QFT II/QFT

- At the head of your report, please write your name, student ID number and a list of problems that you worked on in a report (like "II-1, II-3, IV-2").

1. Final State Phase Space [B]

(a) cross section 1: Let us consider a process of a pair of relativisitc (approximately massless) particles collide at the center of mass energy \sqrt{s}, and scatter into a pair of non-identical particles. Suppose that this pair of final state particles have the same mass, m (imagine $e^{+}+e^{-} \rightarrow \mu^{+}+\mu^{-}$, for example). Verify that the cross section is

$$
\begin{equation*}
d \sigma=\frac{d \varphi}{2 \pi} \frac{d(\cos \theta)}{32 \pi s} \beta|\mathcal{M}|^{2} \tag{1}
\end{equation*}
$$

where (φ, θ) are the azimuthal angle and the scattering angle at the center of mass frame. [i.e., the initial state particles come along the z-axis, and the final state particles are moving out to $\vec{p}=|\vec{p}|(\sin \theta \cos \varphi, \sin \theta \sin \varphi, \cos \theta)] \beta$ is the velocity $|\vec{p}| / E$ of the final state particles.
(The primary lesson to take out from this problem is that the cross section has an overall dependence β / s due to the kinematics (final state phase space). To see how powerful this understanding is, visit the web page

https://pdg.lbl.gov/2020/reviews/contents_sports.html

and click on the last entry, "Plots of cross sections and related quantities", and look at Figure 52.2.)
(b) cross section 2: Suppose now that the final state particles are (approximately) massless, for simplicity. Verify, then, that the expression above can also be written as

$$
\begin{equation*}
d \sigma \simeq \frac{d \varphi}{2 \pi} \frac{d t}{16 \pi s^{2}}|\mathcal{M}|^{2} \tag{2}
\end{equation*}
$$

where t is the Mandelstam variable of the 2-body $\longrightarrow 2$-body scattering. (it is an option to skip this problem)
(c) decay rate 1 Let us think of a particle at rest with mass M decaying to a pair of non-identical (approximately) massless particles. Verify, then, that

$$
\begin{equation*}
d \Gamma \simeq \frac{d^{2} \Omega}{4 \pi} \frac{1}{16 \pi M}|\mathcal{M}|^{2} \tag{3}
\end{equation*}
$$

(d) decay rate 2 Suppose that a particle at rest with mass M decays to a pair of a particle with mass $M^{\prime}=M-\Delta m$ and an approximately massless particle. Verify, when $0<\Delta m \ll M$, that

$$
\begin{equation*}
d \Gamma \simeq \frac{d^{2} \Omega}{4 \pi} \frac{\beta}{8 \pi M}|\mathcal{M}|^{2} \tag{4}
\end{equation*}
$$

where β is the velocity of the massive particle in the final state. [A lesson: when a scattering/decay process is barely allowed kinematically, the measure over the final state phase space yields a positive power of $\beta \ll 1$, and hence the cross section/decay rate is suppressed.]
(e) decay rate 3 Let us now think of a particle at rest with mass M decaying to three non-identical particles (e.g., $\mu^{-} \rightarrow e^{-}+\bar{\nu}_{e}+\nu_{\mu}$). The final state phase space is of 5 -dimensions, after exploting the energy-momentum conservation. When the decaying particle is a scalar, or with a spin but without a polarization, however, there is $\mathrm{SO}(3)$ symmetry of space $\left(\mathbb{R}^{3}\right)$ rotation acting on the final state phase, and the integral over the 5 -dimensional phase space is reduced to one on a 2 dimensional space. We can take, for example, $\left(E_{1}, E_{2}\right)$-the energy of two particles (e.g., ν_{μ} and $\bar{\nu}_{e}$) as the coordinates of the 2-dimensional space, and the integral is in the form of

$$
\begin{equation*}
d \Gamma=\frac{1}{(2 \pi)^{3} 8 M}|\mathcal{M}|^{2} d E_{1} d E_{2} . \tag{5}
\end{equation*}
$$

Now, assume that all the three particles in the final states are approximately massless, and work out the region in the $\left(E_{1}, E_{2}\right)$ space that is kinematically possible; the area should be $M^{2} / 8$. So, when the matrix element $\mathcal{M}\left(E_{1}, E_{2}\right)$ does not have a particular structure (such as singularity), the total decay rate is something like

$$
\begin{equation*}
\left.\left.\Gamma \sim \frac{M}{(8 \pi)^{3}}\langle | \mathcal{M}\right|^{2}\right\rangle \tag{6}
\end{equation*}
$$

[The absence of structure in $|\mathcal{M}|^{2}$ is an appropriate assumption for $\mu \rightarrow e \nu \bar{\nu}$, but not quite for $t \rightarrow W+b+g$.]
(f) (not meant as a homework problem) Suppose that the matrix element \mathcal{M} for a 2-body decay in (3) is approximately M times the matrix element \mathcal{M} for a 3-body decay in (6). The 3 -body decay rate is smaller then the 2 -body decay rate by a factor $1 / 32 \pi^{2}$ then.
(g) (not meant as a homework problem) If you are interested in learning more on kinematics (such as Dalits plot), you might think of visiting the web page referred to earlier, and download a review article "Kinematics (rev.)" from that page. Derivation of (5) is also found there.
2. Fermi Surface, Hole Excitation, Friedel Oscillation [B or C]

Consider a Lagrangian (and corresponding Hamiltonian) of non-relativisitic electron.

$$
\begin{align*}
\mathcal{L} & =\psi^{\dagger}\left[i \partial_{t}+\frac{1}{2 m} \vec{\partial} \cdot \vec{\partial}\right] \psi \tag{7}\\
H & =\int d^{3} x \psi^{\dagger}\left[-\frac{1}{2 m} \vec{\partial} \cdot \vec{\partial}\right] \psi \tag{8}
\end{align*}
$$

ψ is a 2 -component spinor field (i.e., in the 2-dimensional representation of the space rotation $\mathrm{SO}(3)$ symmetry group). With the creation and annihilation operators of states with a given momentum, the field operators are written as

$$
\begin{equation*}
\psi(\vec{x}, t)=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r} \xi_{r} a_{\vec{p}, r} e^{-i E_{\vec{p}} t+i \vec{p} \cdot \vec{x}}, \quad\left\{a_{\vec{p}, r}, a_{\vec{q}, s}^{\dagger}\right\}=\delta_{r, s}(2 \pi)^{3} \delta^{3}(\vec{p}-\vec{q}) \tag{9}
\end{equation*}
$$

Here, $E_{\vec{p}}=|\vec{p}|^{2} /(2 m)$, and ξ_{r} is a dimensionless 2-component spinor; one can take $\xi_{r=\uparrow}=(1,0)^{T}$ and $\xi_{r=\downarrow}=(0,1)^{T}$, for example.
[OK to skip (a-c) if trivial for you. [B] until (e), [C] to go beyond.]
(a) Verify that

$$
\begin{equation*}
H^{\prime} \equiv H-\epsilon_{F} \int d^{3} x \psi^{\dagger} \psi=\int \frac{d^{3} p}{(2 \pi)^{3}} \sum_{r}\left(E_{\vec{p}}-\epsilon_{F}\right) a_{\vec{p}, r}^{\dagger} a_{\vec{p}, r}+\text { const. } \tag{10}
\end{equation*}
$$

(b) Verify that $\psi^{\dagger} \psi$ is the $\mu=0$ component of the Noether current J^{μ} corresponding to the electron-number symmetry (phase rotation of ψ) in (7). [remark: Thus, $H^{\prime}=H-\epsilon_{F} N_{e}$, where N_{e} is the electron number. ϵ_{F} is regarded as the chemical potential (Fermi energy).]
(c) (not a homework problem) Note that this system can be described by a Lagrangian

$$
\begin{equation*}
\mathcal{L}^{\prime}=\psi^{\dagger}\left[i \partial_{t}+\frac{1}{2 m} \vec{\partial} \cdot \vec{\partial}+\epsilon_{F}\right] \psi . \tag{11}
\end{equation*}
$$

(d) Let us define $b_{\vec{p}, r} \equiv a_{-\vec{p}, r}^{\dagger}$ for $|\vec{p}|$ below the Fermi momentum $p_{F} ; \epsilon_{F}=E_{p_{F}}$. Rewrite H^{\prime} in terms of $a_{\vec{p}, r}$ with $|\vec{p}| \geq p_{F}$ and $b_{\vec{p}, r}$ with $|\vec{p}|<p_{F}$, and show that the state with all the levels below the Fermi surface filled is the ground state of this Hamiltonian H^{\prime}. It will be easy to see that $b_{\vec{p}}$ and $b_{\vec{p}}^{\dagger}$ are the annihilation and creation operators of a hole.
(e) Use the expression (9) and the observation in (d) to verify that

$$
\begin{align*}
G\left(\vec{x}, t ; \vec{y}, t^{\prime}\right):=\langle 0| T & \left\{\psi(\vec{x}, t) \psi_{I}^{\dagger}\left(\vec{y}, t^{\prime}\right)\right\}|0\rangle \tag{12}\\
= & \mathbf{1}_{2 \times 2} \int \frac{d^{3} p}{(2 \pi)^{3}}\left(\Theta\left(t-t^{\prime}\right) \Theta\left(|p|-p_{F}\right) e^{-i\left(E_{p}-\epsilon_{F}\right)\left(t-t^{\prime}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}\right. \\
& \left.-\Theta\left(t^{\prime}-t\right) \Theta\left(p_{F}-|p|\right) e^{-i\left(E_{p}-\epsilon_{F}\right)\left(t-t^{\prime}\right)-i \vec{p} \cdot(\vec{x}-\vec{y})}\right) .
\end{align*}
$$

On the other hand, the path integral formulation allows one to conclude right away from the action (11) that

$$
\begin{equation*}
G\left(\vec{x}, t ; \vec{y}, t^{\prime}\right)=\mathbf{1}_{2 \times 2} \int d \omega \frac{d^{3} p}{(2 \pi)^{3}} \frac{i e^{-i \omega\left(t-t^{\prime}\right)+i \vec{p} \cdot(\vec{x}-\vec{y})}}{\omega-E_{p}+\epsilon_{F}+i \operatorname{sgn}\left(E_{p}-\epsilon_{F}\right) \epsilon} . \tag{13}
\end{equation*}
$$

Verify that the former expression (in the operator formalism) is reproduced from the latter (in the path integral formalism) by integrating over ω.
(f) Verify that

$$
\begin{align*}
& \int_{-\infty}^{+\infty} d t^{\prime}\langle 0| T\left\{\psi^{\dagger} \Gamma_{x} \psi(\vec{x}, t) \psi^{\dagger} \Gamma_{y} \psi\left(\vec{y}, t^{\prime}\right)\right\}|0\rangle \\
= & \int_{-\infty}^{+\infty} d t^{\prime \prime}\langle 0| T\left\{\psi^{\dagger} \Gamma_{x} \psi\left(\vec{r}, t^{\prime \prime}\right) \psi^{\dagger} \Gamma_{y} \psi(\overrightarrow{0}, 0)\right\}|0\rangle, \tag{14}
\end{align*}
$$

where $\vec{r}:=\vec{x}-\vec{y}$ and $t^{\prime \prime}=t-t^{\prime}$, is equal to

$$
\begin{equation*}
(14)=-i \operatorname{tr}_{2 \times 2}\left[\Gamma_{x} \Gamma_{y}\right] \int \frac{d^{3} q}{(2 \pi)^{3}} e^{i \vec{q} \cdot \vec{r}} f(q) \tag{15}
\end{equation*}
$$

with

$$
\begin{align*}
f(q) & =2 \int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\Theta\left(|\vec{q}-\vec{k}|-p_{F}\right) \Theta\left(p_{F}-|\vec{k}|\right)}{\left(\omega_{\vec{q}-\vec{k}}-\omega_{\vec{k}}\right) i} \tag{16}\\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{\Theta\left(p_{F}-|\vec{k}|\right)-\Theta\left(p_{F}-|\vec{q}-\vec{k}|\right)}{(2 m)^{-1}\left[q^{2}-2 \vec{k} \cdot \vec{q}\right]}, \tag{17}\\
& =\int \frac{d^{3} k}{(2 \pi)^{3}} \frac{2 \Theta\left(p_{F}-|\vec{k}|\right)}{(2 m)^{-1}\left[q^{2}-2 \vec{k} \cdot \vec{q}\right]} \tag{18}\\
& =\cdots=\frac{m k_{F}}{(2 \pi)^{2}}\left\{1+\frac{4 k_{F}^{2}-q^{2}}{4 k_{F} q} \ln \left|\frac{2 k_{F}+q}{2 k_{F}-q}\right|\right\} . \tag{19}
\end{align*}
$$

Here, Γ_{x} and Γ_{y} are 2 x 2 matrices yet to be specified at this moment. This $f(q)$ is konwn as Lindhard function of a free electron gas (or of conduction band electrons). [Once you verify the equivalence between (14) and (15,16), the rest-in between (16) and (19) - is not so much about QFT, but just a math exercise. It is an option to just accept that $(16)=(19)$, and move on.]
(g) Suppose that the conduction band electrons (approximated by a free electron gas system) have interactions with other quantum mechanical degrees of freedom

$$
\begin{equation*}
\Delta H=\sum_{i} g_{i}\left(\psi^{\dagger} \Gamma_{i} \psi\right)\left(\vec{r}_{i}, t\right) s_{i} \tag{20}
\end{equation*}
$$

where s_{i} is an operator acting on a quantum mechanical degree of freedom localized at \vec{r}_{i}, Γ_{i} a constant dimensionless valued 2×2 matrix, and g_{i} is a coupling constant. The combination $g_{i} s_{i}$ has dimension of [energy \times volume].

By setting

$$
\begin{equation*}
\langle 0| T\left\{\exp \left[-i \int d t \Delta H\right]\right\}|0\rangle_{\psi, \psi^{\dagger} \text { system }}=: T \exp \left[-i \int d t \Delta H_{\mathrm{eff}}\right], \tag{21}
\end{equation*}
$$

verify that the effective Hamiltonian contains

$$
\begin{equation*}
\Delta H_{\mathrm{eff}} \supset-\sum_{i<j} J_{i j} s_{i} s_{j} ; \quad J_{i j}:=\operatorname{tr}_{2 \times 2}\left[\Gamma_{i} \Gamma_{j}\right] \int \frac{d^{3} q}{(2 \pi)^{3}} f(q) e^{i \vec{q} \cdot \vec{r}_{i j}} \tag{22}
\end{equation*}
$$

[This is known as RKKY interaction. To learn more, look up references with a keyword "Friedel oscillation" and "RKKY interaction".]

