
QFT II/QFT homework V (Oct. 26, 2020)

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

1. Quantization of constrained systems [C or D] Read some appropriate materials

and learn quantization of constrained sytems using Dirac bracket. Weinberg’s text

book volume 1, Chapter 7.6 (and the appendix to Chap.7) is an example. (or look up

online) ... and how does that work in the following systems in practice? [category [C]

for the (a, b); category [D] by going further.]

(a) Dirac fermion with he Lagrangian L = Ψ(iγµDµ −m)Ψ. Introductory QFT text-

books often choose to deal with the Hermitian conjugate Ψ† of the field Ψ as the

canonical conjugate field of Ψ, instead of dealing with Ψ† as a field independent

of Ψ so both Ψ and Ψ† have their own canonical conjugate fields (as in the case

of a QFT with a complex scalar field). What if we choose to deal with both Ψ

and Ψ† in the Dirac Lagrangian as independent field, and apply the Dirac bracket

procedure for quantization?

(b) photon L = −(1/4)FµνF
µν .

(c) Chern–Simons action
∫
d3xL = κ

∫
d3x ελµνAλ(∂µAν) in 2+1-dimensional space-

time; εµνλ is the totally anti-symmetric tensor with ε012 = +1, and κ is a non-zero

constant.

(d) chiral scalar field S =
∫
d2x(∂µφ)(∂µφ) on 1+1 dimensional space-time, with a

contraint ∂0φ = −∂1φ. (such a field may arise as a chiral edge mode on the (1+1)-

dimensional boundary of a condensed matter (2+1)-dimensional system, and is

also used as a part of the formulation of Heterotic string theory)

(e) any other systems of your interest.

2. Spin dependence in the s-channesl scattering [B]

(a) We studied the e− + e+ → µ− + µ+ cross section during the class. What if the

final state µ− and µ+ particles were spin-0 (scalar) particles? Now we consider a
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Figure 1: The Feynman diagram that contributes to the e−(p1) + e+(p2)→ µ̃−(p3) + µ̃+(p4)
scattering.

process of s-channel production of a pair of spin-0 particles (µ̃− and µ̃+), whose

Lagrangian is L = (DµΦ)†(DµΦ)−M2|Φ|2 using a complex scalar field Φ, instead

of L = Ψ(µ)(iγ
µDµ −M)Ψ(µ) using a 4-component spinor field Ψ(µ). The bilinear

part is L0 = (∂µΦ)†(∂µΦ)−M2|Φ|2, whose canocnical quantization leads to

ΦI =

∫
d3~p

(2π)3

1√
2E~p

(
a~pe
−ip·x + b†~pe

ip·x
)
, (1)

Φ†I =

∫
d3~p

(2π)3

1√
2E~p

(
a†~pe

ip·x + b~pe
−ip·x

)
, (2)

where a~p and a†~p are annihilation and creation operators of a spin-0 µ̃− particle,

and b~p and b†~p those of its anti-particle (spin-0 µ̃+ particle). The remnant is

Lint = ieQ(µ)Aµ[(∂µΦ†)Φ− Φ†(∂µΦ)] + (eQ(µ))
2AµA

µ|Φ|2. (3)

Now, to the e− + e+ → µ̃− + µ̃+ process, the s-channel photon exchange diagram

as in Figure 1 is the only contribution. Here is a question. Do you understand

that the Aµ–µ̃−–µ̃+ vertex as in the Figure contributes a factor −ieQ(µ)(p3−p4)µ,

instead of the factor −ieQ(µ)γ
µ in the Aµ–µ−–µ+ vertex? [skip, if trivial]

(b) Verify that the scattering amplitude is given by

iM (
e−r (~p1) + e+

s (~p2)→ µ̃−(~p3) + µ̃+(~p4)
)

(4)

=
i(Q(µ)Q(e)e

2)

(p1 + p2)2 + iε
(vs(~p2)γµur(~p1))(p3 − p4)µ.
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(c) Verify that the average of the |matrix element|2 over the initial state spin is given

by

1

4

∑
r,s

|M|2 =
(Q(µ)Q(e)e

2)2

s2

(
+4m2

(e)|~p3|2 − 8(~p1 · ~p3)2 + 4|~p3|2(s/2−m2
(e))
)

(5)

in the center of mass frame (~p2 = −~p1 and ~p4 = −~p3).

(d) We now ignore the electron mass; m(e) ∼ 0.5 MeV is much smaller than the muon

mass M(µ) ∼ 106 MeV anyway. Verify, when the center of mass energy of the

e−+e+ collision is just high enough for a µ̃−+ µ̃+ pair creation (|~p1| ' E~p1 'M(µ)

but E~p1 > M(µ)), that

1

4

∑
r,s

|M|2 ' (Q(µ)Q(e)e
2)2

2
β2

(µ) sin2 θ, (6)

where β(µ) := |~p3|/M(µ) is the velocity of the produced µ̃±, and θ the scattering

angle in the center of mass frame (~p3 · ~p1 =: |~p3||~p1| cos θ).

(e) Verify in the high-energy limit (|~p1| �M(µ)) that

1

4

∑
r,s

|M|2 ' (Q(µ)Q(e)e
2)2

2
sin2 θ. (7)

(f) (not as a part of the homework problem) The nearly massless initial state pair

e− + e+ terns into a virtual photon with polarization transverse to the axis of the

e− + e+ collision (lecture note for Week 05 and 06). This virtual photon couples

to the p-wave relative wavefunction of the final state µ̃− + µ̃+ pair. This is why

the pair of spin-0 particles are more likely to come out in the direction transverse

(sin2 θ ∼ 1 than ∼ 0) to the axis of collision. The pair creation processes of spin-

1/2 particles and spin-0 particles have different θ-dependence in their differential

cross section (cf. Week 05 lecture). This can be used to determine the spin of

pair-produced particles experimentally.

3. Forward-backward Asymmetry [B]

(a) Consider an s-channel process of e−(p1) + e+(p2)→ V ∗ → f−(p3) + f+(p4) going

through a vector field V to a pair of spin-1/2 fermions f− + f+. This process is

similar to the QED process e− + e+ → γ∗ → µ− + µ+, but now we think of a
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theory where the vector field Vµ couples to the 4-component spinor fields for e∓

and f∓ by

Lint = −g(i)
L Ψiγ

µVµ

(
1− γ5

2

)
Ψi − g(i)

R Ψiγ
µVµ

(
1 + γ5

2

)
Ψi, (8)

where i = e, f , and

γ5 :=

( −12×2

12×2

)
, (9)

so PL = (1 − γ5)/2 and PR = (1 + γ5)/2 retain only the left-handed and right-

handed spinor components, respectively.

Compute i) |M(e−↓ + e+
↑ → f−↓ + f+

↑ )|2, and ii) |M(e−↓ + e+
↑ → f−↑ + f+

↓ )|2 in

the relativistic limit (|~p1,2,3,4| ' E in the center of mass frame and m(e) and m(f)

negligible when compared with E). Here, the states |n±, ~p, ↑〉 and |n±, ~p, ↓〉 for

n = e, f are characterized by

~p · ~s|n±, ~p, ↑〉 = +
E

2
|n±, ~p, ↑〉, ~p · ~s|n±, ~p, ↓〉 = −E

2
|n±, ~p, ↓〉; (10)

~s is the spin operator.

(b) Draw a sketchy graph of those |M|2’s as a function of cos θ ∈ [−1,+1]; ~p1 · ~p3 =:

|~p1||~p3| cos θ.

(c) Even if the initial state e± are not polarized, and we do not detect the spin of the

final state f±, we may still define the forward-backward asymmetry

AFB =
σ(e−e+ → f−f+ | θ ≤ π/2)− σ(e−e+ → f−f+ | θ ≥ π/2)

σ(e−e+ → f−f+ | θ ≤ π/2) + σ(e−e+ → f−f+ | θ ≥ π/2)
, (11)

if it is possible to measure the charge of the final state particles (and distinguish

f− from f+) experimentally (AFB > 0 means that f− comes out more often in the

forward direction of the e− beam than in the backward direction of the e− beam).

Verify that AFB is non-zero if g
(e)
L 6= g

(e)
R and g

(f)
L 6= g

(f)
R .

(d) (this is not a problem) The coupling of the Z-boson in the Standard Model has this

property indeed. The experimental data of e−+e+ → µ−+µ+ shown in the Week

05–06 lectures clearly have a signal of the forward-backward asymmetry.1 Further

1We should not use |Mphoton|2 + |MZ|2, but |Mphoton +MZ|2 in computing the cross section, in fact. So,
the standard model prediction for AFB is not as simple a formula as what is obtained in part (c).
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reading: Phys. Rept. 271 (1996) 181–266 “Experimental tests of the standard

model in e+e− → ff̄ at the Z resonance” or arXiv:hep-ex/0509008 “Precision

Electroweak Measurements on the Z Resonance.”
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