QFT II/QFT homework III (Oct. 12, 2020)

e At the head of your report, please write your name, student ID number and

a list of problems that you worked on in a report (like “II-1, II-3, IV-2”).

1. Final State Phase Space [B]

()

cross section 1: Let us consider a process of a pair of relativisitc (approximately
massless) particles collide at the center of mass energy /s, and scatter into a pair
of non-identical particles. Suppose that this pair of final state particles have the
same mass, m (imagine e™ + e~ — p™ + p~, for example). Verify that the cross

section is
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where (¢, 6) are the azimuthal angle and the scattering angle at the center of mass

do

frame. [i.e., the initial state particles come along the z-axis, and the final state
particles are moving out to p' = [p](sin @ cos ¢, sin @ sin ¢, cosd)] 5 is the velocity
|p]/ E of the final state particles.

(The primary lesson to take out from this problem is that the cross section has
an overall dependence (/s due to the kinematics (final state phase space). To see
how powerful this understanding is, visit the web page
https://pdg.lbl.gov/2020/reviews/contents_sports.html

and click on the last entry, “Plots of cross sections and related quantities”, and
look at Figure 52.2.)

cross section 2: Suppose now that the final state particles are (approximately)
massless, for simplicity. Verify, then, that the expression above can also be written
as
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where t is the Mandelstam variable of the 2-body — 2-body scattering. (it is an
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option to skip this problem)
decay rate 1 Let us think of a particle at rest with mass M decaying to a pair
of non-identical (approximately) massless particles. Verify, then, that
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decay rate 2 Suppose that a particle at rest with mass M decays to a pair of a
particle with mass M’ = M — Am and an approximately massless particle. Verify,
when 0 < Am < M, that
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where (3 is the velocity of the massive particle in the final state. [A lesson: when
a scattering/decay process is barely allowed kinematically, the measure over the
final state phase space yields a positive power of § < 1, and hence the cross
section/decay rate is suppressed.|

decay rate 3 Let us now think of a particle at rest with mass M decaying to
three non-identical particles (e.g., p~ — e~ + 7. +v,). The final state phase space
is of 5-dimensions, after exploting the energy-momentum conservation. When the
decaying particle is a scalar, or with a spin but without a polarization, however,
there is SO(3) symmetry of space (R?) rotation acting on the final state phase,
and the integral over the 5-dimensional phase space is reduced to one on a 2-
dimensional space. We can take, for example, (E, E)—the energy of two particles
(e.g., v, and 7,) as the coordinates of the 2-dimensional space, and the integral is
in the form of
1

Now, assume that all the three particles in the final states are approximately
massless, and work out the region in the (Ej, Ey) space that is kinematically
possible; the area should be M?/8. So, when the matrix element M(E), Fy)
does not have a particular structure (such as singularity),the total decay rate is
something like

M 2

[The absence of structure in |M|? is an appropriate assumption for 1 — evw, but
not quite for t - W +b+ g.]

(not meant as a homework problem) Suppose that the matrix element M for a
2-body decay in (3) is approximately M times the matrix element M for a 3-body
decay in (6). The 3-body decay rate is smaller then the 2-body decay rate by a
factor 1/3272 then.



(g) (not meant as a homework problem) If you are interested in learning more on

kinematics (such as Dalits plot), you might think of visiting the web page referred
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to earlier, and download a review article “Kinematics (rev.)” from that page.

Derivation of (5) is also found there.

2. Fermi Surface, Hole Excitation, Friedel Oscillation [B or C]

Consider a Lagrangian (and corresponding Hamiltonian) of non-relativisitic electron.
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¥ is a 2-component spinor field (i.e., in the 2-dimensional representation of the space
rotation SO(3) symmetry group). With the creation and annihilation operators of

states with a given momentum, the field operators are written as
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Here, E; = [p]*/(2m), and &, is a dimensionless 2-component spinor; one can take
&er = (1,0)T and &, = (0,1)7, for example.

[OK to skip (a—c) if trivial for you. [B] until (e), [C] to go beyond.]

(a) Verify that
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(b) Verify that ¢ is the u = 0 component of the Noether current J# corresponding
to the electron-number symmetry (phase rotation of ¢) in (7). [remark: Thus,
H' = H — ¢ N,, where N, is the electron number. €r is regarded as the chemical
potential (Fermi energy).]

(¢) (not a homework problem) Note that this system can be described by a Lagrangian

L=t i+ =30+ er| 0. (11)
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(d)

Let us define by, = al . for |p] below the Fermi momentum pp; ep = E,,..
Rewrite H' in terms of aW with [p] > pr and bz, with |p] < pp, and show that
the state with all the levels below the Fermi surface filled is the ground state of
this Hamiltonian H'. It will be easy to see that bz and b;; are the annihilation and

creation operators of a hole.

Use the expression (9) and the observation in (d) to verify that
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On the other hand, the path integral formulation allows one to conclude right
away from the action (11) that
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Verify that the former expression (in the operator formalism) is reproduced from

the latter (in the path integral formalism) by integrating over w.

Verify that
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with
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Here, I', and I, are 2x2 matrices yet to be specified at this moment. This f(q) is
konwn as Lindhard function of a free electron gas (or of conduction band electrons).
[Once you verify the equivalence between (14) and (15, 16), the rest—in between
(16) and (19)—is not so much about QFT, but just a math exercise. It is an
option to just accept that (16)=(19), and move on.]

Suppose that the conduction band electrons (approximated by a free electron gas

system) have interactions with other quantum mechanical degrees of freedom
AH = g T)(7, s, (20)

where s; is an operator acting on a quantum mechanical degree of freedom localized
at 75, ['; a constant dimensionless valued 2 x 2 matrix, and g; is a coupling constant.
The combination g;s; has dimension of [energy x volume].

By setting
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verify that the effective Hamiltonian contains
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[This is known as RKKY interaction. To learn more, look up references with a
keyword “Friedel oscillation” and “RKKY interaction”.]



