zariski Topology and Structure Sheaf

1.3.1. Fix an irreducible Affine variety X ⊂ Cn. Let R = C[X] be its ring of regular functions,

and C(X) the field of rational functions. For 0 6= f ∈ R, let Vf be the subvariety of X specified

as the zero locus of f , and Uf := X\Vf . Then any function of the form (regular function)/fn for

some n ≥ 0 is, certainly a rational function on X, and moreover, its pole locus is contained within

Vf so that it remains regular within Uf . Conversely, one can see that any rational function on X

that may have pole only within Vf and remain regular on Uf is in this form for some n ≥ 0. So,

based on the definition provided below, we see that all the rational functions of X that remain

regular in Uf is given by the ring of fractions (Sf )
−1R associated with a multiplicatively closed

subset Sf := {fn | n = 0, 1, · · · , }.

Definition 1.3.2. For a ring R and its multiplicatively close subset S in which 0/∈S, the ring of

fractions S−1R is defined by the set of {r/s |r ∈ R, s ∈ S}; (r/s) and (r′/s′) are regarded as the

same element in S−1R, when (r/s) can be reduced to (r′/s′) or vice versa. Addition, subtraction

and multiplication laws are introduced just as we do to Q.

When R is a domain, its field of fractions is obtained by choosing S = R\{0}. (i.e., Q for R = Z).

1.3.3. In algebraic geometry, rational functions have poles along subvarieties, and they remain

1Note also that we have not introduced metric on those geometry. When we introduce two different metrics on
a givene geometry X, they will be regarded distinct in the category of Riemann geometry. But we throw away
(ignore) such information associated with the choice of metric, when we deal with geometries in the category of
algebraic geometry.
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regular in the complement of those subvarieties. So, it is tempting to give a special status to those

subvarieties / complements of subvarieties. So here comes a

Definition (axiom): To introduce a structure of topological space to a set2 X is either a) to

specify a set U = {Ui}i∈I of subsets Ui ⊂ X so that the following three conditions are satisfied:

O-1 Intersection of finite number of members of U is also a member of U . Namely, (∩a∈AUa) for

any A ⊂ I is a member of U if |A| <∞.

O-2 Union of any members of U is also a member of U . Namely, (∪a∈AUa) for any A ⊂ I is a

member of U .

O-3 X itself as a subset of X, and the empty subset φ ⊂ X are also members of U ,

or b) to specify a set V = {Vi}i∈J of subsets Vi ⊂ X so that the following conditions are satisfied:

C-1 Union of finite number of members of V is also a member of V . Namely, (∪a∈AVa) for any

A ⊂ J is a member of V if |A| <∞.

C-2 Intersection of any members of V is also a member of V . Namely, (∩a∈AVa) for any A ⊂ J

is a member of V .

C-3 The empty subset φ ⊂ X, and X itself as a subset of X, are also members of V .

When such a set of subsets U [resp. V ] is given, one can always find a corresponding set of

subsets V [resp. U ] satisfying the conditions C-1 3 [resp. O-1 3] by V := {Vi := X\Ui}i∈I [resp.

U := {Uj := X\Vj}j∈J ].

Implicit in this definition is an observation that even when a set of points X is fixed, there

can be more than one ways to specify a set of subsets U [resp. V ] of X satisfying the conditions

O-1–3 [resp. C-1–3]; a given set of points X may admit multiple structures of topological space.

So, when a structure of topological space is introduced to a set of points X, we call any member

of U as an open subset of X, and any member of V as an closed subset of X under the structure

of topological space introduced to X.

Consider a manifold M ; by definition, it has a local neighbourhood to which a set of local

coordinates is given. Implicitly a structure of topological space is chosen in a manifold; a subset

U ⊂M is regarded as an open subset of M if and only if for any point p ∈ U , one can find an open

2When we throw away information of metric on manifolds (structure of Riemann geometry), one can still talk
of whether two manifolds are diffeomorphic or not; even when we throw away choices of local coordinates from
manifolds (structure of manifold), one can still retain which subsets are regarded as open/closed subsets and which
subsets are not—(*); this remaining information (*) on top of a set as a collection of points is called the structure
of topological space.
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disc of small enough radius ε around p so that the disc is entirely contained in U—(*). The set of

open subsets M satisfies the conditions O-1 3 above; the conditions O-1 3 have been abstracted

from various properties of open subsets of M . Similarly, the conditions C-1 3 have been abstracted

from various properties of closed subsets of M . The structure of topological space (*), which relies

on local coordinates and discs with small enough raidi, is called analytic topology. Whenever we

think of a manifold in the category of manifolds, we implicitly assume that we use the analytic

topology as the structure of topological space. This still allows us to introduce another structure

of topological space to one and the same set of points as M , when we think of M in another

category (such as the category of algebraic varieties).

In the category of algebraic geometries, it is customary to introduce the structure of topological

space in the following way. Suppose that X is an Affine variety. Any subsets of the form Vf ⊂ X

and their arbitrary intersections are registered as members of V , and they are all the members

of V . Then the conditions C-1 3 are satisfied.3 The structure of topological space introduced in

this way is called Zariski topology (as opposed to analytic topology). Any member of V are called

Zariski-closed subset of X. So, the set of Zariski-open subsets U of an Affine variety X consists

of any sets of the form Uf = X\Vf and their arbitrary unions.4

Much smaller subsets of X is registered as an open subset in Zariski topology than in analytic

topology. Under Zariski topology, an Affine variety is not even Hausdorff. An advantage of

introducing Zariski topology (rather than sticking to the analytic topology available on a manifold)

is that any rational function on an algebraic variety is expected to have singularity only at a Zariski-

closed subvariety of X, and still remains regular on the complement, which is Zariski-open subset

of X. By keeping track of the ring of functions that remain regular only at individual members

of the Zariski-open subsets U of X, we can have a full grasp of which rational functions have

singularity where. In a more mathematical language, this observation is summarized as follows.

1.3.4. Structure sheaf of an Affine variety X: for any Zariski-open subset U ∈ U of X, there is

a corresponding ring of functions that remain regular everywhere in U . This ring is denoted by

OX(U). Whenever one Zariski-open subset U1 is fully contained in another Zariski-open subset

3Consder an infinite closed subsets Vn :=
{

(x, y) ∈ C2 | y = nx
} ⊂ C2. Intersection of all of them ∩n=0,··· ,∞Vn =

{0} ⊂ C2 is still regarded as a closed subset of C2. A union of finite number of them ∪i∈A⊂NVi for |A| < ∞ is
still a closed subset, but the union of all of them, ∪i∈NVi is not. This subset is not contained in the list of Zariski
closed subsets because

∏∞
n=1(y − nx) is not regarded as a polynomial on C2.

4Here is a side remark. Def: A map f : X → Y between two topological spaces is continuous, if and only if
f−1(U ′) is an open subset of X for any open subset U ′ of Y . With this definition, here is a well-defined exercise:

Exercise 1.3. When we see two Affine varieties X and Y as topological spaces under the Zariski topology, one can
see that a regular map f : X → Y is a continuous map in the standard definition above; a proof of this statement
is left as an exercise.
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U0, any regular function on U0 defines a corresponding regular function on U2 by just ristricting

the range of definition from U0 to U1. This is always a ring homomorphism ρU1U0 : OX(U0) −→
OX(U1). Furthermore, if there are two Zariski-open subsets U1 and U2 contained in U0, then there

are two series of ring homomorphisms (i = 1, 2), ρUiU0 : OX(U0)→ OX(Ui) and ρU∗Ui : OX(Ui)→
OX(U∗), where U∗ := U1 ∩ U2 is another Zariski open subset of X. By definition, ρU∗U1 ◦ ρU1U0

and ρU∗U2 ◦ρU2U0 are the same ring homomorphism from OX(U0) to OX(U∗) determined by simple

restriction of the range of definition of regular functions from U0 to U∗ ⊂ U0.

1.3.5. Discussions 1.3.1–1.3.4 are written for a ring R = C[X] of an Affine variety, where C[X]

is the quotient ring of C[x1, · · · , xn]. A completely parallel discussion can be repeated for a

more general class of rings R, rings that appear in arithmetic set-ups for examples, however. See

Addenda 1.5.3 and 1.5.4.

The observation above is a motivation for introducing the following definition.

Definition 1.3.6. Let (X,U) be a topological space; a structure of topological space is introduced

by specifying a set U of open subsets of a set of points X. A sheaf of rings5 F on (X,U)

is a collection of the following information: For every open subset U ∈ U , a ring denoted by

F(U) is given, and for every pair of open subsets satisfying U1 ⊂ U0, a ring homomorphism

ρU1U0 : F(U0)→ F(U1) is specified in such a way that ρU∗U1 ◦ ρU1U0 = ρU∗U2 ◦ ρU2U0 .

1.3.7. So, OX for an Affine variety X is an example of sheaves of rings on X with Zariski

topology. In fact, we can think of a sheaf of regular functions on an algebraic variety X that

is not necessarily an Affine variety. A projective variety X is a subset of a projective space Pn

given by the common zero locus of a finite set of homogeneous polynomials on Pn. In introducing

Zariski topology to X, the role played by Vf ’s is carried by VF ’s, where F is a homogeneous

function on X. In a Zariski open subset UF = X\VF , regular functions are in the form of

[homog. fcns on X]/[some power of F ]. The sheaf of rings of regular functions on an Affine variety

X or a projective variety X is always denoted by OX , and is called the structure sheaf of X.

5 What is written here is in fact the definition of a presheaf of rings, rather than that of a sheaf of rings. For
a presheaf to be regarded as a sheaf, two more conditions need to be satisfied. The two conditions will be found
in any math textbooks explaining sheaves, so we omit them in this note. The two conditions are an abstraction of
two properties that continuous functions have: i) a function on an open set U can be constructed, if its definition
is given in each one of the patches of an open covering U = ∪iUi, and the definitions on individual open patches
Ui are mutually consistent over their overlaps Ui ∩ Uj , and ii) two functions are identical, if they are identical in
each one of the patches. Since we only deal with sheaves of functions or things that are similar in this note, we do
not emphasize the two extra conditions for a presheaf to be regarded as a sheaf. A typical example of a presheaf
that is not a sheaf is a constant sheaf (rather than a locally constant sheaf) on a topological space X that contains
an open subset that is not connected.
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The structure sheaf is precisely the machinary (language) where we can keep track of the

ring–geometry correspondence. If we were to deal only with Affine varieties, we would not have

to introduce a notion “sheaf;” we just have to know R := C[X], and the ring of functions regular

in an open subset U can be derived from R systematically as a ring of fractions S−1R for some

S ⊂ R. When X is a projective (compact) variety, however, R = C[X] consists only of constant

valued functions, and hence R ∼= C. We canNOT start from this ring R and construct the ring

of regular functions of all the Zariski-open subsets of X as its rings of fractions S−1R for some

S ⊂ R (though we can in the case of Affine varieties). This observation may well be regarded as

one of advantages of introducing the notion “sheaf.”

1.4 Introduction to Sheaf

1.4.1. The structure sheaf OX of an algebraic variety X is an example of sheaves of rings on X,

but there are more examples. Let us have a look at a few of them. For a subvariety Y of X, we

can define the ideal sheaf of Y , denoted by IY , by setting IY (U) as the subring of OX(U) that

vanish entirely on Y ∩ U . We can also define another sheaf i∗(OY ) on X, by setting i∗(OY )(U)

for an open subset U of X as OY (Y ∩U); the latter sheaf is referred to as the push-forward of the

structure sheaf of Y .

As a generalization of sheaves of rings on a topological space, we introduce sheaves of Abelian

groups:

Definition 1.4.2. Let (X,U) be a topological space. A sheaf of Abelian groups F on (X,U) is

a collection of the following information: For every open subset U ∈ U of X, an Abelian group

denoted by F(U) is given, and for every pair of open susets satisfying U1 ⊂ U0, a homomorphism

ρU1U0 : F(U0) → F(U1) is specified in such a way that ρU∗U1 ◦ ρU1U0 = ρU∗U2 ◦ ρU2U0 , whenever

U1,2 ⊂ U0 and U∗ := U1 ∩ U2.

When X is an algebraic variety (with Zariski topology), examples of a sheaf of Abelian groups

include i) the sheaf E of regular sections of a holomorphic vector bundle E on X, where E(U) is a

space of sections of E that remain regular on U ⊂ X, ii) the sheafHom(E1, E2) of homomorphisms

between two distinct vector bundles E1 and E2 on X. For a manifold M with the analytic topology,

Ap denotes the sheaf of p-forms, where Ap(U) for an open subset U ⊂ M is the space of p-forms

that remain smooth in U ⊂M . In all the examples here, E(U), Hom(E1, E2)(U) and Ap(U) may

be regarded Abelian groups, but they do not have a structure of a ring. They are examples of a

sheaf of Abelian groups, but not a sheaf of rings. Any sheaf of rings F on a topological space can

also be regarded as a sheaf of Abelian groups, by simply ignoring the multiplication laws in the

rings F(U).

11



It is customary to use F and something similar (such as E and G) as a notation for a sheaf,

because the French word faisceaux corresponds to sheaf in English. The homomorphism F(U)→
F(V ) for open sets V ⊂ U is often denoted by ρ, because F(U) as the ring of functions or

differential forms on U is a prototypical examples of sheaves, when the homomorphism F(U) →
F(V ) is the Restriction of the region of definition of those functions / differential forms.

1.4.3. Poincare lemma states that any closed p-form on a topological space (X,U) can be regarded

as an exact p-form at least locally, though not necessarily globally on M . In this subtle difference

lives topology of X. Let us translate the property into the language of sheaves of Abelian groups.

We begin with generalizing the d operation on p-forms, and then translate the Poincare lemma

into a definition of exact sequence of sheaves of Abelian groups.

Definition 1.4.4. Let F and G be sheaves of Abelian groups on a topological space (X,U). A

map φ : F → G between the two sheaves of Abelian groups is a collection of homomorphisms φU :

F(U) → G(U) for open subsets U ∈ U that are compatible with the restriction homomorphisms

in F and G, i.e., φU1 ◦ ρ(F)
U1U0

= ρ
(G)
U1U0
◦ φU , for any two open subsets satisfying U1 ⊂ U0.

Certainly the d operation (taking exterior derivative) induces a map d : Ap → Ap+1. The

property that the map d ◦ d : Ap → Ap+2 vanishes motivates to introduce

Definition 1.4.5. When a chain of maps between sheaves of Abelian groups φi : Fi → Fi+1

satisfies the property that φi+1 ◦ φi : Fi → Fi+2 vanishes for all i ∈ Z, the chain

→ F0 → F1 → · · · → Fn → (7)

is called a chain complex of sheaves of Abelian groups.

Poincare’s lemma for the chain complex of sheaves of differential forms

0→ A0 → A1 → · · · → An → 0 (8)

on a real n-dimensional manifold M is translated into a statement that this chain complex of

sheaves of Abelian groups is exact.

Definition 1.4.6. Consider a chain complex of sheaves of Abelian groups on a topological space

(X,U). Suppose that for any s ∈ Fi(U) such that φi(s) = 0 ∈ Fi+1(U) and a point x ∈ U , one

can find a small enough neighbourhood Ux,s ∈ U of x, Ux,s ⊂ U , so that ρUx,sU(s) is contained in

Im (φi−1 : Fi−1(Ux,s)→ Fi(Ux,s)). Then the chain complex of sheaves of Abelian groups is called

exact.6

6In this lecture note, we avoid introducing such technical terms as stalk, direct limit, local ring or residue field
in this lecture note. We keep exposure to algebra and also homology algebra minimum.
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Chain complexes that are exact are also called exact sequences.

Here are a few examples of exact sequences of sheaves of Abelian groups on algebraic varieties.

First, for an algebraic variety X and its subvariety Y ,

0→ IY → OX → i∗(OY )→ 0 (9)

is an exact sequence. This will be obvious when X is an Affine variety; it is enough to remember

that C[Y ] = C[X]/IY , and its corresponding versions in the rings of fractions. Even when X is

a projective variety, we can choose a neighbourhood Ux ∈ U of x ∈ X so that Ux is an Affine

variety. In fact, even for U = X, the chain complex of Abelian groups

0→ [IY (X) ∼= 0]→ [OX(X) ∼= C]→ [i∗(OY )(X) = OY (Y ) ∼= C]→ 0 (10)

is exact.

As in the example of the chain complex of differential forms on a manifold, however, an exact

sequence of sheaves of Abelian groups evaluated at X ∈ U is not always an exact sequence of

Abelian groups. Just like

0→ A0(M)→ A1(M)→ · · · → An(M)→ 0 (11)

is still a chain complex but not necessarily an exact sequence of Abelian groups,

→ Fi−1(X)→ Fi(X)→ Fi+1(X)→ (12)

is still a chain complex, but not necessarily an exact sequence of Aelian groups.

Here is such an example. Let X = E be an elliptic curve, with e ∈ E the origin of E = C/Z⊕2

(infinity point in the Weierstrass model). Let F be the sheaf7 of rational fuctions on E that are

allowed to have a pole of order unity at e and remain regular elsewhere; F(U) is therefore the

same as OE(U) if e/∈U , while F(U) is slightly larger than OE(U), if e ∈ U . Then

0→ OE → F → i∗(Oe)→ 0 (13)

is an exact sequence of sheaves of Abelian groups on the elliptic curve (see Exercise 1.4). In this

example,

0→ [OE(E) = C]→ [F(E) = C]→ [i∗(Oe)(E) = C]→ 0 (14)

is still a chain complex of Abelian groups, but is not exact, because the homomorphism to

[i∗(Oe)(E) ∼= C] is a zero map, not surjective.

Exercise 1.4. A proof that (13) is an exact sequence is left as an exercise.
7In the notation that is introduced in section 3, this sheaf F is OE(e).
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1.5 Addenda

1.5.1. Rings, with more special properties, or with more general properties: fields can

be regarded as a class of rings that have a special property, and similarly, PID’s are also a class

of rings that have a special property. Schematically,

Dedekind ring

((RRRRRRRRRRRRR

��
field // PID

77ppppppppppp

''OOOOOOOOOOOO &oo normal ring // domain // ring,

UFD

66llllllllllllll

OO (15)

where rings with more special properties are placed toward the left, and those with more general

properties toward the right. It is known that a Dedekind ring that is also a UFD (unique factor-

ization domain∗) is a PID (as indicated in (15)). A normal ring R is also said to be an integrally

closed domain; a domain R is a normal ring, if all the elements of the field of fractions of R that

are integrally closed over R are contained already within R. A normal ring R is a Dedekind ring,

if its Krull dimension∗ is 1 (an alternative definition: any ideal can be factorized into a product

of prime ideals, and the prime ideal decomposition is unique).

PID’s that are not fields include R = Z, Z[
√−1], and k[x1] with any field k.

UFD’s that are not PID’s include R = k[x1, x2, · · · , xn] and R = Z[x1, · · · , xn], both with

n > 1 (being multiple dimensions is the essence).

Dedekind rings that are not PID’s include R = Z[
√−5]. (memo: we have stated above that a

ring that is both Dedekind and UFD is a PID; this means that a Dedekind ring that is not a PID

should not be a UFD; 6 = 2 · 3 = (1−√−5) · (1 +
√−5) is an example of factorization in the ring

R = Z[
√−5] that is not unique) Behind this non-unique factorization is the following fact: in the

ringR = Q[x]/(f(x)), P ([x])·Q([x]) = P ′([x])·Q′([x]) as an element inR if P (x)Q(x) ≡ P ′(x)Q′(x)

in Q[x] mod (f(x)).

R = k[x, y, z, w]/(xy − zw) is a normal ring, but it is not a UFD, or a Dedekind ring, either.

R = k[x, y]/(y2 − x3) is a domain, but it is not a normal ring.

R = k[x, y]/(xy) is a ring, but it is not a domain.

1.5.2. Local rings (localization), stalk. Let X be an Affine variety X; OX(X) = C[X] =: R is

its ring of regular functions. We have seen before that OX(U) is the ring of functions that remain

regular at any point in U ⊂ X; those functions may (or may not) have pole along the subvariety

X\U ; this is a statment for a fixed subvariety Y of X and arbitrary points in the complement of

Y . One may also be interested, however, in the ring of functions that are regular at one specified
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point p ∈ X that may (or may not) have a pole along any subvariety Y ⊂ X that does not pass

through p (p/∈Y ). The ring in question is known to be Rmp (notation explained below), where mp

is the ideal sheaf of the point p.

For a prime ideal p of a ring R, Rp stands for the ring of fractions S−1R with S := R\p (the

complement of a prime ideal is always multiplicatively closed (almost by def)). Such a ring Rp is

said to be the localization of R at (along) p.

The idea behind associating Rmp to the point p ∈ X is that mp is the collection of functions

in R (over X) that vanish at p; so S = R\mp is the collection of functions that do not vanish at

p. Those functions in S may vanish along subvarieties Y ⊂ X, but those Y never pass through p.

For each element r ∈ Rmp , therefore, there must be a pole locus Yr ⊂ X, and r can be regarded as

a regular function over (X\Yr) 3 p; r can be regarded as an element of OX(X\Yr) = S−1
Yr
R. For

this reason, the localization Rmp is the collection of functions each one of which remains regular

at least in some Zariski-open neighbourhood of p ∈ X.

In the language of sheaf theory, the ring Rmp corresponds to the stalk∗ of OX at p ∈ X.

The localization ring Rp of a prime ideal p (not necessarily a maximal ideal) has a similar

interpretation. Let Yp be the irreducible subvariety of an Affine variety X where R = C[X] and

IYp = p. Functions in S = R\p are those that are non-zero at least somewhere on Yp. For each

element in r ∈ Rp, there must be a pole locus Yr ⊂ X satisfying (X\Yr) ∩ Yp 6= φ, and r can be

regarded as a regular function over (X\Yr). r can be regarded as an element of OX(X\Yr).
residue field∗: ex. i) for an Affine variety X with C[X] = C[x1, · · · , xn]/IX , the residue field

is C for a point p (corresponding to a maximal ideal mp), and the residue field is C(Yp) for an

irreducible subvariety Yp ⊂ X (corresponding to a prime ideal p). ex. ii) for R = Q[x]/(x2 +x+1),

R is itself a field. It has just one maximal ideal m = {0}, where Rm = R, and the residue field is

R itself.

1.5.3. Let R be a ring. Spec(R), when regarded as a set, is the set of all the prime ideals of R; it

contains (as its subset) the set of all the maximal ideals of R. More structure is given to Spec(R)

shortly, so Spec(R) is not just a set.

Ex.1: for the ring of regular functions R = C[x1, · · · , xn]/IX = C[X] of an Affine variety X,

Spec(R) as a set has a one-to-one correspondence with the set that consists of all the points of

X, all the irreducible subvarieties of X of dimension 2, 3, ..., dimCX. When X is irreducible, the

zero ideal {0} ⊂ R corresponds to the dimension-(dimCX) subvariety of X—X itself. When X is

not irreducible, the zero ideal {0} ⊂ R is not a prime ideal; there must be multiple prime ideals

instead that correspond to the irreducible components of X.

Ex.2: for R = Q[x, y], an ideal (x2 + y2) is prime, but (x2 − y2) = (x− y) · (x+ y) is not.

Ex.3: for R = Z, the set Spec(Z) consists of prime ideal (2), (3), (5), .... and {0}.
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Ex.4: for R = Z[i], Spec(R) consists of (1 + i), (3), (1 + 2i), (1− 2i), ..., {0}.
In all those examples, elements of R should be regarded as regular functions on Spec(R). Prime

ideals p of R can be regarded as irreducible “subvarieties” of Spec(R), even in Ex.3 and Ex.4. See

below for more.

1.5.4. The set Spec(R) for a ring R is endowed with the Zariski topology to be a topological

space. The choice of this specific topology is always implicit, whenever we refer to Spec(R) of a

ring R. Moreover, the structure sheaf on the topological space Spec(R) is given precisely in the

same as before; rings of fractions of R are assigned to Zariski-open subsets of Spec(R).

For a prime ideal p of a ring R, the localization Rp is the colleciton of things each one of which

can be regarded as a regular functions on a Zariski-open neighbourhood of p ∈ Spec(R). The

residue field at p is the field of functions on the subvariety corresponding to p.

ringed space, scheme..

1.5.5. base scheme: In 1.2.1–1.2.3, we implicitly considered only ring homomorphism φ∗ :

C[Y ]→ C[X] between the ring of regular functions of two Affine varieties X and Y that preserve

scalar multiplications by complex numbers. They are the ring homomorphisms where the diagram

C[Y ]
φ∗ // C[X]

C

aaCCCCCCCC

==zzzzzzzz

(16)

commutes; equivalently they are homomorphisms as algebras over C. One could have considered

a class of more general ring homomorphisms such as those as algebra over R (by thinking of C[Y ]

and C[X] as algebras over R), or those as algebra over Z (i.e., all the ring homomorphisms). When

one think of such questions as the set of regular maps between varieties (or schemes) and modulo-

isomorphism classification of varieties, one needs to specify this information: scalar multiplication

over which ring we require in the homomorphisms between the ring of functions.

The inclusion homomorphism C ↪→ C[X] and C ↪→ C[Y ] in the diagram above corresponds

to X → Spec(C) and Y → Spec(C); the regular maps φ : X → Y obtained as homomorphism

between the algebras over C are the regular maps where the diagram

X

$$HHHHHHHHH
φ // Y

{{vvvvvvvvv

Spec(C)

(17)

commutes. Spec(C) in the diagram above may well be replaced by Spec(R) or Spec(Z), when a

broader class of regular maps are considered. Note that X → Spec(k) should not be regarded just
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as a map between two point sets; even when k is a field, Spec(k) as a point set consists of just one

point, but the structure sheaf of Spec(k) assigns the ring k to the unique non-empty open set of

Spec(k), which is Spec(k) as a whole. The regular map (morphism) X → Spec(k) includes a ring

homomorphism k → OX(X).

The chosen Spec of a ring is called the base scheme.

1.5.6. fibre product in gemometry corresopnds to tensor product in (ring):

X ×B Y //

��

Y

��

RX ⊗RB RY RY
oo

X // B RX

OO

RB
oo

OO

(18)

where both RX and RY are algebras over a ring RB, and X, Y , B are Spec of RX , RY , and RB,

respectively. This statement could have been placed in section 1.2

2 Divisor, Linear Equivalence, Intersection Number

2.1 Weil Divisors and Linear Equivalence

Definition 2.1.1. A Weil divisor on an algebraic variety X is a formal finite sum of the form

D =
∑
i

niDi, (19)

where ni ∈ Z and Di is a codimension-1 irreducible subvariety of X. Weil divisors form an

Abelian group under the addition of the Z-valued coefficients; this group is called divisor group

and denoted by Div(X).

This is a very large group. In the case of X = P1, for example, any point z ∈ P1 is regarded as

a codimension-1 irreducible subvariety, so D =
∑

z nzz is a Weil divisor, if nz is a non-zero integer

for a finite number of points in P1. There are infinitely many, not even countablly many, choices

of such {nz}z∈P1 .

This Div(X) group in algebraic geometry corresponds to the Abelian group of real (2n − 2)-

dimensional cycles Z2n−2 of a real 2n-dimensional simplicial complex in algebraic topology. A real

2n-dimensional simplicial complex consists of p-simplices with 0 ≤ p ≤ 2n, and the Abelian group

of p-chains Cp is the free Abelian group

Cp :=





∑

i∈{p simplices}
ni[p simplex]i



 = ⊕i∈{p simplices}Z 〈[p simplex]i〉 . (20)
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Zp is the subgroup of Cp characterized by the absence of boundary. Div(X) is similar to Z2n−2 in

that their general elements are in the form of a formal sum of real (2n− 2)-dimensional geometric

objects without a boundary.

The homology group Hp of a simplicial complex is obtained by introducing an equivalence

relation in Zp in algebraic topology; two p-cycles are regarded equivalent if and only if their

difference corresponds to the boundary of a (p + 1)-chain. So, we also introduce the following

equivalence relation with which we take a quotient of the divisor group Div(X) in algebraic

geometry.

Definition 2.1.2. For a given non-zero rational function ϕ ∈ C(X) on an algebraic variety X,

we can read out its zero loci and pole loci. Let Di (i ∈ I) be the irreducible components of the

zero loci, with ni the order of vanishing along Di. Let D′j (j ∈ J) be the irreducible components

of the pole loci, with mj the order of the poles along D′j. With those data, we can define a Weil

divisor div(ϕ) :=
∑

i∈I niDi +
∑

j∈J mjD
′
j. Weil divisors of this form are called principal divisors,

and forms a subgroup of Div(X).

Definition 2.1.3. When two Weil divisors D and D′ on an algebraic variety X are different only

by a principal divisor, D = D′ + div(ϕ), ∃ϕ ∈ C(X), then we say that D and D′ are linearly

equivalent, and write D ∼ D′.

Definition 2.1.4. By taking a quotient of Div(X) by the linear equivalence relation, we define

Cl(X) := Div(X)/ ∼, the divisor class group of X. The linear equivalence class of a Weil divisor

D is often denoted by [D].

In the case of X = P1, with [X0 : X1] the homogeneous coordinates, any two distinct points are

regarded different Weil divisors, but are linearly equivalent. Let z := X1/X0 be the homogeneous

coordinates, and also (the Weil divisor that consists of) the point whose coordinate is z; then

z′ = z+div((zX0−X1)/(z′X0−X1)) ∼ z. This means that
∑

z nzz ∼ (
∑

z nz) z0, and Cl(P1) ∼= Z.

More generally, a Weil divisor on X = Pn is in the form of

D =
∑
F

nFDF (21)

where DF is the zero locus of a homogeneous function F (with some homegeneous degree) on

X = Pn, and nF ∈ Z. When F is a homogeneous function of degree kF , DF = kFDX0 +

div(F/(X0)kF ) ∼ kFDX0 . So, any Weil divisor is linearly equivalent to an integer multiple of DX0 .

We have learned that Cl(Pn) ∼= Z. The generator of this divisor class group is represented by the

zero locus of a hyperplane P1, such as {X0 = 0}, {X1 = 0} {∑n
i=0 aiXi = 0}. This divisor (and

its divisor class) is often denoted by H, is called the hyperplane divisor (class).
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Whereas Cl(X) tells us the classification of divisors modulo linear equivalence, we may some-

times be interested also in the set of divisors within a given linear equivalence class.

Definition 2.1.5. A Weil divisor (19) is effective, if all the ni’s are positive. A notation D ≥ 0

means that D is effective. For a Weil divisor D0 that is effective, let |D0| be the set of all the

effective Weil divisors D linearly equivalent to D0.

|D0| = ({C(X) 3 ϕ 6= 0 | D0 + div(ϕ) ≥ 0}) /C×, (22)

because two rational functions ϕ and ϕ′ that are different only by a non-zero complex multiple

give rise to the same effective divisor D ∼ D0. |D0| is called the complete linear system of D0.

When X = P2, for example, |dH| is a family of degree-d curves in P2; H is a hyperplane divisor

of the projective space X, as before. When we choose H to be the X0 = 0 hyperplane, elements

of |dH| is in one to one correspondence with rational functions

homogen. fcn of deg d

(X0)d
(23)

modulo ×C×. So, they form a space with d+2C2 − 1 dimensions. Curves in a given family, say

|dH|, are all topologically the same; when d = 1 and d = 2, they are all genus-zero curves (P1);

when d = 3, they are all genus-1 curves. 2g − 2 = d(d − 3) is the formula between the degree d

and the genus g. We will derive this formula later in section 6.2.

When X = Pn−1, it is known that general members of |nH| is a Calabi–Yau (n − 2)-fold (cf

section 4.4). The n = 3 case corresponds to the g = 1 curve (elliptic curve), (3) ⊂ P2, as we

have stated above. The n = 4, n = 5 and n = 6 cases are the quartic K3, quintic Calabi–Yau

three-folds and sextic Calabi–Yau four-folds. They come in the form of a family, |nH|.

2.1.6. Codimension-1 subvarieties are called “divisors”. What do they “divide”? See 3.5.4, where

we touch upon the divisor class group Cl(X) of X = Spec(R) for R in number-theory settings.

2.2 Linear Equivalence, Algebraic Equivalence

2.2.1. Although we introduced linear equivalence relation among divisors in an algebraic variety

as an analog of modulo-boundary indentification of closed cycles in a simplicial complex, the

divisor class group Cl(X) provides a little finer classification than the topological classification

H2n−2(X;Z) of complex codimension-1 cycles in X. Certainly Cl(X) ∼= Z ∼= H2(X;Z) for X = Pn,

as we saw above, but they are not necessarily the same.
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The best example where they are not the same is for X to be an elliptic curve E. Let

D =
∑

i nipi be a Weil divisor on X = E; pi’s are points (complex codimension-1 subvarieties in

E).

Let the point e ∈ E be the origin of E = C/(Z 〈1〉⊕Z 〈τ〉), which plays the role of the identity

0 element in the Abelian group law on E. The field of rational functions on E, C(E), is nothing

other than the field of elliptic functions on E. When arbitrary two points p1 and p2 in E are

given, it is always possible to find an elliptic function on E so that it i) has two zeros precisely

at p1 and p2, nowhere else, and ii) also has two poles of order 1, with one of the two poles at

e = 0; the remaining one pole must be at (p1 � p2) in E = C/(Z 〈1〉 ⊕ Z 〈τ〉), where the � is

meant to be the sum of the group law in E = C/(Z 〈1〉 ⊕ Z 〈τ〉), rather than in the divisor group

Div(E). See Exercise A.1 for more. Thus, as divisors, two divisors on E are linearly equivalent,

p1+p2 ∼ (p1�p2)+e. Using this argument multiple times, one can always find a linear equivalence

relation of the form

D =
∑
i

nipi ∼
(
−1 +

∑
i

ni

)
e+ q, q = �ipi ∈ E. (24)

Now let us focus on the kernel Cl(E)0 of

Cl(E) 3
[∑

i

nipi

]
7−→

∑
i

ni ∈ Z. (25)

For a general element of the kernel, one can always find a representative of the form D = q − e
for some q ∈ E, and in fact, the kernel is in one-to-one correspondence Cl0(E) ∼= E in this way.

A divisor q is linearly equivalent to the divisor e, if and only if q = e; this follows from the nature

of elliptic functions (ie, the nature of C(E)). In H2(E;Z) ∼= Z ∼= H0(E;Z), we do not distinguish

two points in E, wherever they are. [e] ∈ H0(E;Z) is the same as [q] ∈ H0(E;Z). So, Cl(E)

retains finer information than H0(E;Z) ∼= H2(E;Z) in the case the variety in question is X = E.

We will come back to this point again in 4.2.3.

Definition 2.2.2. Suppose that D1, D2 ∈ Div(X). D1 and D2 are algebraically equivalent, if there

exists a curve S, two points s1, s2 ∈ S, and a divisor D ∈ Div(S ×X) such that π−1(s1) ·D = D1

and π−1(s2) ·D = D2; here, π : S ×X → S is the simple projection.

Whenever D1 ∼ D2, then the two divisors are also algebraically equivalent. To see this, note

that D2 = D1 + div(ϕ) for some ϕ ∈ C(X). Let F = 0 be the defining equation for the divisor

D1 in X. Then we can use F · (1 + zϕ) = 0 to define a divisor D in P1 × X, where z is an

inhomogeneous coordinate on P1. π−1(z = 0) ·D is D1, and π−1(z =∞) ·D is D2 then.
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Definition 2.2.3. On an algebraic variety X, Diva(X) denotes the divisors that are algebraically

equivalent to the trivial divisor 0 ∈ Div(X). The quotient Div(X)/Diva(X) by the algebraic

equivalence relation is called Neron–Severi group, and are denoted by NS(X).

Since the algebraic equivalence relation is broader than the linear equivalence relation, classifi-

cation by the linear equivalence is finner. There is a well-defined homomorphism Cl(X)→ NS(X).

In the example of X = E, all the divisor classes in Cl0(E) are trivial under the algebraic

equivalence relation. To see this, just note that we can use the diagonal divisor ∆ ⊂ E ×E. Any

two points p1, p2 ∈ E define divisors that are mutually algebraically equivalent, although they are

not linearly equivalent. Thus, NS(E) ∼= Z ∼= H0(E;Z) ∼= H2(E;Z).

2.2.4. There is one more equivalence relation that can be introduced among divisors on X. Two

divisors D1, D2 ∈ Div(X) are numerically equivalent, if D1 · C = D2 · C for any curve C in X.

It is known that two divisors are always numerically equivalent, if they are algebraically equiv-

alent. So, the quotient of Div(X) by the numerical equivalence provides even coarser classification

than NS(X). It is known that the classification by the numerical equivalence drops the torsion

components in NS(X) and retains the free Abelian part.

2.3 Cartier Divisors

Definition 2.3.1. A Cartier divisor D = {(Ui, fi)} on an algebraic variety X is an open covering

U = {Ui|i ∈ I} of X and a rational function fi ∈ C(Ui) satisfying the condition that the rational

function fi/fj on Ui ∩ Uj neither has zero or pole in Ui ∩ Uj (i 6= j).

Any Cartier divisor D on X can be regarded as a Weil divisor; the corresponding Weil divsor

D is the one that looks in Ui ⊂ X as div(fi). Whenever two open set Ui and Uj overlaps, theh

condition in the definition of a Cartider divisor implies that div(fi) = div(fj), so there is no

disagreement.

Definition 2.3.2. Cartier divisor {(Ui, fi)} and {(Ui, f ′i)} are linearly equivalent, if and only if

there is a rational function ϕ ∈ C(X) so that fi = fiϕ|Ui .

This definition of linear equivalence between a pair of Cartier divisors agrees with that of linear

equivalence between the corresponding pair of Weil divisors.

Definition 2.3.3. The Picard group Pic(X) of an algebraic variety X is the the group of Cartier

divisors on X modulo linear equivalence relation among them.

The sum of {(Ui, fi)} and {(Ui, gi)} is {(Ui, figi)}.
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2.4 Weil vs Cartier

Cartier divisors on X can always be regarded as Weil divisors, but the converse is not always true.

Theorem 2.4.1. When an algebraic variety X is non-singular, then any Weil divisor is regarded

as a Cartier divisor.

This is because, for a Weil divisor D =
∑

a naDa, one can always find a defining equation of

Di’s locally in a non-singular variety X; let U = ∪iUi be such an open patches covering the entire

X, and let Da|Ui be given by fa,i = 0. Then {(Ui,
∏

a f
na
a,i )} is the corresponding description as a

Cartier divisor.

When an algebraic variety X is not non-singular, however, Weil divisors do not always have a

description as Cartier divisors. Here is an

Example 2.4.2. Let X be a three-dimensional (non-compact) variety given by {(x, y, z, w) ∈
C4 | xy − zw = 0}. This three-fold is called a conifold. This variety has a singularity at

(x, y, z, w) = (0, 0, 0, 0). A divisor given by a codimension-1 subvariety {(x, y, z, w) ∈ X | x =

z = 0} is an example of Weil divisor that is not Cartier. Can you find a rational function in a

neighbourhood of the singular point whose zero and pole locus agrees precisely with that Weil

divisor?

2.5 Intersection Number

When we regard a Cartier divisor D on a non-singular algebraic variety X as an element in

H2n−2(X;Z) ∼= H2(X;Z), the intersection number is defined in topology for n Cartier divisors

D1, D2, · · · , Dn on X. It is denoted by D1 ·D2 · · · ·Dn ∈ Z ∼= H0(X;Z). The intersection number

does not change when one of the divisors in question, say, D1, is replaced by another divisor D′1
that is linear equivalent to the original D1, because D1 and D′1 are both in the same topological

class H2n−2(X;Z).

The fundamental theorem of algebra states that any polynomial f(t) of degree n has n solutions

to f(t) = 0 in C. We can state this theorem in terms of algebraic geometry as follows. Let D1

and D2 be divisors on X = P2 given by Un−1S − Unf(T/U) = 0 and S = 0, respectively, where

[T : S : U ] are the homogeneous coordinates of X = P2. Then D1 ·D2 = n in X, independent of

the choice of the degree-n polynomial f(t). In this case, D1 ∼ nH and D2 ∼ H, where H is the

hyperplane divisor of P2. It is a more general version of the fundamental theorem of algebra that

a degree d1 curve C1 ∈ |d1H| and a degree d2 curve C2 ∈ |d2H| in X = P2 intersect at d1d2 points

(when multiplicity included).

The intersection number D1 · D2 · · · · · Dn is still defined, when some of the divisors among

D1, · · · , Dn are the same, eg., D1 = D2. In topology, we do so by replacing the cycle D2 by a
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cycle D′2 6= D2 = D1 that is still topologically the same as D2. In algebraic geometry, we replace

the divisor D2 by another divisor D′2 6= D2 that is still linearly equivalent to D2.

As an example, consider the case X = P2 and D1 = D2 = {U = 0}, where U is one of the

homogeneous coordinates [T : S : U ] of X = P2. We can define D1 · D2, although D1 = D2, by

replacing the divisor D2 by D′2 = {S = 0}, which is still linear equivalent to D2 (use the rationa

function ϕ = S/U ∈ C(X) for linear equivalence). The intersection number D1 ·D2 = D1 ·D′2 is

+1, because D1 and D′2 intersect transversely at just one point [T : S : U ] = [∗ : 0 : 0] ∈ P2.

Intersection of k divisors, D1, · · · , Dk with k ≤ n := dimCX, defines an algebraic cycle, in

general. The algebraic cycle so defined is a formal sum of complex codimension-k subvarieties

with integer coefficients. When k = n, algebraic cycles defined by intersection are collection

of points in X with integer coefficients for individual points; the net number of points is the

intersection number. We do not explore in this lecture further on various equivalence relations

among algebraic cycles.

More subtlties are involved when one wishes to discuss intersection numbers of divisors on a

singular variety. cf a book “Intersection Theory” by W. Fulton, Springer.
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3 Resolution of Singularity

3.1 Singularity

Definition 3.1.1. Let X be an (n−k)-dimensional Affine variety given by k polynomial equations

fa = 0 (a = 1, · · · , k) in an ambient space Cn = {(x1, · · · , xn)}. X is singular at its point z ∈ X,

if the k×n matrix (∂fa/∂x
i|z)ai has a rank less than k. A point of X where X is singular is called

singularity. Sincularity of X is not necessarily a collection of isolated points. When X is not

singular anywhere in X (i.e., free of singularity), we say that X is non-singular (or also smooth).

In the case X is a hypersurface (given by k = 1 defining equation f = 0), then X is singular

at z ∈ X (i.e., f(z) = 0) if and only if ∂f(z)/∂xi = 0 for all of i = 1, · · · , n.

3.1.2. Examples: in an ambient space C2, define a curve X by f(x, y) = x2 − y2, or f(x, y) =

x2 − y3. Curves X define that way are singular at the point (x, y) = (0, 0) ∈ X ⊂ C2. One can

also verify that the conifold is singular at (x, y, z, w) = (0, 0, 0, 0).

3.2 Blow-up and Proper Transform

Definition 3.2.1. Resolution of a singularity of a singular variety X is a process of finding another

variety X̃ and a map ν : X̃ → X where ν is regular and ν−1 rational, satisfying certain properties

(which we elaborate more later), as well as the variety X̃ itself. Let Xsingl ⊂ X be the collection

of singular points in X; X is non-singular in X\Xsingl. At the least, we require that the map

ν|ν−1(X\Xsingl) : ν−1(X\Xsingl) −→ (X\Xsingl) (26)

is an isomorphism (regular map in both directions and their composition is identify on both). The

spirit here is to replace X by X̃ so that X̃ remains the same as X wherever X is not singular and

differs from X only at Xsingl. When X̃ still has singularity (but less singular than X), then we

say that (X̃, ν) is a partial resolution of the singularity of X.

8

Fortunately, mathematicians have proved that one can always find (X̃, ν) so that X̃ is non-

singular, so far as we work on C, and do not step into the world of characteristic p > 0.

3.2.2. We wish to know practical procedures of finding/constructing such a resolution. Since we

need to construct a new variety X̃, at least we always need to construc/specify an ambient space

of X̃. So, the process of replacing X by X̃ begins with a process of replacing the ambient space

8Has a rational map been defined in this lecture note?
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of X by another ambient space (for X̃). The simplest case of resolution of singularity is an Affine

variety X in an ambient space Cn where X has singularity at ~0 ∈ X ⊂ Cn. In this case, one tries

to replace the ambient space Cn by the following variety:

Definition 3.2.3. Bl~0Cn is an n-dimensional subvariety of Cn × Pn−1 given by

Bl~0C
n =

{
((x1, · · · , xn), [ξ1 : · · · : ξn]) ∈ Cn × Pn−1 | xiξj = xjξi

}
. (27)

A map ν : Bl~0Cn → Cn is obtained by forgetting [ξ1 : · · · : ξn] and projecting on to (x1, · · · , xn) ∈
Cn.

For any point in Cn other than (x1, · · · , xn) = ~0, a point [ξ1 : · · · : ξn] ∈ Pn−1 is uniquely

determined; [ξ1 : · · · : ξn] = [x1 : · · · : xn]. The inverse image of ~0 ∈ Cn, on the other hand,

consists of full Pn−1. The map ν : Bl~0Cn → Cn is regular, because the map ν specifies the

coordinates (x1, · · · , xn) of Cn by regular functions x1, x2, · · · , xn of Bl~0Cn.

This variety Bl~0Cn can be covered by n open patches; the open subspace Ui (i = 1, · · · , n) of

Bl~0Cn characterized by the condition ξi 6= 0 is isomorphic to Cn; we can take (ξj/ξi)j∈{1,··· ,n}\i’s and

xi as the set of Affine coordinates of Ui ∼= Cn; the coordinates xj in Ui are given by xj = xi(ξj/ξi)

for j 6= i. The map

ν−1 : Cn ⊃ ν(Ui)→ Ui ⊂ Bl~0C
n (28)

is rational (and hence ν−1 : Cn → Bl~0Cn is rational (by def)), because the coordinates of Ui, xi and

(ξj/ξi)’s (j 6= i) are expressed by rational functions of ν(Ui) ⊂ Cn, xi and xj/xi’s, respectively. The

inverse map ν−1 fails to be regular (but remains rational) only at ∪i (ν(Ui) ∩ {xi = 0}) = ~0 ∈ Cn.

Definition 3.2.4. The variety Bl~0Cn is called the blow-up of Cn centered at ~0 ∈ Cn. More

generally, there is a variety denoted by BlZY , where Z is a subvariety of a variety Y , and called

blow-up of Y centred at Z, and Bl~0Cn is a special case Y = Cn and Z = ~0.

The inverse image of the center of blow-up ν−1(~0) is, as a subvariety of Bl~0Cn, isomorphic to

Pn−1. This is a divisor, whose defining equation is xi = 0 in Ui. This Cartier divisor, E = (Ui, xi),

is called the exceptional divisor of the blow-up. Moregenerally, the inverse image of the center of

blow-up, ν−1(Z) ⊂ BlZY , is used to define a divisor, and those divisors are called exceptional

divisors of the blow-up.

3.2.5. By using a map ν : Bl~0Cn → Cn where ν is regular and ν−1 rational (non-regular only at
~0 ∈ Cn), we can (partially) resolve singularity of an Affine variety X that has singularity only at
~0 ∈ X ⊂ Cn, as follows.
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Definition 3.2.6. ν∗(X) ⊂ Bl~0Cn is called the total transform of X. Here, ν∗(X) is obtained by

pulling back defining equations of X by ν : Bl~0Cn → Cn. ν∗(X) is the same as ν−1(X) ⊂ Bl~0Cn

as a set of points, but we retain the information of multiplicity. The closure of ν∗
(
X\~0

)
in Bl~0Cn

is denoted by X and called the proper transform of X. String theorists often call X the blow-up

of X in their dialect, however. Restricting the map ν : Bl~0Cn → Cn to X, we obtain a map

ν : X → X.

Often the variety X is less singular than X, so (X, ν̄) serves for the purpose of (albeit often

partial) resolution of X. Let us see how it works in concrete examples.

3.2.7. Let X be a curve given by {f(x, y) := x2 − y2 = 0} ⊂ C2, which is singular at Z = ~0 ⊂
Y = C2. This singularity is called a double point singularity. Now, we use BlZY = Bl~0C2 as

the new ambient space, instead of C2. In the U1 patch, with the Affine coordinates (x, (η/ξ)),

the pull-back of the defining equation is ν∗(f) = x2 − (x(η/ξ))2 = x2(1 − (η/ξ)2), so the total

transform ν∗(X)∩U1 consists of three irreducible piecies, x = 0 (with multiplicity 2), 1−(η/ξ) = 0

and 1 + (η/ξ) = 0. Similar analysis indicates that ν∗(X) ∩ U2 consists of three irreducible pieces,

y = 0 (multiplicity 2), (ξ/η) − 1 = 0 and (ξ/η) + 1 = 0. Overall, the total transform ν∗(X)

consists of three irreducible pieces; two of them are curves C± given by ξ = ±η, and the other is

the exceptional curve E in Bl~0Cn, which comes with multiplicity 2. As a divisor in Bl~0C2,

ν∗(X) = 2E + C+ + C−. (29)

The proper transoform, on the other hand, is

X = C+ + C− (30)

in this example. To see this, one only needs to see that ν−1(X\~0) is (C+ +C−)∩(Bl~0C2\E). Thus,

C+C− is enough for the closure of this geometry in Bl~0C2; we do not need to include E as a part

of X. Now, X = C+ + C− consists of just two disjoint irreducible curves; even in the fibre of the

center of the blow-up, ν−1(~0) = E = P1, the two curves C+ and C− pass through different points

[ξ : η] = [1 : 1] and [ξ : η] = [1 : −1]. So, X is free from singularity. ν̄ : X → X is a resolution,

with X completely non-singular. See Figure 1.

3.2.8. Much the same procedure also resolves the singularity of a curve

X =
{
f(x, y) := x2 − y3 = 0

} ⊂ C2; (31)

this singularity is called a cusp. We use Bl~0C2 as a new ambient space, where the defining equation

of the total transform ν∗(X) is x2(1−x(η/ξ)3) = 0 in the patch U1 ⊂ Bl~0C2, and y2((ξ/η)2−y) = 0
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(a) (b) (c)

Figure 1: (a) Geometry of Bl~0C2 and its projection ν : Bl~0C2 → C2 is illustrated by extracting the
real locus. The real locus of Bl~0C2, where x, y, ξ/η ∈ R, is like a spiral staircase; projection of the
staircase in (a) to the ground, the real locus R2 ⊂ C2, provides the 1-to-1 correspondence with
Bl~0C2 and C2; the axis of the spiral (thick blue line)—the real locus of the exceptional locus—is
projected to the center of the blow-up, ~0 ∈ C2, however. This Bl~0C2 is used as an ambient space
in (b) to resolve a double point singularity of a curve X (thin red lines). The proper transform
X consists of two irreducible components C+ and C− (thick red lines), while the total transform
ν−1(X) also contains the exceptional curve E (thick blue line). X is not singular anymore. (c)
shows the proper transform X (thick red curve) for the curve X = {x2 = y2(y + 1)}.
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(a) (b)

Figure 2: A curve X ⊂ C2 with a cusp singularity x2 − y3 = 0 (thin red curve) is lifted into a
new ambient space Bl~0C2 to be X (thick red curve), where the singularity is resolved (a); the
total transform ν∗(X) also contains the exceptional curve E (blue line). (b) is a zoom-up picture
of the geometry of curves E and X near the point of their intersection. X (thick red curve) is
non-singular indeed, and touches with E with multiplicity 2.

in U2 ⊂ Bl~0C2. The total transform consists of two irreducible components, one of which is the

exceptional curve E in Bl~0C2, and the other the proper transoform. ν∗(X) = 2E+X. The proper

transform X is non-singular in this example; in the U2 patch, for example, we can use (ξ/η) as

the local coordinate of X, and solve the other coordinate y in terms of (ξ/η); y = (ξ/η)2. The

intersection number E · X in Bl~0C2 is +2, because the defining equation of E, y = 0, appears

quadratic y = (ξ/η)2 in the local coordinate on X. See Figure 2.

3.2.9. A curve X = {f(x, y) := x2 − yn = 0} ⊂ C2 with n ≥ 4 has a singularity at (x, y) = ~0; the

proper transform X in a new ambient space Bl~0C2 is not completely resolved yet, because X is

given by (ξ/η)2 − yn−2 = 0 in {((ξ/η), y)} ∼= U2 ⊂ Bl~0C2, with n− 2 ≥ 2. Replacing the ambient

space Bl~0C2 by yet another blow-up of Bl~0C2 centered at the singularity point of X ⊂ Bl~0C2, and

replacing X by its proper transform, singularity becomes less severe. After repeating this process

for n/2 times or so, we will arrive at a curve X̃ without a singularity, from which there is a regular

and birational map to the original X.

Definition 3.2.10. At least among string theorists, a subvariety Z of X̃ in a resolution of singu-

larity, ν : X̃ → X, is called an exceptional locus if dimC Z > dimC(ν(Z)); when Z is a divisor of
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X̃, it is also called an exceptional divisor.

Exercise 3.1. It is a good excersize to find a resolution of a singularity of a surface X =

{(x, y, z) | xy = zN} ⊂ C3. This singularity is called AN−1 singularity. It is known that there

is a resolution ν : X̃ → X where the exceptional locus consists of N − 1 irreducible curves Ca

(a = 1, · · · , N − 1), each one of them is isomorphic to P1; their intersection numbers, when

presented in the form of an (N − 1)× (N − 1) matrix, is (−1) times the Cartan matrix of AN−1.

3.3 More on blow-up

3.3.1. The variety Bl~0Cn can be regarded as a line bundle on Pn−1. The open covering ∪ni=1Ui =

Bl~0Cn provides local trivialization; projection to the base space Pn−1 is given by

ν|Ui : Ui ∼= Cn = {(xi, (ξj/ξi)j 6=i)} → {(ξj/ξi)j 6=i} = Cn−1 ⊂ Pn−1, (32)

and xi plays the role of the fibre coordinate. The transition function of this line bundle is gji =

xj/xi = (ξj/ξi) on Uj ∩ Ui, so that xj = gjixi.

3.3.2. Let us compute the self-intersection of the exceptional divisor E = (Ui, xi) of the variety

Bl~0Cn. To do so, we need to find a divisor Ei0 that is linearly equivalent to, but not the same as, E.

For any i0 ∈ {1, · · · , n}, let Ei0 be a Cartier divisor (Ui, xi/xi0); xi0 is a rational function of Bl~0Cn

that establishes the linear equivalence E ∼ Ei0 . Since xi/xi0 = 1 in the patch Ui=i0 , Ei0 ∩Ui0 = φ;

in other patches Ui6=i0 , Ei0 = div(ξi/ξi0) = −div(ξi0/ξi). Thus, E · Ei0 is an algebraic cycle given

by the ξi0 = 0 hyperplane in E ∼= Pn−1 with multiplicity (−1). The intersection number En is

obtained by E · Ei0=1 · Ei0=2 · · · · · Ei0=n−1 = −1. (−1)n−1?

3.4 Canonical Divisor, Crepant Resolution, and Minimal Model

3.4.1. Suppose that X is a variety in an ambient space Y , and X has singularity. When there

is a resolution ν : X̃ → X, where Ỹ is the ambient space of X̃, there are infinitely many other

resolutions of the singularity of X. For example, for any point p ∈ X̃ ⊂ Ỹ , we can replace Ỹ and

X̃ by BlpỸ and the proper transform of X̃. We can choose arbitrary non-singular point p ∈ X̃, and

furthermore, we can repeat this process arbitrary number of times. For a given singular variety

X over C, resolution (X̃, ν) is far from unique; just its existence is guaranteed.

The sequence of blow-ups beyond minimal necessity for resolving singularity does not do any-

thing in the case X is a curve, in fact. A resolved non-singular variety X̃ may be replaced by

another non-singular variety X̃ ′ by one more (unnecessary) blow-up of the ambient space, but X̃ ′
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turns out to be isomorphic to X̃. In the case dimCX > 1, however, X̃ ′ is not always isomorphic

to X̃.

This observation motivates to impose some conditions that reflects the idea of avoiding unnec-

essary blow-ups of the ambient space. As a preparation, we introduce

Definition 3.4.2. For a non-singular variety X, one can always difine a divisor denoted by KX

and referred to as canonical divisor of X, as follows. Let ∪iUi be local coordinate patches, with

which X is covered entirely. KX as a Cartier divisor is given by setting fi0 = 1 for one of the

coordinate patches Ui0 , and set fi6=i0 = |∂{x}i0/∂{x}i|, using the Jacobian of the two sets of local

coordinates, {x}i0 in the patch Ui0 and {x}i in Ui.

Example 3.4.3. Since Cn is covered by a single coordinate patch, its canonical divisor is trivial,

KCn = 0. Explicit computations following the definition above leads to KX = −(n+ 1)Hξi0=0 for

X = Pn; when X = Bl~0Cn, KX = (n− 1)E.

When X is singular, its canonical divisor KX cannot be defined in the way described above.

A possible way to go9 is to think of a complex structure deformation Xdfm so that Xdfm is non-

singular; KX is “defined” as a limit of KXdfm
; one has to verify whether such deformation exists,

and whether or not such a limit remains independent of the choice of deformation. There are two

other ways to define a canonical divisor for a variety with singularity; see 3.5.8 and 3.5.9.

Definition 3.4.4. A resolution (X̃, ν) of a singular variety X is a crepant resolution, when X̃ is

non-singular and KX̃ = ν∗(KX). The word “crepant” came from the condition, which can be read

as absence of discrepancy between KX̃ and ν∗(KX).

When (X̃, ν) is a crepant resolution, and ν∗ : X̃ ′ → X̃ is an unnecessary extra blow-up,

(X̃ ′, ν◦ν∗) is still a resolution, but usually not crepant. Imposing the condition “crepant” therefore

reduces possible choices of resolution for a given singular variety X. For some variety X over C,

there is no crepant resolutions, although there are non-crepant resolutions. Even for some variety

X that has a crepant reslution, there can be more than one crepant resolutions that are mutually

non-isomorphic. We just have to live with these facts in mathematics.

3.4.5. The idea of avoiding unnecessary extra blow-ups may also be stated in terms of the minimal

model program. Statements in the case of dimCX = 2 are particularly simple. Here is

Theorem 3.4.6 (Castelnuovo). For a non-singular algebraic surface X which contains an irre-

ducible curve C satisfying C ·C = −1 and C ∼= P1, there is a regular and birational map ν : X → X

9Here is an example of this procedure: for a singular variety X given by (compactification of) {(x, y) ∈ C2 | y2 =
x2(x− 1)}, we can think of a deformation Xε = {(x, y) ∈ C2 | y2 = (x2 − ε)(x− 1)} with a small parameter ε ∈ C.
Since KXε = 0 for ε 6= 0, it is reasonable to claim that KX = 0.
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where a surface X remains non-singular. Conversely, if a non-singular algebraic surface X has a

regular and birational map ν : X → X to a non-singular surface X, and if the exceptional locus

is a curve C that is isomorphic to P1, then it satisfies C · C = −1.

The exceptional locus that emerges after the resolution of A1 singularity is a curve C ∼= P1

where C · C = −2. There is a regular and birational map from the resolved geometry to the A1

singularity, but C ·C 6= −1 and the image of the map is not non-singular either. So, this example

does not contradict against the theorem of Castelnuovo.

3.4.7. omission: small resolution, terminal/canonical singularity, global aspects.

3.5 Addenda to Sections 2 and 3

We begin with materials to be added to section 2.

Definition 3.5.1. Let R be a ring, and p its prime ideal. When one exhausts all the strictly

decreasing chain of prime ideals of R, R ⊃ p ⊃ p1 ⊃ · · · ⊃ pr, the length of the longest such chains

max(r) is said to be the height of p.

In R = C[x, y], hgt(p) = 2 for p = (x)+(y), hgt(p) = 1 for p = (x), and hgt(p) = 0 for p = (0).

When R = C[X], and a prime ideal p ⊂ R is the defining ideal of an irreducible subvariety

Y ⊂ X, then hgt(p) is the codimension of Y in X.

For a ring R, its Krull dimension dimR is the largest of all hgt(p) of prime ideals p of R.

3.5.2. For an irreduicible algebraic variety X defined over a field k (such as C), its field of rational

functions k(X) is an extension field over k. The transcendental degree of the extension k(X)/k,

tr.deg(k(X)/k) may also be used as a definition of the irreducible variety X.

For an irreducible algebraic variety X over a field k, the Krull dimension of the ring OX(U)

of its Affine open patch U is known to be the same as tr.deg(k(X)/k).

Not all the rings can be regarded as the coordinate ring of an Affine open patch of an algebraic

variety defined over a field k, however, as seen below.

Example 3.5.3. Think of the ring R = Z. Then its Krull dimension is dimZ = 1, because

hgt(p) = 1 (remember (p) ⊃ (0)) for all the prime numbers p. So, a prime ideal (p) corresponds

to an irreducible codimension-1 subvariety of Spec(Z). So, prime ideals (p) are hight-1 in R = Z,

and hence are regarded as codimension-1 subvarieties of Spec(Z).

3.5.4. More generally, let K be a finite dimensional extension field over Q. For any element

α ∈ K, there must be a Q-coefficient polynomial fα(x) (of finite degree) such that fα(x = α) ∈ K
is equal to 0 ∈ K. The subset OK ⊂ K is the set of all the elements in K for which we can choose
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fα(x) to be monic (one can choose fα(x) so that all the coefficients are in Z, not Q, and yet the

top degree coefficient is 1). Examples: 1) K = Q(
√−1), where OK = Z[

√−1]. 2) K = Q(
√−3),

where OK = Z[(1 +
√−3)/2], and 3) K = Q(

√−5), where OK = Z[
√−5].

It is known that OK forms a subring in K, is a Dedekind ring, and any ideals of OK can be

decomposed uniquely into a product of prime ideals of OK , and hgt(p) = 1 for all the prime ideals

of OK (similarly to OK = Z for K = Q). So, in the ring OK , the Krull dimension is 1, and the

prime ideals p are all regarded as codim-1 subvarieties of Spec(OK).

For X = Spec(OK), a general element of Div(X) is of the form
∑

p npDp, where p are prime

ideals of OK , and np ∈ Z, so Div(X) is the same as the ideal group of K. The linear equivalence

relation among those divisors are generalted by principal ideals. So, the quotient Cl(X) of X =

Spec(OK) is precisely what is known as the ideal class group ClK in algebraic number theory.

Codimension-1 subvarieties are “divisors” indeed, and such notations as OK and Cl(X) are

shared between algebraic number theory and algebraic geometry.

..............................................

Next, here we have a few memo’s on definition of “dimensions” in algebraic geometry. We

have already introduced Krull dimension for a ring, but there are a few other characterizations of

dimension of an algebraic variety.

3.5.5. For an irreducible algebraic variety X defined over a field k, the field of rational functions

k(X) on X is an extension field over k. The transcendence degree of the extension k(X)/k is

another characterization of the dimension of X.

3.5.6. For a domain R finitely generated over a field k, the Krull dimension of R and the tran-

scendence degree of the field of fractions of R are known to be the same. In other words, the Krull

dimension of an irreducible Affine variety X defined over a field k is the same as the transcendence

degree of k(X)/k.

Another characterization is through system of parameters (s.o.p.).

3.5.7. For a local ring (R,m), a set {x1, x2, · · · , xr} ⊂ m is a system of parameters, if the ideal

(x1, · · · , xr) is not contained in any one of prime ideals p ⊂ m that is not m.

The number of elements r of a system of parameters can also be used as definition of a local

ring. So, an idea here is to measure at least how many functions are necessary in order to pin

down a given point (that the local ring corresponds to) within the variety. An example is, for

R = k[[x, y]]/(xy) and m = (x) + (y), choose x1=r = x+ y.

It is known that this dimension is the same as two other definitions (Krull dimension and

transcendental degree), if the variety in question is irreducible. The definition here, however, has

32



an advantage in that the definition is given in terms of local geometry (local ring), and whether

the variety is reducible or irreducible does not take a center stage.

..............................................

The canonical divisor is well-defined for a non-singular variety X, but we cannot ask whether

a resolution of singluarity ν : X̃ → X is crepant or not if the canonical divisor KX of a singular

variety X is not defined in the first place. There are two classes of not-necessarily non-singular

algebraic varieties where the canonical divisor is well-defined.

3.5.8. WhenX is a normal variety (def. the local ring is normal (integrally closed domain) at every

point in X), the canonical bundle is a well-defined line bundle on X\Xsingl, so a Cartier divisor DX

on X\Xsingl is assigned (next section), so DX can also be regarded as a Weil divisor on X\Xsingl.

The property that codimCXsingl ≥ 2 in a normal variety X implies that Cl(X)� Cl(X\Xsingl) is an

isomoprhism in fact. So, there is a unique Weil divisor onX that corresponds toDX ∈ Cl(X\Xsingl.

The Weil divisor on a normal variety X determined in this way is denoted by KX , and called the

canonical divisor on X.

For a Noetherian local ring,

regular→ UFD → normal (integrally closed domain). (33)

Examples: X = C2/Z2 is normal but not UFD, or regular.

X = C3/Z2, C[X] = C[x2, y2, z2, xy, yz, zx] (this is not a complete intersection). The Weil

divisor KX is known to be Q-Cartier, but not Cartier in this case.

As seen above, one approach to defining the canonical divisor KX is to use the canonical sheaf

ΩX ; this approach was used for a normal variety X. Another approach is to use the dualizing

complex∗; this approach is to be used for Gorenstein varieties, as follows.

3.5.9. It is almost the definition of a Cohen–Macaulay variety X for the dualizing complex to be

represented by just one sheaf (rather than a chain complex of sheaves), so the corresponding sheaf

is called the dualizing sheaf. It is almost the definition of a Gorenstein variety X for the dualizing

sheaf of a Cohen–Macaulay variety X to be locally free. So (next section), when X is Gorenstein,

the dualizing sheaf is regarded as OX(KX) with some appropriately chosen Cartier divisor KX .

For a local ring, the arrows of implication is

regular→ compl. intersect′n→ Gorenstein→ Cohen-Macaulay. (34)

33



4 Vector Bundle, Locally Free Sheaf, and Divisor

4.1 Preparation

Definition 4.1.1. A sheaf of OX modules F is locally free, if one can find an open neighbour

Ux 3 x for any one point x 3 X so that F|Ux is isomorphic to ⊕ri=1OX .

Definition 4.1.2. A sheaf of OX modules F is torsion free, if the OX(U)-module F(U) does not

have any torsion element10 for any open subset U ⊂ X.

The value of r of a locally free sheaf F remains the same anywhere in X if X is connected.

This value r is called rank of F .

Example 4.1.3. An ideal sheaf IY for a divisor Y of X is locally free, but an ideal sheaf IZ for

a codimensionC-two subvariety Z is not locally free. Such IZ is still torsion free. This difference

reflects the fact that R = C[x] (the ring of C-coefficient polynomials in one variable) is a principal

ideal domain (PID), where one can define “division” operation, so that any ideal of the ring

R can be expressed in the form of (f) for some element f ∈ R. On the other hand, the ring

C[x1, x2, · · · , xn] (the ring of C-coefficient polynomials with multiple variables) does not have this

property. This difference—phrased in terms of algebra—has its translation in terms of geometry;

the fact that C[x] is a PID corresponds to a statement that one can find an appropriate normal

coordinate (or a defining equation f) for a divisor Y .

4.2 One-to-one Correspondence

Theorem 4.2.1. On a non-singular algebraic variety X, there is one-to-one correspondence among

A) line bundles (ie., rank-1 vector bundles), B) locally free rank-1 sheaves and C) linear equivalence

classes of Cartier divisors Pic(X).

A ⇒ B: From a line bundle L on X, a sheaf F of OX module is constructed as follows. For a

Zariski open subset U of X, let F(U) be all the sections of L that remains holomorphic in U ⊂ X.

This F(U) can be regarded as a module over a ring OX(U); a section s ∈ F(U) multiplyed by a

function f that remains regular on U ⊂ X—f · s—is still a holomorphic section of L, and hence

f · s ∈ F(U). The restriction map ρU ′U : F(U) → F(U) is obtained by just restricting a section

s ∈ F(U) to a subset U ′ ⊂ U . A sheaf F of OX module is constructed that way.

10Def. In a module M over a ring R, M 3 m 6= 0 is a torsion element, if r ·m 6= 0 for any r ∈ R that is not a
zero divisor.
In a ring R, and element r is a zero divisor, if there exists r′ ∈ R so that rr′ = 0. [e.g., when R = C[x, y]/(xy),
both x, y ∈ R are zero divisors.]
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We still need to prove that this sheaf is locally free and rank-1. Let ∪i∈IVi be an open covering

of X that provides local trivialization of the line bundle L; then F|Va ∼= OX |Va because L|Va is a

trivial line bundle. •

B ⇒ A: Let F be a locally free sheaf of OX module whose rank is 1. Then there is an open

covering ∪i∈IVi of X so that F|Vi ∼= OX |Vi . There is an element 1 ∈ OX(Va), the function whose

value remains 1 everywhere in Vi ⊂ X, and let ei be its corresponding element in F(Vi). Now,

suppose that Vi∩Vj 6= φ. Then both ρ(Vj∩Vi)Vj(ej) and ρ(Vj∩Vi)Vi(ei) belong to F(Vj ∩Vi), but they

are not necessarily the same. There must be a function gji ∈ OX(Vj ∩ Vi) so that

ρ(Vj∩Vi)Vi(ei) = ρ(Vj∩Vi)Vj(ej) gji, (35)

because F(Vj ∩ Vi) ∼= OX(Vj ∩ Vi). Now, a line bundle L over X is constructed by using ∪i∈IVi as

an open covering of X for local trivialization, and gji as the transition function; ei is a frame in a

trivialization patch Vi of the line bundle L. •

A⇒ C: Let L be a line bundle on X, π : L→ X be the projection to the base space, and ∪i∈IVi
the local trivialization patches covering X; by definition, there is an isomorphism π−1(Vi) ∼= C×Vi
and let ξi be the fibre coordinate in this trivialization patch. The transition function gji on Vj ∩Vi
sets the relation between the fibre coordinates in the overlapping trivialization patches, ξj = gjiξi.

gji remains holomorphic and has neither a pole nor a zero in Vj ∩ Vi.
Now we can use those data to specify a linear equivalence class of Cartier divisors. Let us

choose i0 ∈ I and choose fi0 ∈ C(Vi0) whatever one likes it to be. For other j ∈ I, we set

fj = gji0fi0 . (Vi, fi) defines a Cartier divisor on X; due to the ambiguity/freedom in the choice of

fi0 , however, only a linear equivalence class of Cartier divisors is specified. •

C ⇒ A: Let D = (Vi, fi) be a Cartier divisor on X. Then a line bundle L on X is defined by

using ∪iVi as the trivialization patches of L, and gji := fi/fj the transition function. Thanks to

the definition of a Cartier divisor, fi/fj neither has a pole nor a zero in Vj ∩ Vi. •

C ⇒ A ⇒ B: Let D = (Vi, fi) be a Cartier divisor on X. A sheaf F over X is given by

F(U) = {ϕ ∈ C(U) | (D + div(ϕ))|U ≥ 0} (36)

for any open set U ⊂ X. This sheaf F is locally free rank-1, because F(U) ∼= {ϕi/fi | ϕi ∈
C[U ]} ∼= OX(U) for any U ⊂ Vi, and ∪i∈IVi is an open covering of X. •

Single line summaary is

ξi = fiϕ, ξj = gjiξi, ejgji = ei, ejξj = eiξi, gji = (fj/fi), (37)
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where ei, ξi and gji are the trivialization frames, fibre coordinates and transition functions of a

line bundle L over X, and fi rational functions used in defining a Cartier divisor.

4.2.2. The one-to-one correspondence in the theorem is so important and basic in algebraic ge-

ometry that an object in one of the three categories A–C is often regarded as the corresponding

object in another category quite often in algebraic geometry literature, without referring to the

theorem even a bit. The locally free rank-1 sheaf F corresponding to a Cartier divisor D is de-

noted by OX(D); when the choice of X is obvious, O(D) may also be used. A locally free rank-1

sheaf F , often in caligraphic style, may sometimes be regarded as the corresponding line bundle,

without even changing the notation from F to F .

4.2.3. It is known11 that there is a following exact sequence for a compact Kahler manifold X:

0→ H1(X;Z)→ H0,1(X;C)→ H1(X;C×)→ H2(X;Z)→ H0,2(X;C). (39)

H1(X;C×) in the middle of this sequence is meant to be the C× := C\{0} valued Čech cohomology.

For a line bundle L over X, its transition functions gji give an element in H1(X;C×). Conversely,

any element in H1(X;C×) can be used as transition functions of a line bundle on X. Its image in

H2(X;Z) is the first Chern class of L, c1(L). Line bundles L with a given c1(L) are parametrized

by a complex torus H0,1(X;C)/H1(X;Z).

The one-to-one correspondence between the linear equivalence classes of Cartier divisors C) and

line bundles A) implies that Pic(X) should be identified with H1(X;C×). In the case of dimCX =

1 (when X is a curve), H0,2(X;C) = {0} and the homomorphism Pic(X) → H2(X;Z) ∼= Z is

surjective; this homomorphism just extracts the number of points,
∑

i ni =: deg(D) from a divisor

D =
∑

i nipti, where pti’s are points in the curve X. The kernel, divisors whose degree is

zero, still forms a variety (complex torus) H0,1(X;C)/H1(X;Z). We have seen in the case X

is an elliptic curve that degree zero divisors modulo linear equivalence still comes with a family

parametrized by E. So, this result is consistent with what we have learned before. The modulo

linear equivalence classification of Cartier divisors, Pic(X), retains the information of Wilson lines

encoded in H0,1(X;C), not just the field strength (first Chern class) in H2(X;Z), if we are to

use the language suitable for line bundles. H0,1(X;C)/H1(X;Z) is trivial when X = P1, which is

once again consistent with what we learned before.

11This exact sequence of vector spaces over C follows as the long cohomology exact sequence associated with the
following short exact sequence of sheaves,

0 −→ Z −→ O −→ O× −→ 0. (38)

Since we have not introduced sheaf cohomology in this lecture note at this moment, we do not use this logic for
explanation here.
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4.3 Examples (also mappings to projective spaces and GAGA)

Example 4.3.1. Let X = P1. X has an open covering Uξ0 6=0 ∪ Uξ1 6=0, where [ξ0 : ξ1] is the set

of homogeneous coordinates on X = P1. We have seen that Cl(X) = Pic(X) ∼= Z in this case.

For a divisor class [dH], where d ∈ Z, we can choose a Cartier divisor (Uξi 6=0, fi) with f0 = 1 and

f1 = (ξ0/ξ1)d as its representative. Corresponding to this divisor class is the line bundle where the

fibre coordinates si in the Uξi 6=0 patch are identified under the relation s0 = g01s1 in Uξ0 6=0 ∩Uξ1 6=0

with g01 = f0/f1 = (ξ1/ξ0)d. This line bundle is denoted by OP1(dH), although this notation is

primarily meant to be for the corresponding locally free rank-1 sheaf.

Holomorphic sections of the bundle OP1(dH) correspond to rational functions C(X) that are

polynomials of (ξ1/ξ0) in the Uξ0 6=0 patch, and are (ξ1/ξ0)d times those of (ξ0/ξ1) in the Uξ1 6=0

patch. Therefore the sections that are holomorphic everywhere on P1 correspond to polynomials

of (ξ1/ξ0) of degree at most d; for the divisor classes [dH] with d < 0, there is no section that is

holomorphic anywhere in P1, or put differently, the complete linear system |dH| is empty.

The cotangent bundle T ∗P1 corresponds to OP1(−2H). To see this, note that d(ξ1/ξ0) and

d(ξ0/ξ1) are the frames of this line bundle in the Uξ0 6=0 and Uξ1 6=0 patches, respectively. The

transition function is therefore g01 = d(ξ0/ξ1)/d(ξ1/ξ0) = −(ξ0/ξ1)2. The (−1) sign in g01 can

be absorbed by changing the frame in one of the two patches by (−1). Thus, this bundle T ∗P1

corresponds to the d = −2 case. Similar computation reveals that TP1 ∼= OP1(2H).

Example 4.3.2. As an obvious generalization, consider X = Pn. X = Pn is covered by (n + 1)

open Affine patches, Uξi 6=0 with i = 0, · · · , n, where [ξ0 : ξ1 : · · · : ξn] is a set of homogeneous

coordinates of Pn. Cl(X) = Pic(X) ∼= Z in this case; for a divisor class [dH] with d ∈ Z, we can

choose the Cartier divisor (Uξi 6=0, fi) with fi = (ξ0/ξi)
d as a representative. In the corresponding

line bundle OPn(dH), the fibre coordinates si in the trivialization in the patches Uξi 6=0 are identified

with sj = gjisi with the transition functions gji = (fj/fi) = (ξi/ξj)
d in Uξj 6=0 ∩ Uξi 6=0. Sections of

this line bundle holomorphic everywhere in Pn are in one-to-one correspondence with polynomials

in n-varaibles (ξi/ξ0)|i=1,··· ,n of degree at most d when d ≥ 0; if d < 0, then there is no such section.

The cotangent bundle T ∗Pn is a rank-n vector bundle on X = Pn, and its determinant bundle

det(T ∗X) = ∧nT ∗X is a line bundle. Explicit computation of the transition functions reveals that

∧nT ∗Pn ∼= OPn(−(n+ 1)H).

Definition 4.3.3. For a non-singular variety X with dimCX = n, the determinant bundle

det(T ∗X) = ∧nT ∗X of the holomorphic cotangent bundle T ∗X is called canonical bundle. It

is always rank-1. Let {x(a)
i=1,··· ,n} be the local coordinates in a patch Ua, and let ∪a∈AUa be an open

covering of X. Then we can choose ∧ni=1dx
(a)
i as a frame in the patch Ua for the local trivialization

of the canonical bundle. Sections of this bundle that look s = sa ∧ni=1 dx
(a)
i in the patch Ua are

identified in a pair of overlapping patches when sb = gbasa, with gba = |∂x(a)/∂x(b)|.
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The line bundle that corresponds to the canonical divisor KX introduced in 3.4.2 is this canon-

ical bundle ∧nT ∗X for any non-singular variety X; one can just verify that gba = fb/fa to see this.

Therefore, det(T ∗X) = ∧nT ∗X = OX(KX). With an extra abuse of notation, KX is often use for

the canonical bundle, not just for the canonical divisor.

4.3.4. Let X be a non-singular variety, and Y be a non-singular hypersurface in X; codimCY = 1

because Y is a hypersurface. Then the normal bundle NY |X is a rank-1 line bundle on Y . Due to

the one-to-one correspondence, there must be a linear equivalence class of Cartier divisors on Y .

It is known that NY |X = OY (Y |Y ); a divisor Y |Y on Y is obtained by replacing the divisor Y of

X by another divisor Y ′ that is linear equivalent to Y but not the same as Y , and Y |Y := Y ′ · Y .

Intuitively, Y ′ is a continuous deformation of Y within X, and Y ′ · Y is the fixed locus in this

deformation. Such an intuition is absent, however, when we cannot find a divisor Y ′ ∼ Y so that

Y ′ is effective.

Example 4.3.5. Consider X = Pn and choose a non-singular hypersurface Y ∈ |dH|. Then

NY |X ∼= OY (dH|Y ). In particular, when X = P2 and Y a degree-d curve in P2, Y and its

deformation intersect at d2 points.

Example 4.3.6. Consider X = Bl~0Cn and its hypersurface Y = E, the exceptional divisor of

the blow-up. We have seen that E · E ∼ −HE, where HE is the hyperplane divisor of E ∼= Pn−1.

Thus, NE|X ∼= OE(−HE).

4.3.7. For a line bundle L over a non-singular variety X, Γ(X,L) denotes all the sections of L that

remain holomorphic everywhere in X. Those sections are called global holomorphic sections. They

form a vector space over C, because a sum of two global holomorphic sections is still holomorphic

everywhere. When L = OX(D) is the locally free rank-1 sheaf corresponding to the line bundle

L, then Γ(X;L) = L(X). Therefore,

Γ(X;L) = Γ(X;OX(D)) = {ϕ ∈ C(X) | D + div(ϕ) ≥ 0} . (40)

The dimension of this vector space is denoted by `(D). The complete linear system |D| is the C×

quotient of this vector space (except ~0 ∈ C`(D)).

The family of hypersurfaces that belong to the divisor class [D] represented by an effective

divisor D in X can be captured as a whole as a hypersurface Y in X × |D|. Let us take a

basis {ϕi=0,··· ,`(D)−1} of the vector space Γ(X;OX(D)); we can always take ϕ0 = 1; when the

effective divisor D corresponds to the zero locus of a homogeneous function F0, the divisor D′ =

D+div(
∑

i ciϕi) corresponds to the zero locus of F0(
∑

i ciϕi) =:
∑

i ciFi. The family Y ⊂ X×|D|
is given as the zero locus of

∑
i ciFi, where [c0 : c1 : · · · : c`(D)−1] is the homogeneous coordinates
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of |D| ∼= P`(D)−1. Y is regarded as fibration over |D|; π : Y ↪→ X × |D| → |D|; when one point

[c0 : · · · : c`(D)−1] ∈ |D| is chosen, then the fibre is D′ ⊂ X.

Infinitesimal deformation of such an effective divisor D, or the tangent space of |D| can also

be captured in the language of geometry of the subvariety D rather than that of the entire X. It

is known that there is an exact sequence

0→ [Γ(X;OX) ∼= C]→ Γ(X;OX(D))→ Γ(D;ND|X)→ H0,1(X;C). (41)

The first term ∼= C corresponds to the subspace SpanC{ϕ0} ⊂ SpanC{ϕi=0,··· ,`(D)−1} of the second

term. The quotient, which is parametrized by (ci=1,··· ,`(D)−1/c0), is the space of sections of the

normal bundle ND|X that are holomorphic over the entire hypersurface D ⊂ X. Infenitesimal

deformations of the hypersurface D ⊂ X, the third term, therefore corresponds to the tangent

space of |D|.

4.3.8. One can use the complete linear system |D| of an effective divisor D in X to construct a

regular map from X to some projective space P`(D)−1. Let Γ(X;OX(D)) = SpanC{ϕi=0,··· ,`(D)−1}
once again. A map

Φ|D| : X −→ P`(D)−1 := P [Γ(X;OX(D))∗\{0}] (42)

is not to the projectivisation of the space Γ(X;OX(D)) (where [c0 : c1 : · · · : c`(D)−1] is the

homogeneous coordinates), but to the projectivisation of the dual vector space of Γ(X;OX(D)).

A point p ∈ X is sent by this map Φ|D| to a point [ϕ0(p) : ϕ1(p) : · · · : ϕ`(D)−1(p)] ∈ P`(D)−1, or put

differently, to [F0(p) : F1(p) : · · · : F`(D)−1(p)] ∈ P`(D)−1. This map is not well-defined, however, if

there is an irreducible divisor D0 that is contained in every member D′ of the divisor class [D].

When `(D) is sufficiently large (which means that there are many (ample) sections of the line

bundle OX(D)), Φ|D| : X → P`(D)−1 can be used as an embedding of X into a projective space.

Φ|D| : X → P`(D)−1 becomes a projection when `(D)−1 < dimCX. Even when `(D)−1 = dimCX,

multiple poins in X may be mapped to a single point in P`(D)−1.

Hyperplanes in this target space P`(D)−1 are in the form of
∑

i ciϕi = 0 (or
∑

i ciFi = 0) for

some (ci=0,··· ,`(D)−1) 6= ~0. The intersection of such a hypersurface and the image Φ|D|(X) ⊂ P`(D)−1

is the image of the divisor D′ ∈ |D| given by
∑

i ciFi = 0. This divisor D′ of X is the same as

the inverse image of [c0 : · · · : c`(D)−1] ∈ |D| under π : Y → |D|; hyperplanes in this P`(D)−1

(`(D) − 1 dimensional spaces in C`(D) before projectivisation) are dual to points in the previous

P`(D)−1 (1-dimensional space C× (ci=0,··· ,`(D)−1) before projectivisation).

Example 4.3.9. Let X = P1. Φ|dH| : X → Pd. When d = 1, Φ|H| is a trivial isomorphism between

P1’s. When d = 2, Φ|dH| : P1 3 [X : Y ] 7→ [X2 : XY : Y 2] = [ϕ0 : ϕ1 : ϕ2] ∈ P2. The image
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Φ|2H|(P1) forms a degree-2 curve {ϕ0ϕ2 − ϕ2
1 = 0} ⊂ P2. For general d, the image Φ|dH|(P1) is a

curve in Pd that intersects d times against a hyperplane in Pd. This example is not particularly

interesting.

Example 4.3.10. Let X be an elliptic curve E, and e be the origin of E. Then Γ(E;OE) = C,

Γ(E;OE(e)) = C, Γ(E;OE(2e)) = SpanC{1, x} ∼= C2 and Γ(E;OE(3e)) = SpanC{1, x, y} ∼= C3;

x = ℘ has a pole of order two at e ∈ E, and y = ℘′ of order three at e ∈ E. The map Φ|3e| : E → P2

given by p 7→ [1 : x : y] ∈ P2 sends E to a subspace of P2 defined by y2 = 4x3−g2x−g3. Even when

E is given only analytically, C/(Z ⊕ Z 〈τ〉), this maps allows us to understand E as a zero locus

of a polynomial equation of a projective space, i.e., an algebraic variety. The map Φ|2e| : E → P1,

on the other hand, is a projection (x, y) 7→ x, where two points are mapped to one point.

Theorem 4.3.11. Let M be a compact Kähler manifold of complex n dimensions such that

h2,0(M) = 0. Then there exists an algebraic geometry implementation X such that Xan = M .

The proof of this statement is divided into multple steps. The first step is to note that

h2,0(M) = 0 implies H1(M ;C×) → H2(M ;Z) is surjective. This means that one can find a line

bundle Lω on M for any ω ∈ H2(M ;Z) so that c1(Lω) = ω.

Let ωM ∈ H1,1(M ;R) be the Kähler form of the Kähler manifold M . Then one can find

ω ∈ H2(M ;Z) very close to λωM for some λ ∈ R>0; the rationale here is that one can find a

lattice point arbitrary close to a given line (in the form of {λωM | λ ∈ R}). Let ω∗ be such ω.

The first step of the argument above implies that there is a line bundle Lω∗ corresponding to

ω∗ ∈ H2(M ;Z).

As the third step, consider the vector space Γ(M ;Lω∗) and the map M → P[Γ(M ;Lω∗)
∗]

denoted by Φ|Lω∗ |. One then needs to argue that this map can be made an embedding (any pair of

points in M have distinct image points under Φ|Lω∗ |). The rationale behind this is that ωM is the

Kähler form, so the line {λωM} must be within the Kähler cone (ample cone), so the line bundle

Lω∗ must also be ample. By choosing λωM ' ω∗ very large (λ very large), Lω∗ is expected to have

ample global sections so all the points in M are resolved by those sections (i.e., very ample).

The final step is to claim that the image of M under the map Φ|Lω∗ | is characterized by the

zero loci of polynomials in the projective space P(Γ(M ;Lω∗)
∗). An important observation behind

this claim is that all the meromorphic functions of the manifold Y an of a complete12 algebraic

variety Y are rational functions on Y [Shafarevic Chap. VIII, §2.3 Thm.3 + §3.1 Thm.1]. It

follows from this observation that for any submaifold M ′ (such as the image of M under Φ|Lω∗ | in

12On Y = C, tan(z) and ez are meromorphic functions of Y an, but are not rational functions of Y . On Y = CP 1,
however, neither tan(z) nor ez is meromorphic on Y an, because they cannot be expressed as a ratio of holomorphic
functions in any neighbourhood of the z = ∞ point of Y an. Whether Y is complete (CP 1) or not (C) makes a
difference.
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P(Γ(Xan;Lω∗)
∗)) in the compact manifold Y an of a complete variety Y (such as P(Γ(Xan;Lω∗)

∗)),

there exists a subvariety X of Y so that the Xan = M ′ (locally holomorphic defining equations

of M ′ must be locally regular functions of Y ). See [Shafarevic VIII, §3.1 Thm.2 + Thm.3] or

[Hartshorn §B.2, Thm. 2.2] for more information.

A similar statement holds also for a holomorphic map between compact Kähler manifolds,

because maps are given by specifying functions locally.

4.4 Adjunction formula and examples of Calabi–Yau varieties

4.4.1. Let Y be a non-singular subvariety of a non-singular variety X. Then it is known that

0 −→ TY −→ TX|Y −→ NY |X −→ 0 (43)

is an exact sequence. Here, TY and TX are tangent bundles of Y and X, respectively, and TX|Y
is the restriction of the vector bundle TX over X to the subvariety Y . NY |X is the normal bundle

of Y in X. When dimCX = n and dimC Y = n − r, TY , TX|Y and NY |X are all vector bundles

on Y with rank (n− r), n and r, respectively.

4.4.2. When there is a short exact sequence of vector bundles 0 → E → F → G → 0 over a

manifold M , there is a relation among characteristic classes of those bundles:

c(F ) = c(E)c(G), (44)

where c(E) = 1 + c1(E) + c2(E) + · · · ; this relation applied to the short exact sequence (43) is

called adjunction formula. The same relation holds true for some other characteristic classes (such

as td(E), p(E), Â(E)). The Chern class of the bundle F does not depend on whether it has a

structure F ∼= E ⊕G (the short exact sequence splits) or not.

4.4.3. Let Y be a hypersurface of X; that is, codimCY = 1 in X. Then

c(NY |X) = 1 + Y |Y , (45)

where Y is regarded as a divisor here; since NY |X is a rank-1 bundle, its second Chern class

and beyond all vanish. The adjunction formula allows us to determine the Chern classes of the

hypersurface Y through

c(TY ) =
c(TX)|Y
1 + Y |Y = 1 + [c1(TX)|Y − Y |Y ] + [c2(TX)− c1(TX) · Y ] |Y + · · · . (46)

The condition c1(TY ) (one of the conditions of Y being a Calabi–Yau manifold) is therefore equal

to c1(TX)|Y = Y |Y . Whenever we choose Y to be a generic member of the anti-canonical class

[−KX ], therefore, it satisfies the c1(TY ) = 0 condition.
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Example 4.4.4. Let X = P2, when [−KX ] = [3H]. Thus a generic member Y ∈ [3H], i.e., a

cubic curve in X = P2, satisfies c1(TY ) = 0. Y is an elliptic curve in this case.

Let us now take X = P3, when [−KX ] = [4H]. Now, a generic member Y ∈ [4H], a quartic

surface in X = P3, satisfies c1(TY ) = 0. Y is now a quartic K3 surface.

Let us take X = P4, when [−KX ] = [5H]. A generic member Y ∈ [5H] is a Calabi–Yau three-fold

called a quintic Calabi–Yau.

When X = P4, we can think of Y = Y1 ∩ Y2, where Y1 ∈ [2H] and Y2 ∈ [3H]. Then c1(NY |X) =

2H + 3H, and c1(TY ) = 0. Y in this case is a K3 surface, but it is not a quartic K3, but it is

known as a degree-6 K3 surface.

In all those examples, the complex structure of those Calabi–Yau manifolds of various deimensions

is (roughly spealing) parametrized by how we choose global holomorphic sections of the relevant

line bundles. So, we can find out the dimension of the complex structure moduli space (roughly)

by computing the relevant `(D) = dimC[Γ(X;OX(D))]’s.

4.5 Coherent Sheaves and Projective Resolution

4.5.1. In the case of the exact sequence (43), all the three pieces there are vector bundles on a

variety Y . Pick two bundles TY and TX|Y and the injective morphism i : TY ↪→ TX|Y , then the

kernel and cokernel of this morphisms are both vector bundles, the trivial vector bundle and NY |X ,

respectively. Similarly, pick the two vector bundles TX and NY |X and the projection morphism

π : TX|Y → NY |X , then the kernel and cokernel are both vector bundles, TY and the trivial

bundle over Y , respectively.

It is not true in general, however, that the kernel and cokernel of a morphism between a two

vector bundles f : E → F on a variety X are both vector bundles on X. We have already seen

such an example; let us think of the exact sequence (9) in the case Y is a codimension-1 subvariety

of X. As we have remarked already in 4.1.3, IY is locally free (not just OX is). The cokernel of

the morphism IY ↪→ OX , which is the pushforward of OY , is supported in the subvariety Y of X,

and is not at all a locally free over X. Here, we think of locally free sheaves and vector bundles as

essentially the same thing, and use a fact that an exact sequence of locally free sheaves can also

be read as an exact sequence of the corresponding vector bundles (though we have not stated this

fact explicitly so far in this lecture note).

By giving up to think within the category of vector bundles over a given variety X, and by

allowing to include at least some kind of sheaves (that are not necessarily locally free) into a

broader category containing vector bundles over X, we have a chance that appropriate objects

can be found within the broader category suitable for the kernel and cokernel of a morphism

between two objects in the category. The question is, then, what the minimum list of objects that
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should be included in “the broader category.” Certainly the broader category should contains all

the sheaves over X that can be the cokernel of a morphism between two vector bundles on X. So,

here is a

Definition 4.5.2. A sheaf of OX modules F over a variety X is a coherent sheaf if there are

two locally free sheaves E1 and E2 of OX modules, both of finite rank r1 and r2, and there is a

morphism φ : E1 → E2 so that

E1 −→ E2 −→ F −→ 0 (47)

is exact; put differently, F = Coker (φ : E1 → E2).

The definition (characterization) of coherent sheaves is about their local properties, just like

that of locally free shaves is (requirement that a local trivialization should exists).

Example 4.5.3. Suppose that X = C2, so the ring R := OX(X) is R ∼= C[x, y], where x, y are

the Affine coordinates on X = C2. Now, think of R-modules M1
∼= C[x, y] and M2

∼= C[x, y];

this is to think of two rank-1 vector bundles E1 and E2 with a trivialization patch X, where M1

and M2 correspond to sections of E1 and E2 that remain holomorphic over X. A homomorphism

between the two vector bundles φ : E1 → E2 is specified by a polynomial φ(1) in

φ : M1 3 1 7−→ φ(1) ∈M2
∼= C[x, y]. (48)

The cokernel is

M3 := Coker (φ : M1 −→M2) = C[x, y]/(φ(1)(x, y)). (49)

So, the sheaf F of OX module that fits into this exact sequence E1 → E2 → F → 0 is such that

F(X) = M3. Its support is the φ(1) = 0 locus in X. When the polynomial φ(1) is an irreducible

non-singular curve (hypersurface) Y in X = C2, then F is i∗(OY ) on X ∼= C2 (that is, a push

forward of a locally free sheaf on the hypersurface). When the polynomial φ(1) is not irreducible,

and the zero locus consists of multiple irreducible non-singular pieces, Y = ∪iYi, that intersect

transversely with one another, then F is still OY , which is not the same as ⊕iiYi∗(OYi). When

φ(1) is the square of an irreducible polynomial φ0 ∈ C[x, y], say, φ0 = y and φ(1) = y2, then

M3 = C[x, y]/(y2) ∼= C[x] ⊕ C[x] · y as an OX module. The sheaf F is a coherent sheaf, by

definition, even in such a case. F is not in the form of the pushfoward of a locally free sheaf on

its support locus (the zero locus of φ0) anymore, however.

Theorem 4.5.4. For a given variety X, and a morphism φ : E1 −→ E2 between two coherent

sheaves E1 and E2, both the kernel and cokernel are coherent sheaves on X. This means that the

category of coherent sheaves over X is what we looked for as “the broader category containing

vector bundles over X.”
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The spirit behind seeking for such a category is from the way to see that the vector bundle

F that fits into an exact sequence 0 → E → F → G → 0 is much like13 the direct sum of the

vector bundles E ⊕ G. In this very crude way of looking at bundles, then, G can be regarded

as something like F 	 E, and E as something like F 	 G, replacing the symbol + for sum by −
for subtraction, whatever 	 means. If one is able to find a sum of two objects, it is a natural

desire also to be able to find a difference between them. Within the category of natural numbers

N (positive integers), we cannot always do so; we need to enlarge the category from N to Z so we

can always find the difference. The relation between the category of coherent sheaves on a variety

X and that of vector bundles on X is like that between Z and N.

We do not provide a proof of the theorem above in this lecture note; we will work on one more

example later instead. But before getting there, here is a recap:

4.5.5. Motivations / benefits of introducing the notion / concept “sheaves.”

• the language with which we can keep track of the ring-geometry correspondence even for

compact varieties

– the language with which we can define the notion of variety without referring to

weighted projective spaces explicitly

• the language that is necessary in characterizing the minimum category containing vector

bundles where both kernels and cokernels are contained

• Poincare’s lemma for differential forms on a manifold is promoted to the definition of exact

sequence of sheaves, which allows

• generalization and abstraction of cohomology theory (which we will see more in section 4.6)

Example 4.5.6. We have argued in 4.1.3 that the ideal sheaf IY for a subvariety Y of X is not

locally free, if codimCY > 1 in X. Such an ideal sheaf is still a coherent sheaf; we can see it

as follows. Because the definition of coherent sheaf refers only to local properties of a sheaf in

question, we take X ∼= Cn = {(x1, · · · , xn)}, and Y ∼= Cn−r = {(xr+1, · · · , xn)}, and let y denote

the coordinates (xr+1, · · · , xn) collectively; instead of the sheaf IY , we study the OX-module

IY (X). First, IY (X) ∼= (x1) + (x2) + · · · + (xr) =: M0 ⊂ C[x1,··· ,r, y]. Second, let us prepare r

copies of C[x1,··· ,r, y] = C[X], and take M1 := ⊕a=1(C[X])(a); similarly, rC2 copies of C[X] are

used in M2 := ⊕1≤b<c≤r(C[X])bc. Now,

M2 −→M1 −→M0 −→ 0 (50)

13This is not to say that F is not always isomorphic to the bundle E ⊕G.
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is surjective, where the homomorphism M1 −→M0 is via

M1 = ⊕ra=1(C[X])(a) 3 (fa(x, y)) 7→
r∑

a=1

xafa(x, y) ∈M0, (51)

and

M2 = ⊕1≤b<c≤r(C[X])(bc) 3 (fbc(x, y)) 7→ (
r∑

b=1

xbfab) ∈ ⊕ra=1(C[X])(a) = M1, (52)

where fcb := −fbc when b < c. So, the ideal sheaf IY can be obtained as the cokernel of a morphism

between rank-r and rank-rC2 locally free sheaves, and hence a coherent sheaf.

Example 4.5.7. Let E2 → E1 → IY → 0 be the sheaf exact sequence we discussed in detail above.

Combining this exact sequence with another exact sequence 0 → IY → OX → iY ∗(OY ) → 0, we

see that E1 → OX → iY ∗(OY )→ 0 is also an exact sequence, and both E1 and OX are locally free.

Therefore, the sheaf iY ∗(OY ) is also a coherent sheaf, even when codimCY > 1 in X.

For string theorists, the sheaves iY ∗(OY ) on X with various complex codimensions look like

D-branes.

4.5.8. Projective resolution: The sequence E2 → E1 → IY → 0 we saw above is certainly

exact, and both E1 and E2 are locally free, but alas, E2 → E1 is not injective. By allowing this

sequence to become longer, however, we can think of a sheaf exact sequence

0→ Er → Er−1 · · · → E2 → E1 → IY → 0, (53)

where Ei(X) = Mi := ⊕a1<a2···<ai(C[X])(a1,··· ,ai). All of E1,··· ,r are locally free sheaves on X, and

the chain complex of sheaves above, including IY , is exact. This is an example of what is called

“projective resolution” of a sheaf (IY in this case).

Combining the exact sequence above and 0→ IY → OX → iY ∗(OY )→ 0, one also finds that

0→ Er → Er−1 · · · → E2 → E1 → OX → iY ∗(OY )→ 0 (54)

is also exact, and all the sheaves except iY ∗(OY ) are locally free on X. This is an example of

projective resolution of the sheaf iY ∗(OY ).

We do not write down the definition of projective resolution in this note, but the definition

must be found in virtually any textbooks on homology algebra. More important than the precise

definition, though, is that there exists the exact sequences (53, 54), and the fact that mathemati-

cians entertain themselves with an idea that the chain complex 0 → IY → 0 is pretty much the
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same as another chain complex 0 → Er → Er−1 · · · E1 → 0; the chain complex 0 → iY ∗(OY ) → 0

is much the same as the chain complex 0 → Er → · · · E1 → OX → 0. In string theory language,

the relation between 0 → iY ∗(OY ) → 0 on a divisor Y (ie, r = 1) on X and the chain complex

0 → E1 → OX → 0 is to regard a D7-brane as the difference between a D9-brane and a D9–D7

composite.

4.6 Sheaf Cohomology

Sheaf cohomology groups are vector spaces over C assigned to a sheaf F on a variety X under

a certain rule, and are denoted by H i(X;F). Their definition is given by using resolutions of F
with certain properties. It is quite often not practical or realistic, however, to compute the sheaf

cohomology groups by following the definition faithfully. A technique called Čech cohomology

is better suited for direct computation of sheaf cohomology groups in practice, and furthermore,

one would usually combine various useful formula (which we explain in section 5) to compute the

dimension of the sheaf cohomology groups without even using Čech cohomology.

We should still start off by providing some kind of definition. Instead of writing down a

definition from the beginning (as in mathematics style), however, we begin with looking at no-

tions well-known to physicists that are actually examples of sheaf cohomology groups. Essence is

extracted from the examples, and will be promoted to a definition in the following.

Example 4.6.1. Consider the R-coefficient de Rham cohomology groups of a manifold M . Over

the topological space M endowed with analytic topology, the locally constant sheaf R associated

with the Abelian group R has a sheaf exact sequence starting from itself:

0→ R→ A0 → A1 → · · · → Am → 0, (55)

where Ap is the sheaf of R-valued smooth p-forms on M , and dimRM =: m; note that the kernel

of d : A0 → A1 is the locally constant sheaf. The process of computing R-coefficient de Rham

cohomology groups is to i) think of the locally constant sheaf R instead of the Abelian group R, ii)

replace the sheaf R by the chain complex of sheaves 0→ A0 → A1 · · · → Am → 0 that constitutes

the rest of the sheaf exact sequence, iii) replace this chain complex of sheaves by a chain complex

of Abelian groups, taking global sections of those sheaves,

0→ Γ(M ;A0)→ Γ(M ;A1)→ · · · → Γ(M ;Am)→ 0, (56)

and iv) compute the cohomology groups of this chain complex. Although the R-coefficient de Rham

cohomology groups are usually denoted by Hp(M ;R) (p = 0, · · · ,m), they are also regarded as

sheaf cohomology groups Hp(M ;R) under the definition below, which is a generalization of the

procedure ii)–iv) above.

46



Example 4.6.2. Dolbaux cohomology groups. Sections of a line bundle is a generalization of

the notion of functions, and sections of a vector bundle is a further generalization of the notion

of sections of a line bundle. Thus, vector-bundle-valued cohomology groups is a generalization of

the de Rham cohomology groups. Let M be a Kähler manifold with dimCM = n and E be a

holomorphic vector bundle on M . Now, let us abuse the notation and think of E also as the sheaf

of holomorphic sections of E on the topological space M with analytic topology. Then

0→ E → A0(E)→ A1(E)→ · · · → An(E)→ 0 (57)

is an exact sequence of sheaves on M ; here, Aq(E) is the sheaf of smooth (but not necessarily

holomorphic) bundle E-valued (0, q)-forms, and the differential d : Aq(E)→ Aq+1(E) is given by

the covariant anti-holomorphic derivative ∂̄A. The anti-holomorphic part of the connection can be

gauged away, because the vector bundle E is assumed to be holomorphic (when (dA+A∧A)(0,2) =

0). So, the kernel of ∂̄ : A0(E)→ A1(E) is the sheaf of holomorphic sections of E, which is E.

The procedure of computing the E-valued cohomology groups Hq(M ;E) is i) to think of E as the

sheaf of holomorphic sections of E (rather than the vector bundle), ii) replace the sheaf E by the

chain complex of sheaves 0 → A0(E) → A1(E) → · · · → An(E) → 0 that constitutes the rest of

the exact sequence above, iii) replace this chain complex of sheaves by a chain complex of Abelian

groups, taking the global sections of those sheaves,

0→ Γ(M ;A0(E))→ Γ(M ;A1(E))→ · · · → Γ(M ;An(E))→ 0, (58)

and iv) compute the cohomology groups of this chain complex. For more about vector bundle

valued cohomology groups, physicists can consult with the Green–Schwarz–Witten textbook, for

example.

4.6.3. Here is a side remark before putting down a definition of sheaf cohomology groups by

generalizing the two examples above. Suppose that X is a Kähler manifold with dimCX = n.

Then it is known that

Hp,q(X;C) ∼= Hq(X;∧pT ∗X). (59)

The right hand side is a vector-bundle valued cohomology group (and hence a sheaf cohomology

group) for E = ∧pT ∗X, the p-th exterior (rank-p totally anti-symmetric tensor) product of the

holomorphic cotangent bundle of X. the end of the side remark.

Now, the procedure ii)–iv) is precisely the same for the two examples above. So, this procedure

is promoted to a definition.
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Definition 4.6.4. Let X be a variety with dimCX = n and F a sheaf on X. Then its sheaf

cohomology groups H i(X;F) are obtained by finding a sheaf exact sequence

0→ F → E0 → E1 → · · · → En → 0 (60)

with certain properties (**) to be mentioned shortly, ii) replace the sheaf F by the chain complex

of sheaves 0 → E0 → E1 → · · · → En → 0 that constitutes the rest of the exact sequence above,

iii) replace this chain complex of sheaves by a chain complex of Abelian groups, taking global

sections of those sheaves,

0→ Γ(X; E0)→ Γ(X; E1)→ · · · → Γ(X; En)→ 0, (61)

and iv) compute the cohomology groups of this chain complex of Abelian groups.

Without specifying the conditions (**) to be imposed, there will be many choices in the exact

sequence (60) starting with the sheaf F of interest. If the computed dimensions of the vector

spaces H i(X;F) depend on the choice of an exact sequence (60), then the description above is

not specific enough to be able to define something. In fact, 0 → F → F → 0 is always an exact

sequence; if this choice is allowed, then we always have H i(X;F) = {0} for all of i > 0, but we

know that this is not always the case in de Rham cohomology or vector-bundle valued cohomology

groups. So, we need to introduce some criterion on the choices of the exact sequence (60) so that

the results dimC[H i(X;F)] do not depend on the choices within the criterion.

A criterion often adopted in textbooks is to require that all of the sheaves E i are injective. In

this note, we do not write down the definition of sheaves that are injective; interested readers can

refer to math textbooks. An exact sequence starting with a given sheaf F followed by injective

sheaves is called an injective resolution of F ; roughly speaking, an injective resolution is a dual

notion of projective resolution, which we have discussed in 4.5.8.

Another criterion adopted in textbooks is to require that all of E i’s are flabby (flasque) sheaves.

A sheaf E is said to be flabby, if ρUV : E(V )→ E(U) is surjective for any pair of open sets U ⊂ V ;

any section of E over U can be extended to V containing U . An exact sequence starting with a

given sheaf F followed by flabby sheaves is called a flabby resolution of F .

It is known that an injective sheaf is always a flabby sheaf. It is also known that an injective

resolution (and hence a flabby resolution) always exists. It is further known that the dimensions of

the vector space H i(X;F) computed from flabby resolutions do not depend on which resolution is

used, even when there are multiple flabby resolutions. So, the sheaf cohomology groups H i(X;F)

are defined to be those obtained by requiring (**) that (60) is an injective (or a flabby) resolution.

It is known that, if X is a variety with dimCX = n, then H i(X;F) = {0} for i > n.
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Although existence of injective/flabby resolutions is guaranteed, the sheaves involved in such

a resolution are often not the kind of objects one can deal with concretely. So, it is often not the

best strategy to try to find such a resolution explicitly to compute sheaf cohomology groups. Here

is an alternative:

4.6.5. Čech cohomology: Suppose that ∪i∈IUi is an open covering U of a topological space X.

Then a chain complex for a sheaf F

0→ C0 → C1 → · · · → Cp → · · · (62)

is obtained by setting Cp as the subset of

∏

{i0,i1,··· ,ip}⊂I
F(∩pm=0Uim) (63)

totally anti-symmetric in the indices {i0, i1, · · · , ip}. An element f ∈ Cp is therefore obtained by

specifying fi0i1···ip ∈ F(∩pm=0Uim) for any ordered (p+1)-element subset {i0, i1, · · · , ip} of I so that

fiσ(0)iσ(1)···iσ(p)
= sgn(σ) · fi0i1···ip for σ ∈ Sp+1. This is a generalization of the case of computing

Čech cohomology with the value in an Abelian group G (such as G = Z, R or C); the definition

of Cp in the G-valued cases can be regarded as a special case of the definition introduced above,

where the sheaf F is a locally constant sheaf G associated with the Abelian group G. The map

Cp → Cp+1 for a general sheaf F is defined just the same way as in the case of G-valued Čech

cohomology group computations. Now, the cohomology groups of the chain complex above are

denoted by Hp(U ;F).

The Čech cohomology groups defined in this way depends on the choice of an open covering

U of X. An extreme example is to just use one open seubset X itself to cover the whole X. Then

H i(U ;F) = {0} for i > 0, for any sheaf F . That is not what we want. It is necessary to use

an open covering U of X that consists of enough number of open subsets in order for the Čech

cohomology groups to be the same as sheaf cohomology groups defined by using injective/flabby

resolutions.

It is known that if an open covering U of X has enough open subsets so that Hq(Ū ;F) = 0

for 1 ≤ ∀q for the intersection of any p + 1 open subsets in the covering, Ū := ∩pm=0Uim , then

Hp(X;F) can be computed by Čeck cohomology Hp(U ;F). of that open covering.

4.6.6. For a sheaf F on a topological space X,

H0(X;F) ∼= Γ(X;F). (64)
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To see this, suppose that U = {Ui | i ∈ I} is an open covering of X satisfying the condition we

referred to above. Then a general element f of C0 is a set of fi ∈ F(Ui)’s specified for each i ∈ I.

It is in the kernel of d : C0 → C1 if and only if

ρ(Ui∩Uj)Uj(fj)− ρ(Ui∩Uj)Ui(fi) = 0. (65)

This means that there must be f∗ ∈ F(X) so that its restriction to Ui reproduces fi (the property

(i) in footnote 5). Moreover, the element f∗ is unique (the property (ii) in footnote 5). Thus, for

f ∈ H0(U ;F), we can asign f∗ ∈ Γ(X;F) = F(X).

5 Riemann–Roch Theorem

While sheaf cohomology groups are defined in quite an abstract way, as we have seen above, we

quite often compute sheaf cohomology groups, not by being faithful to the definition, but by using

powerful formulas that we explain in the following. The three major tools are i) Serre duality, ii)

Hirzebruch–Riemann–Roch formula and iii) cohomology long exact sequence. Let us now take a

look at them, one by one.

5.1 Serre Duality

5.1.1. Let X be a compact variety, dimCX = n, and V be a holomorphic vector bundle on X.

Then there is a natural bilinear form

Hk(X;V )×Hn−k(X;KX ⊗ V ×) −→ Hn(X;KX) ∼= C. (66)

Note that Hn(X;KX) = Hn(X;∧n(T ∗X)) is the (n, n) Hodge component, and hence is isomorphic

to C. The bundle V × is the bundle in the dual representation of V (where we take the transpose–

inverse of the (matrix valued) transition function of V to obtain that of V ×). Serre duality

states that this bilinear form is non-degenerate. That is, when the bilinear form is presented as a

coefficient matrix, the matrix has a non-zero determinant. This means that

Hk(X;V ) ∼=
[
Hn−k (X;KX ⊗ V ×

)]∗
, (67)

where the superscript ∗means that we are taking a dual vector space. In particular, the dimensions

of the two vector spaces over C are the same.

It is relatively easier to compute H0(X;F) for a sheaf F on X, because of their characterization

as the space of all possible global sections. We just have to be faithful to this property. Serre

duality also allows us to compute Hn, when F is a vector bundle (i.e., a locally free sheaf). When
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X is a curve, then we can compute both H0 and H1, and that is enough. When X is a surface,

we can compute both H0 and H2. Just one more information, hopefully linear in H0, H1 and H2,

would make it possible to determine H1. So, .......

5.2 Hirzebruch–Riemann–Roch Formula

Definition 5.2.1. For a sheaf F on an algebraic variety X, Euler characteristics is

χ(X;F) :=
n∑

k=0

(−1)khk(X;F). (68)

The topological Euler number (or Euler characteristics) χ(X) should be regarded as that of

the locally constant sheaf R, χ(X) = χ(X;R). For a Kahler manifold X,
∑n

q=0(−1)qhp,q =

χ(X;∧p(T ∗X)). Now, here is the “one more information” we crave for.

5.2.2. Hirzebruch–Riemann–Roch formula: For a vector bundle V on X,

χ(X;V ) =

∫

X

ch(V ) td(TX). (69)

When V is a line bundle, D = c1(V ), then ch(V ) = eD. Also,

td(TX) = 1 +
1

2
c1(TX) +

c2(TX) + c1(TX)2

12
+
c1(TX)c2(TX)

24
+
c2

2 + c4+

72
+ · · · . (70)

Example 5.2.3. Let X = P2, and V = OP2(d). Then

td(TX) = 1 +
3

2
H +

3 + 32

12
pt, (71)

retaining up to the 2n = 4-form part, and dropping higher order parts. So,

χ(X;O(d)) =

∫

X

(
1 + dH +

d2H2

2

)(
1 +

3

2
H +H2

)
=

(d+ 1)(d+ 2)

2
. (72)

Now, we compute H0(X;O(d)) and H2(X;O(d)). When d < 0, H0(X;O(d)) is empty, because

the divisor dH is not effective. When −3 < d, on the other hand, KX − dH ∼ (−3− d)H is not

effective, and hencee H2(X;O) is empty (where we used the Serre duality). Remembering that

H0(P2;O(d)) corresponds to the set of all the homogeneous functions on P2 of degree d, where

there can be d+2C2 monomials,

h0(P2;O(d)) =





d ≥ 0, (d+2)(d+1)
2

,
d = −1,−2, 0,
−3 ≥ d, 0,

h2(P2;O(d)) =





d ≥ 0, 0,
d = −1,−2, 0,

−3 ≥ d, (−1−d)(−2−d)
2

.

(73)

One can further verify that the value of h0(P2;O(d)) + h2(P2;O(d)) is the same as χ(P2;O(d)) in

(72), for any d ∈ Z. So, we conclude that h1(P2;O(d)) = 0.
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5.3 Cohomology Long Exact Sequence

Now, we have a fairly good tools to compute sheaf cohomology groups, when the sheaf in question

is locally free (a vector bundle). If it is not, one way to go is to define the Chern character for

sheaves that are not locally free, which is to invoke Grothendieck–Riemann–Roch formula. The

other way to go is to use the cohomology long exact sequence. A first step is, to find a short exact

sequence

0 −→ E −→ F −→ G −→ 0 (74)

over the same variety X, so a sheaf whose cohomology you hope to compute is contained in there.

5.3.1. It is known that

0 // H0(X; E) // H0(X;F) // H0(X;G) EDBC
GF@A

// H1(X; E) // H1(X;F) // H1(X;G) EDBC
GF@A

// H2(X; E) // H2(X;F) // H2(X;G)→

(75)

is an exact sequence. This exact sequence ends at finite terms, because H i(X; E), H i(X;F) and

H i(X;G) all vanish for i > n, when dimCX = n. So, even when G is not locally free, if it is

possible to find an exact sequence with locally free E and F , and then one can use this exact

sequence to determine the dimensions of the vector spaces H i(X;G) from those of H i(X; E) and

H i(X;F).

When the support of a sheaf G is a closed subvariety Y of X with codimCY > 0, therefore,

computation of its sheaf cohomology often begins with finding a useful short exact sequence. In

the case of G = iY ∗(OY ), the exact sequence (9) is always available. While OX is locally free, IY is

not necessarily locally free; this is not a problem because a projective resolution (53) is avialble for

IY . First, one computes sheaf cohomology groups of Er and Er−1 by using H0(X;F) = Γ(X;F),

the Serre duality and the Riemann–Roch theorem, and then uses the long exact sequence to

compute the sheaf cohomology groups of Er\Er−1. Secondly, the sheaf cohomology groups of

Er\Er−1 and Er−2 are used in yet another long exact sequence to compute those of Er−1\Er−2. One

can go along this procedure to compute the sheaf cohomology groups of E2\E1 = IY , and then

IY \OY = iY ∗(OY ).

Example 5.3.2. Let X = P2 and Y = C ∈ |dH| be a non-singular degree d > 0 curve in

X. The sheaf cohomology groups of iC∗(OC) can be computed by using the exact sequence
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0 → OC(−C) → OX → iC∗(OC) → 0; note that IC = OX(−C), because the subvariety C is a

divisor of X in this case. Now,

h0(X;OX) = 1, h1(X;OX) = 0, h2(X;OX) = 0, h3(X;OX) = 0, (76)

h2(X;OX(−d)) =

{
(d−2)(d−1)

2
, d ≥ 3,

0, 2 ≥ d,
h1(X;OX(−d)) =

{
0, d ≥ 0,
0, 2 ≥ d,

(77)

h0(X;OX(−d)) = 0, h3(X;OX(−d)) = 0; (78)

So, we can use the long exact sequence to find out that

h0(X; iC∗(OC)) = 1, h1(X; iC∗(OC)) =

{
(d−2)(d−1)

2
, d ≥ 3,

0, 2 ≥ d,
hi≥2(X; iC∗(OC)) = 0.

(79)

As a little more general class of sheaves G supported on a closed subvariety Y with codimCY >

0, one can think of sheaves of the form G = iY ∗(L), L ∈ Pic(Y ). For L that is obtained in the

form of L = OY (D|Y ) for some OX(D) ∈ Pic(X), it is useful to remember that

Theorem 5.3.3. 0 → E ⊗ OX(D) → F ⊗ OX(D) → G ⊗ OX(D) → 0 is exact, whenever

0 → E → F → G → 0 is exact. Moreover, the same is true for any exact sequence (not just a

short exact sequence).

6 Curves and Surfaces

6.1 Curves

6.1.1. a few definitions: For a curve Σ, its genus is g := h0,1 = h1,0. It follows that 2 − 2g =

χtop(Σ) =
∫

Σ
c1(TΣ) = − ∫

Σ
KΣ.

For a divisor D =
∑

i nipti on a curve Σ, its degree deg(D) :=
∑

i ni counts the number of

points in D, including the multiplicity. The space of degree-0 divisors, Pic0(Σ), in

0 −→ Pic0(Σ) −→ Pic(Σ) −→ Z −→ 0 (80)

is called the Jacobi variety of Σ.

6.1.2. The Riemann–Roch formula on a curve Σ is

h0(Σ;O(D))− h1(Σ;O(D)) =

∫

Σ

(1 +D) (1 + c1(TΣ)/2) = deg(D) + (1− g). (81)

Popular examples of this theorem includes
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• The D = 0 case: χ(Σ;OΣ) = 0 + 1− g (should be equal to h0,0 − h0,1 = 1− g).

• The D = KΣ case: χ(Σ;KΣ) = deg(KΣ) + (1− g) = g − 1 (should be equal to h1,0 − h1,1 =

g − 1).

• h0(Σ;TΣ) is the number of globally defined holomorphic tangent vectors, and h1(Σ;TΣ)

that of complex structure deformations. String theorists learn in textbooks that

#(b− ghosts)−#(c− ghosts)

= −χ(Σ, TΣ) = χ(Σ;KΣ ⊗ T ∗Σ) = (1− g) + deg(2KΣ) = 3g − 3. (82)

6.1.3. ramification: Consider a regular map between two curves, φ : Cc → Cb, where φ(Cc) is

not just a point in Cb. When φ−1(p) consisits of d points for generic points p ∈ Cb, then the map

is called degree d map. At isolated points in Cc and Cb, however, the map φ may behave not as

local isomorphism, but as y 7→ x = yn for some n ≥ 2. This behavior is called ramification. The

ramification divisor R on Cc is defined by R =
∑

i(ni−1)pti. There is a relation Kc = φ∗(Kb)+R,

and by counting their degree,14

(2gc − 2) = d(2g(Cb)− 2) + deg(R). (83)

Exercise 6.1. Think of φ : Cc → Cb where Cc is the compactification of a hyperelliptic curve

{(x, y) ∈ C2 | y2 = P (2g+2)(x)} and Cb ' P1 that of {x ∈ C}. Confirm that the relation above

holds for this example.

Exercise 6.2. Prove that there is no surjective (non-constant) map from P1 to a curve Σ of genus

g ≥ 1; note that R ≥ 0.

6.1.4. resolution of double point singularity Note that, when A is blown up at one non-

singular point to become Ã, K(Ã) = ν∗(K(A)) + (d − 1)E, where E is the exceptional divisor,

and d the dimension of A. Now, let X = D be a hypersurface of A, and is singular at the center

point of the blow-up, where the defining equation of X is of degree m, at least. Then the proper

transform D of D corresponds to ν∗(D)−mE. Using the adjunction formula,

K(D) = K(Ã) +D = (K(A) +D) + (d− 1−m)E = K(D) + (d− 1−m)E|D. (84)

For example, when a curvee Σ forms a double point singularity, and becomes Σ after the double

point singularity is resolved, then m = 2 and d = 2. So, K(Σ) = K(Σ)− 2pts, g(Σ̃) = g(Σ)− 1.

[example, elliptic curve becomes P1]

14From the exact sequence 0 → φ∗(T ∗Cb) → T ∗Cc → ⊕iC⊕(ni−1)
pti

, we have χ(Cc;T
∗Tc) = χ(Cc;φ

∗(T ∗Cb)) +

χ(Cc;⊕iC⊕(ni−1)
pti

. The equation in the main text also follows from this.
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6.2 Curves in a Surface

6.2.1. When a curve C is a divisor in a surface S, the adjunction formula

KC = (KS + C)|C (85)

determines KC of the curve C. It then follows that

2g(C)− 2 = deg(KC) = C · (KS + C). (86)

Examples: If S = P2, and C ∈ |dH|, then 2g − 2 = dH · (d − 3)H = d(d − 3). g =

(d−1)(d−2)/2. Hyperplanes and conics: g = 0, cubics: g = 1, quartic: g = 3. (cf Example 5.3.2:

h0(S; iC∗(OC))) = 1 and h1(S; iC∗(OC)) = g are the same as h0(C;OC) = 1 and h1(C;OC) = g

here.)

If S is a K3 surface, where KS = 0, 2g(C) − 2 = C · C. So, C2 ∈ 2Z. The lattice of

algebraic curves SX ⊂ H2(X;Z) is therefore an even lattice. A curve C with a genus g comes in

a g-dimensional family (g-dimensional space of deformation) in a K3 surface S, because

h0(S;OS(C)) ≥ χ(S;OS(C)) =

[
c2(TS) + c1(TS)2

12
= 2

]
× 1 + c1(TS) · C + 1× C2

2
(87)

= 2 + 0 +
2g(C)− 2

2
= g(C) + 1; (88)

the dimension of |C| is h0(S;OS(C))− 1 ≥ g(C).

6.3 Surfaces

del Pezzo surfaces S = dPk (k ≤ 8) are obtained by blowing up P2 at arbitrary k points in

P2 successively. Thus, KS = −3H +
∑k

i=1Ei, where Ei is the exceptional divisor of the i-th

blow-up. So, for the range 0 ≤ k ≤ 8, c1(TS)2 = 9 + k(−1) = 9 − k remains positive. It is

known that h1,1(S) = 1 + k, and h2,0(S) = h1,0(S) = 0, so χtop(S) = 3 + k. Consistency check:

χ(S;OS) = [c2 + c2
1]/12 = [(3 + k) + (9− k)]/12 = 1 = h0,0.

Examples: S = (d) ⊂ P3: the adjunction formula is used:

c(S) =
(1 +H)4

1 + dH
= (1 + 4H + 6H2 + 4H3 + · · · )(1− dH + d2H2 − d3H3 + · · · )

= 1 + (4− d)H + (6− 4d+ d2)H2 + (4− 6d+ 4d2 − d3)H3. (89)

So, c1(TS) = (4− d)H|S and c2(TS) = (6− 4d+ d2)H2|S. Thus, in particular,

χtop(S) =

∫

S

c2(TS) =
(
dH · (6− 4d+ d2)H2

)
P3 = d(6− 4d+ d2). (90)
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Interpretation: S = P1 if d = 1 (obvious), S = P1 × P1 if d = 2, S = dP6 if d = 3,

S = K3 if d = 4, etc. At least χtop = 3, 4, 9, 24 for d = 1, 2, 3, 4 agrees with those interpretations.

χtop(S) = 55 for d = 5.

χ(S;OS) =
[c2 + c2

1]

12
=
dH

12

(
(6− 4d+ d2)H2 + ((4− d)H)2

)
=
d(2d2 − 12d+ 22)

12
, (91)

which remains 1, 1, 1 for d = 1, 2, 3 (P2, P1 × P1, dP6) and 2, 5 for d = 4, 5. The degree-5

hypersurface should have h2,0(S) = 4.

7 Introduction to Toric Geometry

Toric variety X is a complex n dimensional variety that has an automoprhism group Aut(X)

containing (C×)n. The word toric came from this algebraic torus of the symmetry group; see

XXXXXX for more.

Toric varieties are therefore nothing more than a class of algebraic varieties that happen to

have a very special property. Geometry of a toric variety is, however, known to be described

by using certain combinatorial data (due to the large symemtry group Aut(X)), and it is even

possible to construct a variety of this class by dealing with such combinatorial data. So, it is very

easy to handle varieties of this class. For this usefulness (as well as for the fact that toric varieties

are generalizations of projective spaces),15 toric varieties have been used in many situations.

Not a small fraction of textbooks and review articles on toric varieties start declaring right

from the beginning that this xxx is the combinatorial data to use, whitout explaining why one

has come to think of using such combinatorial data. So, this section of this note explains the idea

that led to the use of those combinatorial data. We do not intend to provide full account of all

the techniques on toric geometry here, but the contents of this section will get a reader prepared

to the extent that he/she is not going to be puzzled or bewildered when she/he reads papers that

involve toric data.

7.1 Introduction to the combinatorical data

7.1.1. First, for X = P2, consider expressing complete linear system |dH| of a divisor [dH] ∈
Pic(X) by using Newton polygon; we know that Γ(X;OX(dH)) consists of homogeneous functions

15P2 is an example of toric varieties because it has C××C× as a part of its automorphism group. Let [X0 : X1 : X2]
be the homogeneous coordinates of X = P2. Then for (λ, µ) ∈ C× × C×,

φ(λ,µ) : X 3 [X0 : X1 : X2] 7−→ [X0 : X1 : X2]′ = [X0 : λX1 : µX2] ∈ X. (92)
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of degree d; if we use a set of inhomogeneous coordinates in an Affine patch U0 = {(x1, x2) ∈ C2},
then possible monomials forms a pyramid (triangle) of lattice points of height d. We say that

|dH| =P [SpanC {xm1
1 xm2

2 | m ∈ ∆} \{0}]⇐⇒
{(m1,m2) ∈M | 0 ≤ m1,2, m1 +m2 ≤ d } =: ∆ ⊂M := Z⊕2. (93)

This is the first example of an idea of expressing complete linear systems by its Newton polygon

in a lattice M = Z⊕n for an n-dimensional toric variety X.

7.1.2. On the vector space of rational functions C(X) of a toric variety X, the group (C×)n ⊂
Aut(X) acts by pull-back. In the case of X = P2, eigenstates of the (C×)n=2 action are the mono-

mials {xm1
1 xm2

2 = (X1/X0)m1(X2/X0)m2 = (X0/X1)−m1−m2(X2/X1)m2 | (m1,m2) ∈ M}. The

origin (0 ∈M) of the lattice M ∼= Z⊕n=2 corresponds to the rational function 1 on X = P2. Two

generators ê1 and ê2 may be chosen so that they correspond to the rational functions x1 = X1/X0

and x2 = X2/X0. Certainly those (x1, x2) are the regular coordinates of an Affine chart U0 ⊂ P2;

for other Affine charts, the regular coordinates are (X0/X1, X2/X1) = (x−1
1 , x2/x1) in U1 and

(X0/X2, X1/X2) = (x−1
2 , x1/x2) in U2. Those regular functions in other Affine charts correspond

to −ê1, ê2 − ê1, −ê2 and ê1 − ê2, respectively. There are SL(n = 2;Z) basis transformations on

the lattice M = Z⊕n=2 mapping (ê1, ê2) for the chart U0 to (−ê1 + ê2,−ê1) for the chart U1, or to

(−ê2, ê1 − ê2) for the chart U2. So, we are not doing injustice to any one of the Affine charts.

7.1.3. When we converted the complete system |dH| into a Newton polygon on M ∼= Z⊕n,

we implicitly replaced a homogeneous function of degree d with a degree-d polynomial in the

inhomogeneous coordinates (x1, x2) by dividing by (X0)d. We could have also said that we chose

one divisor D = dDX0=0 and expressed the vector space Γ(X;OX(D)) as the set of rational

functions of X = P2. We could have done the conversion by using any degree-d monomial of the

homogeneous functions, like (X1)d, Xd−1
0 X1 etc. (D = dDX1=0, D = (d− 1)DX0=0 +DX1=0, etc.).

Depending on how we did it, the Newton polygon shifts its location in M ∼= Z⊕n=2. So, only the

shape of the Newton polygon carries the information of |dH|; the position of the polygon in M

does not.

7.1.4. The Newton polygon of |dDX0=0| in M ∼= Z⊕n=2 for X = P2 can be regarded as the

intersection of three displaced cones; the three cones are

σ̂0 := SpanZ≥0 {ê1, ê2} , (94)

σ̂1 := SpanZ geq0 {−ê1 + ê2,−ê1} , (95)

σ̂2 := SpanZ≥0 {−ê2, ê1 − ê2} . (96)
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and when they are displaced so that the vertices of the cones σ̂0, σ̂1 and σ̂2 are displaced to

m
(d)
0 := (0, 0) ∈M , m

(d)
1 := (d, 0) ∈M and m

(d)
2 := (0, d) ∈M , respectively, then the intersection

of the three displaced cones reproduces the Newton polygon for |dH|.
The three cones are in one-to-one correspondence with the Affine charts of X = P2. The

coordinate ring of the Affine charts are

C[U0] = C[x1, x2] = C[{xm | m ∈ σ̂0}]/(xmxm′ − xm+m′), (97)

C[U1] = C[x2/x1, 1/x1] = C[{xm | m ∈ σ̂1}]/(xmxm′ − xm+m′), (98)

C[U2] = C[1/x2, x1/x2] = C[{xm | m ∈ σ̂2}]/(xmxm′ − xm+m′). (99)

For more general n-dimensional toric varieties X, Affine charts of X—{Ui}—are in one to one

correspondence with n-dimensional cones in M ∼= Z⊕n denoted by σ̂i. The coordinate ring on Ui

is

C[Ui] = C [{xm | m ∈ σ̂i}] /(xmxm′ − xm+m′). (100)

Those funcions regular in a particular Affine patch are regarded as rational functions on the

entire variety X. So, we can find algebraic relations among such functions that are regular in

separate Affine charts, by comparing them as rational functions on X (as lattice points in M).

So, the relative arrangement of the cones σ̂i indicates how Affine patches are glued together, by

the algebraic relations among regular/rational function encoded in the lattice of rational functions

M .

7.1.5. There are some rules for the cones σ̂i ⊂ M ⊂ Z⊕n of a toric variety X to satisfy. It is not

obvious how to find out such a rule by just looking at one example X = P2. So, here we state a

known result. First, consider a lattice N ∼= Z⊕n dual to M , and then define the dual cone σi for

each one of the cones σ̂i.

σ :=
{
n ∈ N ∼= Z⊕n | 〈n,m〉 ≥ 0 for ∀m ∈ σ̂} . (101)

When X is a toric variety, the cones σi in N do not overlap with each other (apart from the faces

of the cones). The variety X is compact, if and only if the cones {σi ⊗ R} completely cover the

entire N ⊗ R.

In the example X = P2, the dual cones are

σ0 = SpanZ≥0 {e1, e2} , (102)

σ1 = SpanZ≥0 {e2,−(e1 + e2)} , (103)

σ2 = SpanZ≥0 {−(e1 + e2), e1} . (104)

So, the conditions above are satisfied indeed. Here, ei’s are the lattice elements in N , and are the

dual basis of êi in M .
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7.2 Examples

1-dimensional toric varieties

X = P1: introduce two cones in N ∼= Z. One is σ0 = SpanZ≥0 {e1} and the other σ1 =

SpanZ≥0 {−e1}. For X = C, just retain one cone σ0 in N .

2-dimensional toric varieties

We introduce a notation

〈v1, v2, · · · ,〉 := SpanZ≥0 {v1, v2, · · · , } . (105)

Now, X = P2 corresponds to introducing three cones in N ∼= Z⊕2,

σ0 = 〈e1, e2〉 , σ1 = 〈e2,−(e1 + e2)〉 , and σ2 = 〈−(e1 + e2), e1〉 (106)

in the new notation. As for X = C2, just retain σ0 and get rid of two other cones σ1,2.

Here is a family of surfaces, called Hirzebruch surfaces, which are labeled by an integer k.

They are denoted by Fk. For X = Fk, we introduce four cones in N ∼= Z⊕2. σ++ := 〈e1, e2〉,
σ−+ = 〈e2,−e1 + ke2〉, σ−− := 〈−e1 + ke2,−e2〉 and σ+− = 〈−e2, e1〉. The Hirzebruch surfaces Fk

are all compact. Certainly the four cones completely cover N ⊗ R.

If we just retain the cones σ++ and σ−+, then the corresponding toric variety X is known to

be the total space of OP1(k) (or −k?).

n-dimensional toric varieties

X = Pn: we introduce n + 1 cones σ0, σi=1,··· ,n in N , corresponding to n + 1 Affine patches of

X = Pn. First, σ0 = 〈e1, · · · , en〉. The n other cones are σi = 〈e0, · · · , en(w/o ei)〉 for i = 1, · · · , n,

where e0 := −(e1 + · · ·+ en).

7.3 Divisors, Algebraic cycles, Linear Systems

It is much more convenient to use the cones σ’s in N than σ̂’s in M in stating all the conditions

on the arrangments of the cones (on gluing of the Affine patches) and the condition for the

compactness of toric varieties. There more benefits than that in using the data in the lattice N ,

in fact.

7.3.1. Let us use X = Pn as an example. The complete linear system |dH| corresponds to a

Newton polygon in the lattice M that is an n-dimensional pyramid with height d. We can take

one of the (n + 1) vertices of the Newton polygon at ~0 ∈ M (by dividing the homogeneous

degree-d functions on Pn by (X0)d), when the n-other vertices are at (d, 0, · · · , ), (0, d, · · · ), · · ·
and (0, · · · , 0, d) in M . Those vertices correspond to the monomials (X0)d, (X1)d, · · · and (Xn)d,

respectively. Those vertices m
(d)
i of the Newton polygon are the vertices of the diplaced cones σ̂’s
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in M , and hence to the cones σ’s in N . Noting that (Xi)
d is the only monomial that remains

non-vanishing at the point Xi = 1, X0 = X1 = · · · = Xn = 0 in Pn, we see that the n-dimensional

cone σi corresponds to this special point (algebraic 0-dimensional cycle) in Pn.

Next, think of one of the highest-dimensional faces (called facets) of the Newton polygon. The

lattice points in a facet that is anti-podal to the vertex m
(d)
i correspond to all the monomials

where Xi is not contained. So, they are all the monomials that remain non-vanishing when the

homogeneous functions of degree d are restricted to the divisor Xi = 0. The dual of this facet is a

1-dimensional ray along ei, which is shared by n n-diensional cones, σ0,··· ,n except σi. So, we are

led to an idea that 1-dimensional rays in the data of N correspond to divisors in X.

So, this observation motivates us to regard the data in the lattice N ∼= Z⊕n for a toric n-

dimensional variety X, not as a collection of n-dimensional cones alone, but as a collection of

n-dimensional cones, and other cones with lower dimensions that appear as intersection of those

cones. The collection of those cones is called a fan. The toric fan for X = P2 is, for example,

Σ =
{
〈e1, e2〉 , 〈e2, e0〉 , 〈e0, e1〉 , 〈e1〉 , 〈e2〉 , 〈e0〉 ,~0

}
. (107)

A subset Σ(m) of a fan Σ is the collection of m-dimensional conles in Σ.

Here is a general story. For a toric variety X, elements of Σ(1) have corresponding divisors

in X; for k = 1, · · · , n, those in Σ(k) have corresponding codimension-k algebraic cycles in X.

After removing all those subvarieties from X, there remains an algebraic torus (C×)n. So, an

n-dimensional cone σ ∈ Σ(n) should be regarded as a point; the collection of all the cones in a fan

Σ that is geometrically contained in σ should be regarded as an Affine chart corresponding to σ̂.

7.3.2. A complete linear system of a divisor D on a toric variety X is given by (σ̂i,m
(D)
i ) where

i runs over the Affine charts (cones in Σ(n)). So, a divisor class [D] is specified by specifying a

rational function m
(D)
i ∈M for each cone σi ∈ Σ(n).

Γ(X;OX(D)) = SpanC {xm | D + div(xm) ≥ 0} , (108)

= SpanC
{
xm | ∀i, div(xm) + fi ≥ 0

}
, (109)

= SpanC

{
m ∈M | ∀i, m−m(D)

i ∈ σ̂i
}

(110)

where, in the second line, we used the description of a Cartier divisor (Ui, fi) for a divisor D. So, a

Cartier divisor on X is given by {mi ∈M | i = 1, · · · , |Σ(n)|}, whose interpretation is (Uσ̂i , x−mi).

Two Cartier divisors {mi|i = 1, · · · , |Σ(n)|} and {m′i | i = 1, · · · , |Σ(n)|} are linearly equivalent

if and only if there is a rational function xm0 with m0 ∈ M , so that mi = m′i + m0 for all

i = 1, · · · , |Σ(n)| simultaneously. The Newton polygon in M of one of such divisors is obtained

from that of the other by shifting by m0.
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When a Cartier divisor (σ̂i,mi) is given, its corresponding description as a Weil divisor is

D =
∑

τa∈Σ(1)

〈va,−mi〉Da, (111)

where Da is the divisor of X corresponding to τa ∈ Σ(1), va the primitive vector (the first lattice

point from ~0 ∈ N) along the 1-dimensional ray τa, and we should use −mi for an n-dimensional

cone σi containing τa on its face; although there can be multiple n-dimensional cones σi that

contain a given 1-dimensional cone τa, the value 〈va,−mi〉 ∈ Z remains the same, whichever −mi

of that sort we use.

A a note on elliptic curves and elliptic functions

a text brook: section 1 of daen-kansuu-ron by Adachi and Komatsu, Springer–Verlag Tokyo

(’91). This book is a Japanese translation of the Chap. 2 of “Vorlesungen über allgemeine

Funktionentheorie und elliptische Funktionen” by Hurwitz and Courant.

A.1 Elliptic curve and the ℘-function

There are two ways to construct an elliptic curve E. One is to take a quotient of C = {u ∈ C} by

a rank-2 lattice Λ = Z 〈ω1〉 ⊕ Z 〈ω2〉 ⊂ C generated by u = ω1 and u = ω2, with ω2/ω1 =: τ ∈ C;

we assume that Im(τ) > 0.

E = Eτ = C/Λ. (112)

This is called an alaytic representation of an elliptic curve with the complex structure τ ; one can

set ω1 = 1 because a pair of elliptic curves with the same τ , but with different ω1 are mutually

isomorphic (via u 7→ u × ω1/ω
′
1). The other is to consider a one-point compactification E ′ of an

Affine variety

E ′ =
{

(x, y) ∈ C2 | y2 = 4x3 − g2x− g3

}
(113)

for some g2, g3 ∈ C.

The relation between those two constructions is simply stated (in the following) by using

Weierstrass’ ℘ function. The ℘ function is a complex valued function from the complex u-plane

C given by

℘(u; τ, ω1) =
1

u2
+
∑

0 6=ω∈Λ

(
1

(u− ω)2
− 1

ω2

)
=

1

ω2
1

℘(u/ω1; τ, 1); (114)

it is periodic under translation u → u + ω (ω ∈ Λ), and holomorphic everywhere in the u-plane

except u ∈ Λ ⊂ C; it has a pole of order two at u ' ω for each one of ω ∈ Λ.
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Definition A.1.1. An elliptic function is a rational function on the u-plane that is periodic under

translations by Λ. (so, it can be regarded as a function on C/Λ)

A.1.2. For a given rank-2 lattice Λ ⊂ C, elliptic functions form a field. Moreover, it is known

that an elliptic function ϕ can be expressed in the form of

ϕ(u) =
f1(℘(u))

f2(℘(u))
+

(
d℘

du

)
f3(℘(u))

f4(℘(u))
, (115)

where f1,2,3,4 are polynomials appropriately chosen for a given ϕ. When ϕ(u) is even under

u→ −u, just the first term is enough; if ϕ(u) is odd, then just the second term is enough. •

A.1.3. Here, we summarize various properties of an elliptic function without a proof. Suppose

that ϕ(u) is an elliptic function with its periodicity Λ ⊂ C.

(a) Let {pi + Λ | i ∈ I0} be the list of zero’s of ϕ(u), and {qj + Λ | j ∈ I∞} that of poles of ϕ(u);

pi [resp. qj] should be counted m-times if ϕ(u) has a zero [resp. pole] of order m. Then

|I0| = |I∞|, first of all, and

∑
i

pi ≡
∑
j

qj mod Λ, (116)

secondly.

(b) Let {aj ∈ C | j ∈ I∞} be the list of the residues at the pole u = qi + Λ. Then
∑

j∈I∞ aj =

0 ∈ C.

(c) |I0| = |I∞| is either zero, or 2, 3, · · · , but it cannot be 1. (if |I∞| = 1, then
∑

j∈I∞ aj would

be zero, so there is no pole to begin with)

(d) for any choice of {pi=1,··· ,n} ∈ E and {qj=1,··· ,n ∈ E} that satisfy the condition (116), there

exists an elliptic function whose zero’s and poles are the chosen {pi} and {qj}, respectively.

Such an elliptic function is unique up to multiplication by a non-zero complex number.

A.1.4. Since (d℘/du)2 = (℘′)2 is an elliptic function that is even under u → −u, it should be

expressed in terms of a rational function of ℘. It is known that

(℘′)2 = 4(℘)3 − g2℘− g3, (117)
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for some appropriately chosen value16 of g2, g3 ∈ C. So, the elliptic functions ℘ and ℘′ provides a

map

(℘, ℘′) : E = C/Λ 3 (u+ Λ) 7−→ (℘(u), ℘′(u)) ∈ {(x, y) ∈ C2 | y2 = 4x3 − g2x− g3

}
= E ′.

(120)

The origin u = 0 + Λ in E is mapped to (x, y) = (∞,∞), so this is a map from the compact space

E to the one-point-compactification E ′ of E ′.

The inverse map is obtained by noting that

u =

∫ u

0

du′ =
∫

d℘(u)

[d℘/du]
=

∫ (x,y)

(∞,∞)

dx

y
=

∫ (x,y)

(∞,∞)

dx√
4x3 − g2x− g3

. (121)

The periods 1 and τ are obtained by integrating dx/y over topological cycles in the elliptic curve

E ′.

A.2 Elliptic curve in algebraic geometry

In algebraic geometry, we regard an elliptic curve E = E ′ as a subvariety of P2 given by

ZY 2 = 4X3 − g2Z
2X − g3Z

3, (122)

where [X : Y : Z] are the homogeneous coordinates of P2. E ∼ 3H. The point [X : Y : Z] = [0 :

1 : 0] ∈ E ⊂ P2 is a closed subvariety of E given by {Z = 0}|E; its complement—Zariski open, by

definition—is the Affine variety E ′ ⊂ C2 = {(x, y) = (X/Z, Y/Z)}. The ring of regular functions

in this Zariski open subset is OE(E ′) = C[x, y]/(4x3 − g2x− g3 − y2).

x = X/Z and y = Y/Z are both rational functions on P2, and upon restriction to E, both

are also regarded as rational functions on the elliptic curve E. Since the divisors {X = 0} and

{Z = 0} of P2 intersect the divisor E at [X : Y : Z] = [0 : 1 : 0] ∈ P2 with multiplicity +1 and

+3, respectively, div(x) and div(y) have a pole of order 2 and 3 at that point, respectiveley. This

conclusion agrees with the fact in the analytic representation C/Λ of E that ℘(u) and ℘′(u) have

a pole of order 2 and 3 at u = 0, respectively.

The field of rational functions of the algebraic variety E, C(E), is the field of elliptic functions

on E = C/Λ.

16Using weight-4 and weight-6 modular forms (q := e2πiτ ),

g2 = 60
∑

ω∈Λ\0

1

ω4
=

120ζ(4)

ω4
1

E4(τ), E4(τ) = 1 + 240(q + 9q2 + · · · ). (118)

g3 = 140
∑

ω∈Λ\0

1

ω6
=

280ζ(6)

ω6
1

E6(τ), E6(τ) = 1− 504(q + 33q2 + · · · ). (119)
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A.2.1. The property (a) implies that

deg (div(ϕ)) = 0, ϕ 6=0 ∈ C(E) (123)

The property (d) implies that p1 + p2 ∼ (p1 � p2) + e, where pi for i = 1, 2 are two points (as

well as divisors) in E, and e the origin point (as well as a divisor) of E. Here, + is the sum in

Div(E), and � the sum in C/Λ.

Any degree 0 divisor of E, D =
∑n

i=1 pi −
∑n

j=1 qj ∈ Div(E) with pi ∈ E and qj ∈ E, is linear

equivalent to the divisor (�ipi �j qj) − e. The divisor class [D] ∈ Cl(E) is the trivial one, [0], if

and only if �ipi �j qj = e = 0 ∈ C/Λ.

A.3 Addition Theorem

A.3.1. One can use A.1.2 and A.1.3 to derive the addition theorem of the ℘-function,

℘(u1 � u2) + ℘(u1) + ℘(u2) =
1

4

(
℘′(u1)− ℘′(u2)

℘(u1)− ℘(u2)

)2

. (124)

Exercise A.1. Let us verify that the meromorphic (rational) function φ

φ(u) =
℘′(u)− A℘(u)−B

℘(u)− C =
y − Ax−B
x− C , (125)

A =
℘′(u1)− ℘′(u2)

℘(u1)− ℘(u2)
, B =

℘(u1)℘′(u2)− ℘(u2)℘′(u1)

℘(u1)− ℘(u2)
, C = ℘(u1 � u2) (126)

gives rise to a principal divisor

div(φ) = Du1 +Du2 −De −Du1�u2 . (127)

• The first step is to realize that the meromorphic (rational) function ℘′(u) − A℘(u) − B =

y − Ax− B has just one pole of order 3 at e, so it must also have three zeros. Two among

them are u1 and u2; that was how the coefficients A and B are chosen. So, the remaining

one more zero must be �(u1 � u2) (the property (a)).

div(y − Ax−B) = −3De +Du1 +Du2 +D�(u1�u2), (128)

• The second step is to realize that the meromorphic (rational) function ℘(u) − C = x − C
has just one pole of order 2 at e, and two zeros, one at u1� u2 and the other at �(u1� u2).

So,

div(x− x1�2) = −2De +Du1�u2 +D�(u1�u2). (129)
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• By combining div(y − Ax−B) and div(x− C), one can derive div(φ).

A.3.2. In the language of algebraic geometry, Y −AX−BZ = 0 is a hyperplane (line) in P2, and

intersects with E ′ at three points (because E ′ ·H = 3H ·H = 3). They are u1, u2, and �(u1�u2).

The line X −CZ = 0 also intersects with E ′ at three points. They are (u1� u2), �(u1� u2), and

e = [0 : 1 : 0] = [X : Y : Z]. So, the point u1 � u2 ∈ E ′ can be worked out from u1, u2 ∈ E ′ by

drawing two lines in P2.

The addition theorem may be regarded as the relation between the coefficients and the roots

of a cubic polynomial. ℘(u1), ℘(u2) and ℘(�(u1 � u2)) = ℘(u1 � u2) are the three roots of

0 = 4x3 − g2x− g3 − y2|y=Ax+B = 4x3 − A2x2 + · · · , (130)

so (x1 + x2 + x1�2) = A2/4.
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