
QFT II/QFT homework XI (Dec. 14, 2020)

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

1. M1, E2 transitions etc. [C]

Electric dipole emission (E1 transition) is not the only possible mechanisms of transi-

tions between atomic energy eigenstates. Explore more about those higher order effects,

following your intellectual curiosity. References include ....

• Landau Lifshitz vol 4 Quantum Electrodynamics, §45–50,

• TAKAYANAGI, Kazuo Genshi-bunshi Butsuri-gaku (Asakura Publ. Co) written

in Japanese, §4.4.2–4.4.5

• look up online

2. Positronium Decay [B (or C)]

Let us work out how to use Bethe–Salpeter wavefunction to compute the decay rate

of a positronium (a bound state of a pair of e−e+) to two photons. Here, we need to

note that each photon carries energy that is approximately me (in the rest frame of the

initial bound state). The photon momenta, or derivatives acting on a photon field in the

Lagrangian, is therefore not smaller than me. So, ∂⃗/me-expansion is not particularly

useful in computing the matrix element for the decay rate. For this computation, it is

better to use the frame of four-component spinor where

γ0 =

(
1

−1

)
, γi =

(
τ⃗

−τ⃗

)
. (1)

The Bethe–Salpeter wavefunction χ(p) in (here, pµ := (p1 − p2)
µ/2 =: (ω, p⃗))

⟨Ω|T
{
Ψ(p1)Ψ(p2)

}
|stot, sz;n, l,m⟩ =(2π)4δ4(p1 + p2 − pCM) [χnls;szm(p)]4×4 (2)
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is a 4× 4 matrix valued function, and is approximately given by

[χnls;szm(ω, p⃗)]4×4 ≃
(

12×2
p⃗·τ⃗
2me

)
[P (stot, sz)]2×2

(
− p⃗ · τ⃗
2me

, −12×2

)
χnlm(ω, p⃗), (3)

[P (stot, sz)]2×2 =


12×2 stot = 0
τ 3 stot = 1, sz = 0,

(τ 1 ± iτ 2)/
√
2 stot = 1, sz = ±1

(4)

∫
dω

2π
χnlm(ω, p⃗) ≃

√
4meψ

NRQM
nlm (p⃗), (5)

using the Fourier transform of the wavefunction of a state |n, l,m⟩ (with the redueced

mass me/2) in the non-relativistic quantum mechanics (that is, ψNRQM
nlm (p⃗)). In the rest

of this problem, we set p⃗CM = 0⃗.

(a) Verify that the matrix element of positronium → γ + γ is given by

iM ≃
∫
dω

2π

∫
d3p⃗

(2π)3
(−ieQe)

2 ϵ∗µ(k⃗)ϵ
∗
ν(−k⃗) (6)

tr4×4

[(
γνi[ωγ0 − (p⃗− k⃗)iγi +me]γ

µ

ω2 − (p⃗− k⃗)2 −m2
e

+
γµi[ωγ0 − (p⃗+ k⃗)iγi +me]γ

ν

ω2 − (p⃗+ k⃗)2 −m2
e

)
[χ4×4]

]
,

if this expression is not trivial for you.

(b) Because |⃗k| = me+(∆E)/2 ≈ O(me), while p⃗ is typically O(meα) and ω even less,

it makes sense to drop all of ω and p⃗ (and retain only me and k⃗) from the vertex-

and-propagator (· · ·+ · · · ) part in the expression above. You will then notice that

dω integral can be carried out, and χ turns into ψNRQM. Now, carry out the rest

of the computation to find the decay rate of the positronium (n, l,m, stot, sz) =

(1, 0, 0; 0, 0) state. [It is not as important to get the O(1) coefficient precisely as

to get the right power of me and α.] You will also be able to confirm that the two

outgoing photons have oppsite angular momentum.

(c) Peskin–Schroeder Problem 5.4 (at the end of chapter 5) contains more information.

If you are interested, you might think of exploring more. (category [C] then)

3. Partial wave decomposition at work [B]

Let us get the feeling how the partial wave decomposition works in practice, using the

results of perturbative computations of 2body to 2body scattering amplitudes.
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(a) We begin with the easiest example. Let us think of a 2-body to 2-body scattering

in the s-channel, where a pari of scalar particles Φ−(p1) and Φ+(p2) coupled to a

photon annihilates in pair and produce another pair of scalar particles Φ
′−(p3) and

Φ
′+(p4). For simplicity, we only deal with the case where the center of mass energy

is much higher than their rest mass (so that the mass parameters are negligible).

The scattering amplitude is

M = (−e2QΦQΦ′)
(p1 − p2) · (p3 − p4)

s
≃ (−e2QΦQΦ′)

u− t

2s
≃ (−e2QΦQΦ′)

cos θ

2
,

(7)

where θ is the scattering angle in the center of mass frame. Verify, by fitting the

result above into the following expansion,

M
2(4π)2

≃ Mred =
∞∑
ℓ=0

Yℓ,m(p̂3) [Mℓ(s)] (Yℓ,m(p̂1))
cc, (8)

Yℓ,m=0(n̂) = Pℓ(cos θ)

√
2ℓ+ 1

4π
, (9)

that only the ℓ = 1 partial wave is non-zero in this scattering, and that

Mℓ=1(s) ≃
−α(QΦQΦ′)

12
. (10)

[So, in this example, Mℓ=1 turns out to be independent of the center of mass

energy
√
s, at this tree level calculation. The S-matrix in this ℓ = 1 partial wave

is Sℓ=1 ≃ 1+ i(−αQQ′)/12 ≃ e−iαQQ′/12, while Sℓ̸=1 = 1 in all other partial waves.]

(b) (If you are also interested in working on this...) Let us now consider a little more

complicated case, where the initial state is not a pair of scalar Φ−+Φ+, but a pair

of spin-1/2 fermions, e−(p1) + e+(p2). We still consider the case where the final

state is a pair of scalars Φ
′−(p3)+Φ

′+(p4). We know that the scattering amplitude

(at the center of mass frame, in the relativisitic limit, p̂1 = −p̂2 = êz) is given by

M = (e2QeQΦ′) tr
2×2

[(
0 sin θe−iϕ

sin θeiϕ

)(
ξe− ⊗ ξ†e+

)]
(11)

where θ and ϕ indicate the direction of the momentum p̂3 after the scattering (in

the center of mass frame). A 2× 2 matrix

ξe− ⊗ ξ†e+ =

(
s00−s10√

2
s1+

−s1−
s00+s10√

2

)
(12)
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is a spin wavefunction; basis elements |sz1, sz2⟩ correspond to

|1/2, 1/2⟩ → ξ ◦ ξ† =
(

0 1
)
, |1/2,−1/2⟩ → ξ ◦ ξ† =

(
−1 0

)
,

|−1/2, 1/2⟩ → ξ ◦ ξ† =
(

0 1

)
, |−1/2,−1/2⟩ → ξ ◦ ξ† =

(
−1 0

)
.

We wish to consider the partial wave decomposition of this amplitude now.

Instead of the decomposition (8) for a 2-to-2 scattering between two spin-0

particles, we need to use

Mred =
∑
j,jz

∑
ℓ,m,s3z,s4z

Cs3,s4,ℓ(j, jz; s3z, s4z,m) (Yℓ,m(θ, ϕ)) [Mj(s)]∑
ℓ′,m′,s1z,s2z

Cs1,s2,ℓ′(j, jz; s
z
1, s

z
2,m

′) (Yℓ′,m′(θ′, ϕ′))cc

|sz3, sz4⟩⟨sz1, sz2|, (13)

where Cs1,s2,ℓ(j, jz; s1z, s2z,m) is the Clebsch–Gordan coefficient describing the ir-

reducible decomposition (spins1) ⊗ (spins2) ⊗ (spinℓ) ≃ · · · ⊕ (spinj) ⊕ · · · . The

partial wave amplitude [Mj] for a given total angular momentum j is not just

a complex number (for a given center of mass energy
√
s) but a matrix, because

there may be multiple ways to add spins s1, s2 [resp. s3, s4] and the angular

momentum ℓ′ [resp. ℓ] of some relative wavefunction of p̂1 [resp. p̂3] to obtain j.

i. (this is not a problem) In this part (b), we still consider the case the final

state particles Φ
′− and Φ

′+ are spin-0 particles (s3 = s4 = 0), so we only need

to use C0,0,ℓ(j, jz; 0, 0,m) = δℓ,jδjz ,m. Looking at the (θ, ϕ) dependence of the

amplitude (11) and using the spehreical harmonics

Y m=±1
ℓ=1 =

√
3

4π

∓1√
2
sin θe±ϕ, Y m=0

ℓ=1 =

√
3

4π
cos θ, (14)

we find that only the j = ℓ = 1 term should be retained in the expansion (13).

[Mj=1] is a 1 × 4 matrix. The “1×” part must already be obvious. The

“×4” part is also understood as follows. For the initial state, s1 = s2 = 1/2.

So, stot = 1 or 0. For stot ⊗ ℓ′ to contain j = 1, the only possibilities are

(stot, ℓ
′) = (0, 1), (1, 0), (1, 1), (1, 2). The 1 × 4 entries of the matrix [Mj=1]

are denoted by ([M(0,1)
1 ], [M(1,0)

1 ], [M(1,1)
1 ], [M(1,2)

1 ]), using (stot, ℓ
′) as the label.
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ii. (still this is not a problem) The scattering amplitude is

Mred =
αQΦQΦ′

8π

(
Y 1
1 (θ, ϕ)

√
8π

3
(−s1+) + Y −1

1 (θ, ϕ)

√
8π

3
(−s1−)

)
, (15)

or equivalently,

Mred =
αQΦQΦ′
√
24π

(
Y 1
1 (θ, ϕ)

(
−1 0

)
+ Y −1

1 (θ, ϕ)

(
0 1

))
, (16)

= −αQΦQΦ′
√
24π

(
Y 1
1 (θ, ϕ)⟨1/2, 1/2|+ Y −1

1 (θ, ϕ)⟨−1/2,−1/2|
)
. (17)

The operator formMop
red in (16, 17) becomes the amplitudeMamp

red in (15) when

we evaluate the former on the spin wavefunction (12); tr2×2[Mop
red(ξ ◦ ξ†)] =

Mamp
red . The following translation is understood in the equality between (16)

and (17).

⟨1/2, 1/2| ⇔
(

1 0

)
, ⟨1/2,−1/2| ⇔

(
−1 0

)
,

⟨−1/2, 1/2| ⇔
(

0 1

)
, ⟨−1/2,−1/2| ⇔

(
0 −1

)
.

iii. Now, complete the partial wave decomposition. That can be done by setting

αQΦQΦ′
√
24π

(−s1+) (18)

= [M(0,1)
1 ]s00 × 0 + [M(1,0)

1 ][Y 0
0 ]0s

1
+ + [M(1,1)

1 ][Y 0
1 ]0

s1+√
2
+ [M(1,2)

1 ][Y 0
2 ]0

s1+√
10
,

0 (19)

= [M(0,1)
1 ][Y 0

1 ]0s
0
0 + [M(1,0)

1 ][Y 0
0 ]0s

1
0 + [M(1,1)

1 ][Y 0
1 ]0 × 0 + [M(1,2)

1 ][Y 0
2 ]0

−2s10√
10
,

and

αQΦQΦ′
√
24π

(−s1−) (20)

= [M(0,1)
1 ]s00 × 0 + [M(1,0)

1 ][Y 0
0 ]0s

1
− + [M(1,1)

1 ][Y 0
1 ]0

−s1−√
2

+ [M(1,2)
1 ][Y 0

2 ]0
s1−√
10
,
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for jz = +1, 0 and −1, respectively. Here, in writing down the right hand

sides, we used the Clebsch–Gordan coefficients relating |j = 1, jz⟩(stot,ℓ
′) and

|stot; sztot⟩|ℓ′;m′⟩:

(stot ⊗ ℓ′) ⊃ (j = 1) ∋ |1,+⟩(1,1) =
|1;+⟩|1; 0⟩ − |1; 0⟩|1;+⟩√

2
,

|1, 0⟩(1,1) =
|1;+⟩|1;−⟩ − |1;−⟩|1;+⟩√

2
,

|1,−⟩(1,1) =
|1; 0⟩|1;−⟩ − |1;−⟩|1; 0⟩√

2
,

and

|1,+⟩(1,2) = |1;+⟩|2; 0⟩ −
√
3|1; 0⟩|2; 1⟩+

√
6|1;−⟩|2; 2⟩√

10
,

|1, 0⟩(1,2) =
√
3|1;+⟩|2;−1⟩ − 2|1; 0⟩|2; 0⟩+

√
3|1;−⟩|2; 1⟩√

10
,

|1,−⟩(1,2) =
√
6|1;+⟩|2;−2⟩ −

√
3|1; 0⟩|2;−1⟩+ |1;−⟩|2; 0⟩√

10
,

and also used the fact that

Y m′

ℓ′ (cos θ = 1, ∀ϕ) = δm′

√
2ℓ′ + 1

4π
=: [Y 0

ℓ′ ]0δm′ . (21)
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