
Theory of Elementary Particles homework III (Apr 25) version 2

• At the head of your report, please write your name, student ID number and a

list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

• Pick up any problems that are suitable for your study. You are not expected to work

on all of them!

• Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not

waste your time!

• Keep your own copy, if you need one. Reports will not be returned.

1. Quantum Correction I: fermion propagator [B] In the lecture, we have seen that the

propagator of a Dirac fermion becomes

i

(/p−mp + iε)− [A(1)(p2,m2
p)/p+B(1)(p2,m2

p)] + δZ2(m2
p,Λ, e)/p− [δZ2mp + δm(mp,Λ, e)]

(1)

at the 1-loop level. Here, the higher covariant derivative regularization was used to obtain

A(1)(p2,m2) =
αQ2

4π

∫ 1

0

dx [−2(1− x)] ln

(
(1− x)Λ2 + xm2 − x(1− x)p2

xm2 − x(1− x)p2

)
, (2)

B(1)(p2,m2) =
αQ2

4π

∫ 1

0

dx 4m ln

(
(1− x)Λ2 + xm2 − x(1− x)p2

xm2 − x(1− x)p2

)
. (3)

The denominator can be grouped into two; one is proportional to /p, and the other to the

unit 4× 4 matrix.

(a) Verify that the terms proportional to /p as a whole is free from UV divergence as we

take the limit Λ→ +∞. Furthermore, verify that the limit is

lim
Λ→+∞

[
1− A(1)(p2,m2

p) + δZ2

]
(4)

= 1− 2
αQ2

4π

∫ 1

0

dx

[
(1− x) ln

(
m2
p − (1− x)p2

xm2
p

)
+

2(1− x)2 − 4(1− x)

x

]
.

Note that this is a non-trivial function of p2 and m2
p, but free from UV divergence.

[remark: If you are careful enough, however, you will also notice that the integral is

divergent at x ' 0. This divergence is associated with IR degrees of freedom, not UV.]

(b) Verify that the remaining terms (those proportional to 14×4) also have a finite limit,

lim
Λ→+∞

[
mp +B(1)(p2,m2

p) + (δm)(mp,Λ, e) + δZ2(mp,Λ, e)mp

]
(5)

= mp

[
1 +

αQ2

π

∫ 1

0

dx

{
ln

(
xm2

p

m2
p − (1− x)p2

)
+
−(1− x)2 + 2(1− x)

x

}]
.



(c) (this is not intended as a part of the report problem, but you can work on it, if you

like) If you wish to be confinced that the divergence in the x-integration at x ' 0 is due

to IR degrees of freedom, rather than UV degrees of freedom, you can repeat the same

computation by replacing the photon propagator as follows:

−iηκλ
k2 + iε

⇒ −iηκλ
k2 − k4/Λ2

⇒ −iηκλ
k2 − k4/Λ4 − µ2

, (6)

where the k4/Λ2 term is due to the higher covariant derivative regularization, and now

the µ2 term is introduced in order to modify the IR (small k2) behavior of the photon

propagator; keep in mind that µ2 � m2
p, p

2 � Λ2. You will see at the end of calculations

that the result of (4) becomes

1− 2
αQ2

4π

∫ 1

0

dx

[
(1− x) ln

(
(1− x)µ2 + xm2

p − x(1− x)p2

(1− x)µ2 + x2m2
p

)
+
{2x(1− x)2 − 4x(1− x)}m2

p

(1− x)µ2 + x2m2
p

]
;

(7)

the earlier result would be recovered by simply setting µ = 0. Now, the x integration

is like
∫
dx/x for µ/mp . x, and hence is like ln(mp/µ), but remains finite and well-

defined. The divergence is now under control, so long as we keep µ to be small but

non-zero. This can be taken as an indication that this divergence is due to IR degrees

of freedom.

2. 1-Loop Calculation I, Pauli–Villars Regularization, Unitarity [C]

Let us consider a theory where a complex scalar field ϕ and a 4-component (Dirac) fermion

Ψ have an interaction (called Yukawa interaction);

Lkin = (∂µϕ
∗)(∂µϕ)−M2

ϕ|ϕ|2 + Ψ (iγµ∂µ −m) Ψ, (8)

Lint = λϕΨ

(
1− γ5

2

)
Ψ + λ∗ϕ∗Ψ

(
1 + γ5

2

)
Ψ. (9)

(a) Compute the 1-loop contribution (Figure 1 (a)) to the scalar self-energy −iΣ(p2,m2) =

iM(p2,m2) (which does not include the external line propagators or a momentum con-

servation delta function), and show that it is

M =
2|λ|2

16π2

∫ 1

0

dx

∫ ∞
0

dKE
KE(KE + x(1− x)p2)

[KE +m2 − x(1− x)p2]2
; (10)

here, pµ is the momentum of the scalar field coming from the left, and KE corresopnds to

the invariant momentum square (k′ ·k′) in the Euclidean signature of shifted momentum

k′. [Did you remember to include the extra (−1) factor for a fermion loop?] Confirm

that this integral is approximately ∝
∫
dKE (unlike

∫
dKEK

−1
E or

∫
dKE1/K2

E) for

KE � m2, |p2|. We say in this situation that the integral is quadratically divergent

(remember that KE corresponds to momentum-square).



(a) (b)

Figure 1: Scalar self-energy 1-loop diagram (a) and scalar decay diagram (b).

(b) (momentum cut-off regularization) When the divergent integralM above is made

well-defined (finite) by replacing the integral over KE ∈ [0,∞] with a finite range

integral over KE ∈ [0,Λ2
0], the 1-loop scalar self-energy is denoted by −iΣmom. cutoff =

iMmom. cutoff . Determine Mmom. cutoff by carring out the integration.

(c) (Pauli–Villars regularization) As an alternative to the momentum cut-off regular-

ization, one can make the 1-loop divergent integralM well-defined, by introducing other

spiecies of “fermions” Ψj (j = 1, 2 · · · ) that have exactly the same interaction with ϕ as

Ψ0 := Ψ. Those “fermions” are assumed to have mass Mj and signature of the 1-loop

diagram (+ for ordinary bosons and − for ordinary fermions) that are either the same

(γj = +1) as or opposite (γj = −1) from that of Ψ0 for each j. This regularization is

called Pauli–Villars regularization. To see how this work, let us first consider introduc-

ing just Ψj=1 whose mass is M1 and the signature opposite (γ1 = −1). Show that the

KE integral of

M(p2,m2)−M(p2,M2
1 ) =

1∑
j=0

γjM(p2,M2
j ) (11)

is still approximately ∝ dKE for m2, |p2| � KE � M2
1 , but the integral becomes

∝ dKEM
2
1/KE approximately in the region M2

1 � KE. This means that the Pauli–

Villars regularization cannot render the divergent 1-loop integral M finite, if we are to

introduce only one spiecies of “fermion” Ψj=1.

(d) This 1-loop integral for the scalar self-energy diagram can be made finite, by introducing

three “fermions” Ψj=1,2,3. The signature of Ψj=1,2 are set to be opposite from that of

the original fermion Ψ0 (that is, γ1,2 = −1), and the signature of Ψj=3 to be the same

as that of Ψ0 (that is, γ3 = +1). The 1-loop integral (including the contributions from

these “fermions”) become finite, if we take their masses, M1,M2,M3, in such a way that

the following relation is satisfied:

m2 +M2
3 = M2

1 +M2
2 . (12)



Compute MP.V.(p2,m2;M2
1 ,M

2
2 ,M

2
3 )

lim
Λ0→∞

[
3∑
j=0

γjMmom. cutoff(p2,M2
j )

]
= lim

Λ0→∞

[
Mmom. cut(p2,m2)−Mmom. cut(p2,M2

1 )− · · ·
]
.

In this context of Pauli–Villars regularization, the momentum cutoff scale Λ0 plays the

role of preregulator.

(e) In the case of 4m2 ≤ p2 �M2
j=1,2,3, the logarithm appearing inMmom. cutoff andMP.V.

means that a branch cut has to be introduced along the real positive axis of the p2

complex plane. Show that

1

i

[
M(p2 + iε,m2)−M(p2 − iε,m2)

]
=

2π|λ|2

16π2

√
p2 − 4m2

p2
(p2 − 2m2). (13)

Note that this result does not depend on the choice of regularization schemes.

(f) (If you are not tired yet...) Compute the decay rate of ϕ (Feynman diagram Figure 1

(b)), Γ(ϕ → Ψ + Ψ), and confirm that (2Mϕ) × Γ is the same as (13). [This is one of

consequesnces of the optical theorem.] Here, we assume that Mϕ ≥ 2m, so that the

scalar field can decay into the fermion pair.

(g) Because of this branch cut, we need to be a little more careful in phrasing how to

compute the scalar self-energy 1-loop diagram. We define, for p2 > 4m2, the scalar self-

energy Σ(p2,m2) to be the amplitude−M(p2,m2) for p2 in the upper half complex plane;

Σ(p2,m2) for p2 in the lower complex half plane is defined by the analytic continuation

through the Re(p2) < 4m2 region, where the branch cut is absent. Show that the

propagator with 1-loop 1PI correction,

i

p2 −M2
ϕ − Σ(p2,m2) + iε

(14)

has a pole at

p0 'Mϕ −
1

2Mϕ

ReM(M2
ϕ,m

2)− iΓ
2

(15)

for the ~p = ~0 case for simplicity. [This means that the propagator in the spacetime

picture exhibits the time dependence e−iMϕt × e−Γt/2. After taking its absolute value

square of this quantum mechanical amplitude, we obtain the e−Γt dependence of an

unstable particle.]

3. Summing up Geometric Series for Photon Propagator [B]

Photon propagator is
−i

q2 + iε

[
ηµν + (ξ − 1)

qµqν
q2

]
, (16)



where ξ is a gauge parameter, and ξ = 1 [ξ = 0] corresponds to the Feynman gauge [Landau

gauge], respectively. When the photon “self-energy” (sum of 1 particle irreducible diagrams:

better known as vacuum polarization in this case) is given by

i
(
q2ηµν − qµqν

)
Π(q2) (17)

for some function Π(q2) of q2, the quantum corrected photon propagator is of the form

−i
q2 + iε

[
ηµν + (ξ − 1)

qµqν
q2

]
+

−i
q2 + iε

[
ηµκ + (ξ − 1)

qµqκ
q2

]
i(q2ηκλ − qκqλ)Π(q2)

−i
q2 + iε

[
ηλν + (ξ − 1)

qλqν
q2

]
+ · · · .

Sum up this geometric series to show that it is the same as

−i
(q2 + iε)(1− Π(q2))

[
ηµν −

qµqν
q2

]
+ ξ
−iqµqν
q2q2

. (18)

4. 1-Loop Calculation III: Photon Vacuum Polarization in Pauli–Villars [C]

Photon 1-loop “self-energy” (or vacuum polarization) in QED

(2π)4δ4(q′ − q) iMµν := (19)∫
d4xd4y eiq

′·xe−iq·y〈0|T
{(
−ieQΨIγ

νΨI

)
(x)
(
−ieQΨIγ

µΨI

)
(y)
}
|0〉

corresponds to the Feynman diagram in Figure 2 (a). Let us calculate this by using the

Pauli–Villars regularization, and show that iMµν is indeed of the form (17). To do this,

(a) show that, for a Dirac fermion with mass M ,

iMµν(q2,M2) = (−4i(eQ)2)

∫ 1

0

dx

∫
d4kE
(2π)4

[
1
2
(k2
E)ηµν

]
+ [x(1− x)(q2ηµν − 2qµqν)] + [M2ηµν ]

[k2
E +M2 − x(1− x)q2]

2

(20)

after Wick rotation. k2
E indicates that the 4-dim Euclidean metric is used in determining

k · k.

(b) Carry out angle and radial integration of 4-dimensional d4kE space; as a pre-regulator,

introduce a cut-off in the range of integration, k2
E ≤ Λ2

0. Note that this integral in the

momentum cut-off regularization iMµν
mom. cut(q

2,M2; Λ2
0) does not have a form of (17)

at all.

(c) The photon 1-loop “self-energy” (vacuum polarization) in the Pauli–Villars regulariza-

tion is given by

iMµν
P.V(p2,M2) = lim

Λ2
0→∞

[
3∑
j=0

γjMµν
mom. cut(q

2,M2
j ; Λ2

0)

]
, (21)



(a) (b)

Figure 2: Self-energy graph of photon (a) and heavy fermion (b).

just like in homework III-3. γ0 = +1 and M2
0 = M2 by definition. We should take

γ1,2 = −1 and γ3 = +1, and M2
0 + M2

3 = M2
1 + M2

2 so that the integral remains finite,

when the pre-regulator (momentum cutoff) is removed (Λ2
0 →∞). Show that

iMµν
P.V.(p

2,M2) = i(q2ηµν − qµqν)(eQ)2

2π2

∫ 1

0

dx x(1− x) ln

(∏
j

[
M2

j − x(1− x)q2
]γj) .

(22)

(d) (not a problem) If we take the Pauli–Villars regulator masses M2
1 , M2

2 and M2
3 much

larger than the original Dirac fermion mass M2 and momentum flow q2, the last loga-

rithmic factor is approximately

ln

(
M2 − x(1− x)q2

M
2

)
, M

2
:= M2

1M
2
2/M

2
3 . (23)

In the Pauli–Villars regularization, iMµν is in the form of (17) as expected from the

gauge invariance of QED, and (at 1-loop)

Π(1)(q2) =
(eQ)2

2π2

∫ 1

0

dx x(1− x) ln

(
M2 − x(1− x)q2

M
2

)
. (24)

5. Mass Correction of Non-relativistic Fermion (Heavy Quark Effective Theory) [C]

Consider a non-relativisitic fermion with a Q unit of electric charge.

(a) Show (understand) that the 1-particle irreducible diagram (Figure 2 (b)) for the non-

relativistic fermion is given at the leading order in 1/M expansion by

iM = −iΣ =

∫
dω

(2π)

∫
d3~k

(2π)3
(−ieQ)

i

ω0 + ω
(−ieQ)

−i
ω2 − |~k|2 + iε

, (25)

where the spacial component of the external line momentum, ~p, is set to ~0 for simplicity,

and ω0 := p0 −M is the energy flow of the external fermion field. The propagator of a



non-relativistic two-component fermion is of the form

i 12×2

ω − ~p2

2M
+ iε

, (26)

and the term proportional to 1/M has been dropped in the expression above.

Note that only the A0 = ϕ component of photon contributes at this leve of fermion

mass non-relativistic expansion (1/M expansion).

(b) (not a problem) It is necessary to regularize this integral, or otherwise the self-energy

correction is divergent and not well-defined. So, we use the higher covariant derivativee

regularization for the photon propagator, which is to modify the photon propagator in

the following way:

−i
k2 + iε

=⇒ −i
k2 − k4/Λ2

=⇒ iΛ2

(k2 + iε)(k2 − Λ2 + iε)
. (27)

Here, we have in mind a situation characterized by ω0 � Λ�M .

(c) As the first step of evaluating the 1-loop contribution to the self-energy −iΣ, we wish

to introduce a trick (similar to the Feynman parameters) in combining the denominator

of the integrand together for non-relativisitc cases that. Verify some of the following

relations:

1

a

1

b
=

∫ ∞
0

dλ
2

(a+ 2bλ)2
, (28)

Γ(m)

am
Γ(n)

bn
=

∫ ∞
0

dλ
2Γ(m+ n)(2λ)n−1

(a+ 2bλ)m+n
, (29)

1

a1a2

1

b
=

1

b

∫ 1

0

dx
1

(xa1 + (1− x)a2)2
=

∫ 1

0

dx

∫ ∞
0

dλ
2Γ(3)

(xa1 + (1− x)a2) + 2bλ)3
,

(30)

1∏m
i=1 ai

1∏n
j=1 bj

=

∫ 1

0

dmxδ(1−
∑
i

xi)

∫ 1

0

dnyδ(1−
∑
j

yj)

∫ ∞
0

dλ
2Γ(m+ n)(2λ)n−1

(
∑

i xiai + 2λ
∑

j yjbj)
m+n

.

(31)

[Ref: §3.1 of A. Manohar and M. Wise, ”Heavy Quark Physics,” Cambridge U. Press]

(d) A factor linear in loop energy ω in the denominator (such as (ω+ω0)) is treated as one

of bj’s, and a factor quadratic in ω (such as (ω2− |~k|2) and (ω2− |~k|2−Λ2)) are treated

as one of ai’s in using the trick, so we can complete the square in the combined single

factor in the denominator. Verify that

1

ω + ω0

1

ω2 − |~k|2
1

ω2 − |~k2 − Λ2
=

∫ ∞
0

dλ

∫ 1

0

dx
2

[(ω + λ)2 − |~k|2 − xΛ2 + 2λω0 − λ2]3

(32)



(e) Do the Wick rotation, which is to change the contour of integration in ω′ := (ω + λ)

from the real axis to the imaginary axis, and carry out the integration in the loop energy

and momentum. One will find that

−iΣ =
+i(eQ)2

16π2

∫ ∞
0

dλ

∫ 1

0

dx

∫ ∞
0

dKE
KE2Λ2

[KE + xΛ2 − 2λω0 + λ2]3
(33)

=
i(eQ)2

16π2

∫ ∞
0

dλ

∫ 1

0

dx
Λ2

xΛ2 − 2λω0 + λ2
, (34)

=
i(eQ)2

16π2
Λ2

∫ 1

0

dx
ArcCos(−ω0/(

√
xΛ))√

xΛ2 − (ω0)2
. (35)

(f) Expand the self-energy Σ(ω0; Λ) in ω0/Λ before carrying out the x-integral, and keep

only the terms that are in a non-negative power of the regulator energy scale Λ. Show,

if the range of dx integration is limited to [(µ/Λ)2, 1], that (don’t worry if the you do

not get the coefficients right. maybe there is a typo here, or elsewhere.)

Σ ' −(eQ)2

16π2

(
πΛ + 2ω0 ln (Λ/µ)

)
. (36)

(g) (not a problem) These two terms corresponds to the decomposision of the fermion self-

energy Σ(pµ; Λ) = B + A/p in the relativistic case. The mass correction is linearly

divergent in the regulator energy scale Λ�M , while the wavefunction renormalization

is logarithmically divergent. For the mass correction (self energy) −αΛ/4 to be below

the electron mass M , the cut-off energy scale Λ (where apparent contradiction seems

inevitable) should be 4M/α or less than that; this is how the “classical electron radius”

was derived in the classical electromagnetism course. The linear divergence in the mass

correction becomes logarithmic divergence in QED, in fact, because the non-relativisitic

approximation is not valid at energy scale around or above the electron mass, and the

positron also contributes to the self-energy at energy scale above the electron mass. We

see in the renormalized perturbation theory that physical correlation functions can be

expressed without divergence when written down as functions of observable parameters

such as pole masses, rather than theoretical parameters in the microscopic lagrangian.

So, regardless of whether we have a linear divergence or logarithmic divergence, it does

not matter in the end.


