
QFT II/QFT homework III (Oct. 12, 2020)

• At the head of your report, please write your name, student ID number and

a list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

1. Final State Phase Space [B]

(a) cross section 1: Let us consider a process of a pair of relativisitc (approximately

massless) particles collide at the center of mass energy
√
s, and scatter into a pair

of non-identical particles. Suppose that this pair of final state particles have the

same mass, m (imagine e+ + e− → µ+ + µ−, for example). Verify that the cross

section is

dσ =
dφ

2π

d(cos θ)

32πs
β|M|2, (1)

where (φ, θ) are the azimuthal angle and the scattering angle at the center of mass

frame. [i.e., the initial state particles come along the z-axis, and the final state

particles are moving out to p⃗ = |p⃗|(sin θ cosφ, sin θ sinφ, cos θ)] β is the velocity

|p⃗|/E of the final state particles.

(The primary lesson to take out from this problem is that the cross section has

an overall dependence β/s due to the kinematics (final state phase space). To see

how powerful this understanding is, visit the web page

https://pdg.lbl.gov/2020/reviews/contents sports.html

and click on the last entry, “Plots of cross sections and related quantities”, and

look at Figure 52.2.)

(b) cross section 2: Suppose now that the final state particles are (approximately)

massless, for simplicity. Verify, then, that the expression above can also be written

as

dσ ≃ dφ

2π

dt

16πs2
|M|2, (2)

where t is the Mandelstam variable of the 2-body −→ 2-body scattering. (it is an

option to skip this problem)

(c) decay rate 1 Let us think of a particle at rest with mass M decaying to a pair

of non-identical (approximately) massless particles. Verify, then, that

dΓ ≃ d2Ω

4π

1

16πM
|M|2. (3)
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(d) decay rate 2 Suppose that a particle at rest with mass M decays to a pair of a

particle with massM ′ =M −∆m and an approximately massless particle. Verify,

when 0 < ∆m≪M , that

dΓ ≃ d2Ω

4π

β

8πM
|M|2, (4)

where β is the velocity of the massive particle in the final state. [A lesson: when

a scattering/decay process is barely allowed kinematically, the measure over the

final state phase space yields a positive power of β ≪ 1, and hence the cross

section/decay rate is suppressed.]

(e) decay rate 3 Let us now think of a particle at rest with mass M decaying to

three non-identical particles (e.g., µ− → e−+ ν̄e+νµ). The final state phase space

is of 5-dimensions, after exploting the energy-momentum conservation. When the

decaying particle is a scalar, or with a spin but without a polarization, however,

there is SO(3) symmetry of space (R3) rotation acting on the final state phase,

and the integral over the 5-dimensional phase space is reduced to one on a 2-

dimensional space. We can take, for example, (E1, E2)—the energy of two particles

(e.g., νµ and ν̄e) as the coordinates of the 2-dimensional space, and the integral is

in the form of

dΓ =
1

(2π)38M
|M|2dE1dE2. (5)

Now, assume that all the three particles in the final states are approximately

massless, and work out the region in the (E1, E2) space that is kinematically

possible; the area should be M2/8. So, when the matrix element M(E1, E2)

does not have a particular structure (such as singularity),the total decay rate is

something like

Γ ∼ M

(8π)3
⟨
|M|2

⟩
. (6)

[The absence of structure in |M|2 is an appropriate assumption for µ→ eνν̄, but

not quite for t→ W + b+ g.]

(f) (not meant as a homework problem) Suppose that the matrix element M for a

2-body decay in (3) is approximatelyM times the matrix element M for a 3-body

decay in (6). The 3-body decay rate is smaller then the 2-body decay rate by a

factor 1/32π2 then.
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(g) (not meant as a homework problem) If you are interested in learning more on

kinematics (such as Dalits plot), you might think of visiting the web page referred

to earlier, and download a review article “Kinematics (rev.)” from that page.

Derivation of (5) is also found there.

2. Fermi Surface, Hole Excitation, Friedel Oscillation [B or C]

Consider a Lagrangian (and corresponding Hamiltonian) of non-relativisitic electron.

L = ψ†
[
i∂t +

1

2m
∂⃗ · ∂⃗

]
ψ, (7)

H =

∫
d3x ψ†

[
− 1

2m
∂⃗ · ∂⃗

]
ψ. (8)

ψ is a 2-component spinor field (i.e., in the 2-dimensional representation of the space

rotation SO(3) symmetry group). With the creation and annihilation operators of

states with a given momentum, the field operators are written as

ψ(x⃗, t) =

∫
d3p

(2π)3

∑
r

ξrap⃗,re
−iEp⃗t+ip⃗·x⃗,

{
ap⃗,r, a

†
q⃗,s

}
= δr,s(2π)

3δ3(p⃗− q⃗). (9)

Here, Ep⃗ = |p⃗|2/(2m), and ξr is a dimensionless 2-component spinor; one can take

ξr=↑ = (1, 0)T and ξr=↓ = (0, 1)T , for example.

[OK to skip (a–c) if trivial for you. [B] until (e), [C] to go beyond.]

(a) Verify that

H ′ ≡ H − ϵF

∫
d3x ψ†ψ =

∫
d3p

(2π)3

∑
r

(Ep⃗ − ϵF ) a
†
p⃗,rap⃗,r + const. (10)

(b) Verify that ψ†ψ is the µ = 0 component of the Noether current Jµ corresponding

to the electron-number symmetry (phase rotation of ψ) in (7). [remark: Thus,

H ′ = H − ϵFNe, where Ne is the electron number. ϵF is regarded as the chemical

potential (Fermi energy).]

(c) (not a homework problem) Note that this system can be described by a Lagrangian

L′ = ψ†
[
i∂t +

1

2m
∂⃗ · ∂⃗ + ϵF

]
ψ. (11)
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(d) Let us define bp⃗,r ≡ a†−p⃗,r for |p⃗| below the Fermi momentum pF ; ϵF = EpF .

Rewrite H ′ in terms of ap⃗,r with |p⃗| ≥ pF and bp⃗,r with |p⃗| < pF , and show that

the state with all the levels below the Fermi surface filled is the ground state of

this Hamiltonian H ′. It will be easy to see that bp⃗ and b
†
p⃗ are the annihilation and

creation operators of a hole.

(e) Use the expression (9) and the observation in (d) to verify that

G(x⃗, t; y⃗, t′) := ⟨0|T
{
ψ(x⃗, t)ψ†

I(y⃗, t
′)
}
|0⟩ (12)

= 12×2

∫
d3p

(2π)3

(
Θ(t− t′)Θ(|p| − pF )e

−i(Ep−ϵF )(t−t′)+ip⃗·(x⃗−y⃗)

−Θ(t′ − t)Θ(pF − |p|)e−i(Ep−ϵF )(t−t′)−ip⃗·(x⃗−y⃗)
)
.

On the other hand, the path integral formulation allows one to conclude right

away from the action (11) that

G(x⃗, t; y⃗, t′) = 12×2

∫
dω

d3p

(2π)3
ie−iω(t−t

′)+ip⃗·(x⃗−y⃗)

ω − Ep + ϵF + isgn(Ep − ϵF )ϵ
. (13)

Verify that the former expression (in the operator formalism) is reproduced from

the latter (in the path integral formalism) by integrating over ω.

(f) Verify that ∫ +∞

−∞
dt′ ⟨0|T

{
ψ†Γxψ(x⃗, t) ψ

†Γyψ(y⃗, t
′)
}
|0⟩

=

∫ +∞

−∞
dt′′ ⟨0|T

{
ψ†Γxψ(r⃗, t

′′) ψ†Γyψ(⃗0, 0)
}
|0⟩, (14)

where r⃗ := x⃗− y⃗ and t′′ = t− t′, is equal to

(14) = −i tr
2×2

[ΓxΓy]

∫
d3q

(2π)3
eiq⃗·r⃗ f(q), (15)
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with

f(q) = 2

∫
d3k

(2π)3
Θ(|q⃗ − k⃗| − pF )Θ(pF − |⃗k|)

(ωq⃗−k⃗ − ωk⃗)i
, (16)

=

∫
d3k

(2π)3
Θ(pF − |⃗k|)−Θ(pF − |q⃗ − k⃗|)

(2m)−1[q2 − 2k⃗ · q⃗]
, (17)

=

∫
d3k

(2π)3
2Θ(pF − |⃗k|)

(2m)−1[q2 − 2k⃗ · q⃗]
, (18)

= · · · = mkF
(2π)2

{
1 +

4k2F − q2

4kF q
ln

∣∣∣∣2kF + q

2kF − q

∣∣∣∣} . (19)

Here, Γx and Γy are 2x2 matrices yet to be specified at this moment. This f(q) is

konwn as Lindhard function of a free electron gas (or of conduction band electrons).

[Once you verify the equivalence between (14) and (15, 16), the rest—in between

(16) and (19)—is not so much about QFT, but just a math exercise. It is an

option to just accept that (16)=(19), and move on.]

(g) Suppose that the conduction band electrons (approximated by a free electron gas

system) have interactions with other quantum mechanical degrees of freedom

∆H =
∑
i

gi(ψ
†Γiψ)(r⃗i, t)si, (20)

where si is an operator acting on a quantum mechanical degree of freedom localized

at r⃗i, Γi a constant dimensionless valued 2×2 matrix, and gi is a coupling constant.

The combination gisi has dimension of [energy × volume].

By setting

⟨0|T
{
exp

[
−i

∫
dt∆H

]}
|0⟩ψ,ψ† system =: T exp

[
−i

∫
dt∆Heff

]
, (21)

verify that the effective Hamiltonian contains

∆Heff ⊃ −
∑
i<j

Jijsisj; Jij := tr
2×2

[ΓiΓj]

∫
d3q

(2π)3
f(q)eiq⃗·r⃗ij . (22)

[This is known as RKKY interaction. To learn more, look up references with a

keyword “Friedel oscillation” and “RKKY interaction”.]
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