
QFT II/QFT homework I (Sep. 28, 2020)

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

1. Harmonic oscillator energy levels in path integral formulation [B]

In a harmonic oscillator system with mass m and frequency ω (see the lecture note for

more about the convention), path-integral can be used to derive

⟨qf |e−iHT |qi⟩ =
√

mω

2πi sin(ωT )
eiScl , (1)

Scl =
mω

2

1

sin(ωT )

[
cos(ωT )(q2f + q2i )− 2qiqf

]
. (2)

Derivation of the result above is found in the lecture note, and also in section 8? of the

textbook by Feynman and Hibbs. Now, use the result above, and expand it into the

form of

⟨qf |e−iHT |qi⟩ =
∑
n

ψn(qf )ψ
∗
n(qi)e

−iEnT , (3)

to find out the energy eigenvalues {En} and their corresponding wavefunctions, for the

ground state and the first excited state. [Derivation will be found in the Feynman

Hibbs textbook, but it will be fun if you do it on your own.]

2. Schwinger–Dyson equation [B]

Consider a quantum field theory described in terms of a field ϕ(x) and its canonical

conjugate momentum π(x), where the Hamiltonian density is H(π, ϕ). We introduce

discrete time slices and write down the partition function of this system as

Z =

∫ ∏
k,x⃗

[dπk(x⃗)dϕk(x⃗)] exp

[
−i

∫
ddx⃗ {(∆t)H(πk, ϕk−1) + (πk+1 − πk)ϕk}

]
. (4)

Now, with this notation, note the following identity,

0 =

∫ ∏
k,x⃗

[dπk(x⃗)dϕk(x⃗)]
∂

∂ϕj(y⃗)

(
ei

∫
dt[pq̇−H] ϕℓ1(y⃗1) · · ·ϕℓ∗(y⃗∗)πm1(z⃗1) · · · πm∗(z⃗∗)

)
,

(5)

1



which is trivial because the integrand is a total derivative. The right hand side of

the identity above, on the other hand, can be written also as sum of terms where the

derivative ∂ϕj(y⃗) acts of individual factors in the integrand. Using an approximation

that

1

∆t
δjℓ ≃ δ(tj − tℓ), (6)

derive the Schwinger–Dyson equation

⟨T
{
i

(
∂H(πj+1(y⃗), ϕj(y⃗))

∂ϕj(y⃗)
+ π̇j(y⃗)

)
ϕℓ1(y⃗1) · · ·ϕℓp(y⃗p)πm(z⃗)

}
⟩

=

p∑
a=1

δ(tj − tℓa)δ
d(y⃗ − y⃗ℓa) ⟨ϕ(tℓ1 , y⃗1) · · · ϕ̌(tℓa , y⃗a) · · ·ϕ(tℓp , y⃗p)π(tm, z⃗)⟩, (7)

where ϕ̌ means that the designated operator should be omitted. [This equation in-

dicates how the equation of motion of the action can be used in quantum mechanical

calculations. This relation holds true for any combinations of a bra state and a ket state

(because the derivation above is not affected by the choice of boundary conditions at

tini and tfin in the path integraion). See Peskin–Schroeder section 9.6 for a version in

the Lagrangian formulation.]
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