Theory of Elementary Particles

- At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like "II-1, II-3, IV-2").
- Pick up any problems that are suitable for your study. You are not expected to work on all of them!
- Format: Reports do not have to be written neatly; hand-writing is perfectly O.K. Do not waste your time!
- Keep your own copy, if you need one. Reports will not be returned.

1. A Consequence of QED Ward Identity [B]

Wavefunction renormalization constant Z_{2} of a Dirac fermion with a pole mass $p^{2}=m^{2}$ in QED is given by

$$
\begin{equation*}
1+\delta_{Z 2}=: Z_{2}=\left.\frac{(1-A)}{(1-A)^{2}+2(A-1) p^{2} \frac{\partial A}{\partial p^{2}}-2(M+B) \frac{\partial B}{\partial p^{2}}}\right|_{p^{2}=m^{2}} \tag{1}
\end{equation*}
$$

where $A\left(p^{2}, M^{2}\right)$ and $B\left(p^{2}, M^{2}\right)$ characterize the fermion self-energy

$$
\begin{equation*}
-i \Sigma(p, M):=-i\left[A\left(p^{2}, M^{2}\right) \not p+B\left(p^{2}, M^{2}\right)\right] \tag{2}
\end{equation*}
$$

At 1-loop $\left(\mathcal{O}\left(e^{2}\right)\right)$ level, the fermion self-energy (Figure 1 (a)) is given by

$$
\begin{align*}
-i \Sigma^{(1)}(p, M) & =\frac{-i(e Q)^{2}}{16 \pi^{2}} \int_{0}^{1} d x[-2(1-x) p p+4 M] \ln \left(\frac{(1-x) \Lambda^{2}+x M^{2}-x(1-x) p^{2}}{x M^{2}-x(1-x) p^{2}}\right) \\
& =:-i\left[A^{(1)}\left(p^{2}, M^{2}\right) \not p+B^{(1)}\left(p^{2}, M^{2}\right)\right] \tag{3}
\end{align*}
$$

in the higher covariant derivative regularization for the photon propagator in the unrenormalized perturbative calculation, and the wavefunction renormalization constant becomes

$$
\begin{equation*}
\delta_{Z 2}^{(1)}=\left.\left[A^{(1)}+2 M^{2} \frac{\partial A^{(1)}}{\partial p^{2}}+2 M \frac{\partial B^{(1)}}{\partial p^{2}}\right]\right|_{p^{2}=M^{2}} \tag{4}
\end{equation*}
$$

at this $\mathcal{O}\left(e^{2}\right)$ level.
On the other hand, fermion-fermion-photon vetex - $i e Q \Gamma^{\mu}$-including quantum correctionsis known to be cast into the form

$$
\begin{equation*}
-i e Q \Gamma^{\mu}=-i e Q\left[V_{1} \gamma^{\mu}-\frac{V_{2}}{4 m}\left[\gamma^{\mu}, \gamma^{\nu}\right] q_{\nu}\right]+(* * *) \times(\not p-m)+\left(\not p^{\prime}-m\right) \times(* * *) \tag{5}
\end{equation*}
$$

Figure 1: Fermion self-energy and fermion-photon vertex corrections at 1-loop.
here, we assume that the momentum of the fermion coming from below in Figure 1 (b) is p, that of the fermion going out to the above p^{\prime}, and the photon comes from the right with momentum $q=p^{\prime}-p$. As a result of tough calculation (see Peskin-Schroeder, and also the week-15 lecture note of the QFT II course), one will find, in higher covariant derivative regularization, that

$$
\begin{align*}
& V_{1}^{(1)}=\frac{(e Q)^{2}}{8 \pi^{2}} \int d x d y\{ \ln \left(\frac{(1-x-y) \Lambda^{2}+(x+y)^{2} M^{2}-x y q^{2}}{(x+y)^{2} M^{2}-x y q^{2}}\right) \tag{6}\\
&+ {\left[\left\{1-4(1-x-y)+(1-x-y)^{2}\right\} M^{2}+(1-x)(1-y) q^{2}\right] \times } \\
& {\left.\left[\frac{1}{(x+y)^{2} M^{2}-x y q^{2}}-\frac{1}{(1-x-y) \Lambda^{2}+(x+y)^{2} M^{2}-x y q^{2}}\right]\right\} } \\
& V_{2}^{(1)}=\frac{(e Q)^{2}}{16 \pi^{2}} \int d x d y(1-x-y)(x+y) 4 M^{2} \times \tag{7}\\
& {\left[\frac{1}{(x+y)^{2} M^{2}-x y q^{2}}-\frac{1}{(1-x-y) \Lambda^{2}+(x+y)^{2} M^{2}-x y q^{2}}\right] }
\end{align*}
$$

Here, $d x d y$ integral should be carried out in a trianglular region determined by $0 \leq x, y \leq 1$, $x+y \leq 1$.

Just like the wavefunction renormalization constant Z_{2} characterizes partial information of self-energy diagrams, a parameter $Z_{1}:=1 / V_{1}\left(q^{2}=0\right)$ is used to capture partial information of vertex corrections $i e \Gamma^{\mu}$. At 1-loop,

$$
\begin{equation*}
\delta_{Z 1}^{(1)}=\left(Z_{1}-1\right)^{1 \text {-loop }}=\left[\frac{1}{1+V_{1}^{(1)}\left(q^{2}=0\right)}-1\right]^{1 \text {-loop }}=-V_{1}^{(1)}\left(q^{2}=0\right) . \tag{8}
\end{equation*}
$$

Problem: It is known from Ward identity in QED that $Z_{1}=Z_{2}$ at all order in perturbation theory. Verify this relation at 1-loop level. [that is, show that $\delta_{Z 2}^{(1)}=\delta_{Z 1}^{(1)}$.]
See [Peskin-Schröder] section 7.1, if necessary. It is also good to know that Mathematica is sometimes quite useful.

