
QFT II/QFT homework II (Oct. 05, 2020)

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

1. More about path integral of a fermionic system [B]

In an ordinary (bosonic) quantum mechanical system, its partition function for its

canonical ensemble is expressed by parh integral

Z =

∫
DpDq exp

[
−
∫ β

0

dτ (H(p, q)− ip∂τq)

]
(1)

with the periodic boundary condition

q(t = −iβ) = q(t = 0). (2)

In this homework problem, let us work out the analogue for a two-state (fermionic)

quantum mechanical system. In the lecture, we have learned how to express time

evolution of wavefunctions of this two state system in term of path integral; following

the notation used in the lecture, where a state |0⟩c1+|1⟩c1 corresponds to a wavefunction
Ψ(θ̄) = c0 + θ̄c1, evolution in the negative imaginary direction is given by

Ψfin(θ̄N) =

∫
dθ̄N−1dθN−1 · · · dθ̄0dθ0e[

∑N
k=0 θ̄k+1θk−

∑N−1
k=0 θ̄kθk−(∆τ)

∑N
k=1 H(θk−1,θ̄k)]Ψin(θ̄0),

(3)

where ∆τ = β/N .

(a) Now, by using Z = tr[e−βH ] = ⟨0|e−βH |0⟩+ ⟨1|e−βH |1⟩, verify that

Z =

∫
dθ̄Ndθ̄N−1 · · · dθ̄0dθ0e[··· ](θ̄N + θ̄0). (4)

(b) For an arbitrary function f(θ̄N , θ̄0) depending on Grassmann coordinates θ̄N and

θ̄0, verify that ∫
dθ̄N(θ̄N + θ̄0)f(θ̄N , θ̄0) = f(−θ̄0, θ̄0). (5)

[This means that the factor (θ̄N + θ̄0) inserted in a Grassmann integral can be

regarded as something like a delta function δ(θ̄N + θ̄0).]
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(c) [not a problem] By combining both, we see that the partition function of the

canonical ensemble of the two state (fermionic) quantum mechanical system is

Z =

∫
Dθ̄Dθ exp

[∫
dτ

(
(∂τ θ̄)θ −H(θ, θ̄)

)]
(6)

with the anti-periodic boundary condition

θ̄(t = −iβ) = −θ̄(t = 0). (7)

(d) Compute ∫
dθdθ̄dθ′dθ̄′ exp

[
(θ̄, θ̄′)

(
−m p
p −m

)(
θ
θ′

)]
. (8)

Contrary to the case with a boson, we see a positive power of (p2 −m2).

(e) We have discussed the partition function Z = tr(e−βH) of a free boson. Write up

a discussion in the case of a free Dirac fermion, using the two following equations:

ln(Z) = 2
∑
n∈Z

Vd

∫
ddk

(2π)d
ln
(
E2

k⃗
+ (2πT (n+ 1/2))2

)
(9)

and

ln(Z) = 4Vd

∫
ddk

(2π)d

(
βEk⃗

2
+ ln(1 + e−βE

k⃗)

)
. (10)

[remark: the first term +βE/2 has the sign opposite from that in the case of a

scalar field. So, in a combination of four real scalar fields and one Dirac fermion

(also in a combination of one complex scalar and one Weyl fermion), the first

terms cancel. This is due to supersymmetry. There is no such cancellation among

the second terms (thermal contributions), however.]

2. Chemical potential [B]

One can switch from the canonical ensemble of a quantum system to its grand canonical

ensemble by modifying the Hamiltonian H to H−
∑

i µiNi, where the label i runs over

(a subset of) all the conserved numbers (charges) of the system of one’s interest. Ni is

the Noether charge of a U(1) symmetry, and µi the corresponding chemical potential.

In the case of the Standard Model of particle physics, for example, the lepton number
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and the baryon number are conserved charges.1 When an effective theory with much

lower energy scale is considered, the number of atoms of various kinds (labeled by i)

may be conserved separately.

(a) relativisistic boson case Suppose that an effective theory with a relativistic

complex boson is given by the Hamiltonian:

H =

∫
ddx

(
π∗π + (∇Φ)∗(∇Φ) + V (|Φ|2)

)
, (11)

where π is the canonical conjugate momentum of a complex scalar field Φ∗. First,

write down the Noether charge N =
∫
d3xJ0 in terms of π and Φ. Secondly, carry

out the Gaussian integral with respect to π and π∗ in

Z =

∫
DπDπ∗DΦDΦ∗ exp

[
−i

∫
dt(H − µN) + i

∫
dd+1x (π(∂tΦ

∗) + π∗(∂tΦ))

]
,

(12)

to see how the Lagrangian is modified.

(b) Verify that the path integral with the eµNβ = ei
∫
dtµN factor is equivalent to the

path integral without the modification, but with the field redefinition Φorignl(x, t) =

e−iµtΦnew(x, t).

3. Geometric Quantization and An Alternative Treatment of Spin [C]

A single spin-1/2 degree of freedom—a two state system—can be described in the path

integral formulation by using a Grassmann variable (as in the Week 2 lecture and also in

homework II-1); a spin system with one spin-1/2 degree of freedom at each lattice point

can be described by using a Grassmann field on the space-time. There is an alternative

description to those systems, however; instead of Grassmann numbers/fields, we use

bosonic degrees of freedom. This homework problem II-3 introduces this alternative

description for a spin-j degree of freedom.2

1when the tiny neutrino masses and non-perturbative electroweak effects are ignored, to be more precise.
2References: Matthias Blau “Symplectic Geometry and Geometric Quantization” a lecture note in PDF

available online,
ask Google for more, with the key word “geometric quantization”.
This homework problem II-3 was inspired by N. Nagaosa’s textbook, ”Quantum Field Theory in Condensed
Matter Physics,” §2.5. and also by E. Fradkin’s textbook, “Field Theories of Condensed Matter Systems,”
§5.2.
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(a) Before working on quantum mechanics of a single spin-j degree of freedom, think

of quantum mechanics of a single free particle moving freely on a 1-dimensional

space with the coordinate q, the simplest quantum mechanical system. We usually

use either one of the space representation or the momentum representation, where

the Hilbert space is the normalizable wavefunctions of q alone, ψ(q) ∈ Hsp (or

of the momentum p alone, ψ̃(p) ∈ Hmm), where the canonical conjugate pair of

observables q and p are represented as (q×) and −i∂q on Hsp (or as i∂p and (p×)

on Hmm). The isomorphism between the module of the operator algebra C[q, p],
Hsp and Hmm, is given by the Fourier transformation; that is a well-known story

so far. Alternatively, one may introduce a complex coordinate z = (p + iq)/
√
2

on the phase space M = {(p, q) ∈ R2}, and think of the space of wavefunctions

Ψ(p, q) that satisfy

∂̄z̄Ψ :=
1√
2

(
∂

∂p
+ i

∂

∂q

)
Ψ(p, q) = 0, (13)

with the normalization condition3∫
M

dpdq |Ψ(p, q)|2 e−|z|2 <∞. (14)

A claim is that the vector space of such Ψ’s, Hkl, can be used as the Hilbert space

H, on which the operator q and p are represented as

q −→ 1√
2i

(
(z×)− ∂

∂z

)
, p −→ 1√

2

(
(z×) +

∂

∂z

)
. (15)

i. To get started, verify that [q, p] = i.

ii. (not meant as a homework problem) It is said that there will be an isomo-

prhism between Hkl and Hsp/mm as modules of C[q, p]. TW have not been

able to construct such an isomorphism, or to find an appropriate literature so

far.

All of the space representation, momentum representation, and the alternative

(holomorphic) representation can be regarded as different variations of the same

general procedure, geometric quantization, as we see in the following. Here, we

have a symplectic manifold (M,ω); provided the integral of ω/(2π) over compact

3known as Bargman–Segal space
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2-cycles of M are integral, we may well think of a line bundle L over M where

the covariant derivative is ∇ := d − iA, dA = ω, so c1(L) = ω/(2π). Here, we

write down a few key statements from the geometric quantization procedure and

ask the students to verify them for the example above as a homework problem.

In geometric quantization, the Hilbert space of the quantum theory is set as

the space of “normalizable” sections4 Ψ(p, q) of L over the entire phase space

M subject to the constraints ∇Xf,m
Ψ = 0 for ∀m ∈ M , ∀Xf,m ∈ Pm, for an

appropriately chosen subbundle P ⊂ TMC; here is a list of properties that P needs

to satisfy: the fibre vector space Pm is of complex n-dimensions for every m ∈M

when dimRM = 2n, isotropic under the symplectic form ω on M , and is closed

within Pm itself under the Lie-bracket operation. Starting from a given classical

symplectic geometry (M,ω), there may be multiple different choices P ⊂ TMC,

and hence possibly of different quantum theories (in principle).

i. In the case of M = R2 with the symplectic form ω = dp ∧ dq = idz ∧ dz̄,

verify for the three different choices of P ⊂ TMC, (sp) Pm = C∂p ⊂ TMC
m,

(mm) Pm = C∂q ⊂ TMC
m, and (kl) Pm = C∂̄z̄ ⊂ TMC

m, that P satisfies the

property stated above (unless that is obvious to you; if obvious, skip this and

move on). Hsp, Hmm, and Hkl are indeed characterized by ∇Xf,m
Ψ = 0 for

those three different choices of P ⊂ TMC (as we can choose A = pdq for (sp),

A = −qdp for (mm), and A = −iz̄dz for (kl)).

ii. The observables q and p are represented on the space of Ψ(p, q) under the

following rule. Suppose f = p or f = q, or their linear combinations. Then

fix a tangent vector Xf on M by

ω(Xf ,−) = idf, (16)

and set the representation of f on Ψ(q, p) to be

Of := Xf − i ⟨Xf , A⟩+ f, (17)

where dA = ω. By using A = pdq, A = −qdp, and A = −iz̄dz for the three

choices of P ⊂ TMC, verify indeed that Oq = (q×) and Oq = −i∂q on Hsp,

Oq = i∂p and Op = (p×) on Hmm, and Oz = (z×) and Oz̄ = ∂z on Hkl.

4Let us avoid stepping too much into the definition of the normalizablility here. If you are interested,
explore for yourself.
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(b) Let us now work on a quantum theory of a spin-j degree of freedom. An idea is

to think of the spin observables sx,y,z as a classical angular momentum pointing

on a sphere M = S2 with the radius j, first, and then to apply the procedure of

the geometric quantization described above.

i. To motivate what we will do from 3(b)ii below, observe that sz = cos θ,

s± = e±iϕ sin θ, and [cos θ, ϕ] = −i reproduce [sz, s±] = ±s±.
ii. Set ω = −k

2
d(cos θ) ∧ dϕ as the symplectic form on M = S2 = CP 1. Verify

that
∫
M
ω/(2π) = k (which means that ω/(2π) ∈ H2(M ;Z) if and only if

k ∈ Z).
iii. Verify what is non-trivial in the following statements (skip and move on, if

trivial): As a connection A on M = CP 1 such that dA = ω, we can choose{
A = −k

2
(cos θ − 1)dϕ, θ ̸= π,

A = −k
2
(cos θ + 1)dϕ, θ ̸= 0.

(18)

Let ψ = e0ψ0 = eπψπ be a section of the line bundle L with ∇ = d− iA, and

ψ0 on θ ̸= π and ψπ on θ ̸= 0 its local trivialization. Then ψ0 = eikϕψπ.

iv. Let us introduce a complex coordinate on CP 1 ≃ S2 by using the stereo-

graphic projection: z := tan(θ/2)eiϕ. Verify that the line bundle L is seen as

a holomorphic vector bundle, by exploiting the non-unitary gauge transfor-

mation:

d− iÃθ ̸=π = g−1
0 (d− iAθ ̸=π)g0 = d− k

z̄dz

1 + |z|2
, g0 := cosk(θ/2), (19)

d− iÃθ ̸=0 = g−1
π (d− iAθ ̸=0)gπ, gπ := sink(θ/2), (20)

ψ0 = g0ψ̃0, ψπ = gπψ̃π, ψ̃0 = zkψ̃π, (21)

d− iÃθ ̸=π = (d− iÃθ ̸=0)− k
dz

z
. (22)

Note that the transition function g̃0π = zk for ψ̃0 = g̃0πψ̃π is holmorphic. Note

also that

ω = ki
dz ∧ dz̄

(1 + |z|2)2
. (23)

v. Let us choose C∂̄z̄ as the subbundle P ⊂ TMC. It is convenient to choose

A = −iz̄dz/(1 + |z|2) so that dA = ω; that is because
⟨
∂̄z̄, A

⟩
= 0 then.

The condition ∇Xf
Ψ = 0 is now read as Ψ being a holomorphic section of
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L. It is known that the vector space of the holomorphic sections of L (with∫
CP 1 c1(L) = k) is of (k + 1)-dimensions (for k ≥ 0); can you list up (k + 1)

independent holomorphic sections of L?

vi. (this is not a part of this homework problem) The normalization condition is

∞ >

∫
CP 1

sin θdθdϕ
(
|ψ0|2 = |ψπ|2

)
=

∫
CP 1

2|dzdz̄|
(1 + |z|2)2+k

|ψ̃0|2, (24)

so all the holomorphic sections of L are normalizable.

vii. (this is not a part of this homework problem) To summarize, for a positive

integer k ∈ N>0, we have chosen a symplectic manifold (M ≃ S2, ωk) where ω

depends on k. The geometric quantization procedure is applied, with C∂̄z̄ ⊂
TMC used, to obtain the (k + 1)-dimensional Hilbert space.5 The parameter

k may be identified6 with 2j, where j is the spin. The path integral over the

canonical conjugate pair, Dp(t)Dq(t), will be D cos θ(t)Dϕ(t) then; the phase
i
∫
dtq̇p − i

∫
dtH in the exponent of the path integral will involve dtq̇p =

dqp = A (which is proportional to k, regardless of which gauge is used).

5More generally, the Hilbert space may turn out to be finite dimensional as a result of the geometric
quantization, when the symplectic manifold (M,ω) is compact.

6would be nice if it is possible to apply the idea around eq. (16, 17) to say something likeOsz = z∂z−k/2.....
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