
QFT II/QFT homework XV (Jan. 25)

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

1. Non-rela effective theories via path integration [B]

(a) We have dealt with the process of deriving the effective theory of non-relativisitic

two component fermion from Dirac Lagrangian in a couple of different perspectives

so far. This homework problem provides one more take on this phenomenon. Let

us use the gamma matrices of the form

γ0 =

(
12×2

−12×2

)
, γi =

(
τ⃗

−τ⃗

)
, (1)

and the four component Dirac fermion be split into the upper two and lower two

components in this frame,

Ψ =: e−iMt

(
ψ
χ̄

)
. (2)

i. Now, rewrite the Dirac Lagrangian

LDirac = Ψ†γ0 (iγµ(∂µ + ieQeAµ)−M)Ψ (3)

in terms of ψ and χ. [You will find that the mass parameter M cancels in the

coefficient of ψ†ψ, while it does not in the coefficient of χχ†.]

ii. Complete a square with respect to χ–χ†, and carry out the Gaussian integral

with respect to

Dχ†Dχ ⊂ DψDψ̄Dχ̄Dχ = DΨDΨ̄. (4)

[The remnant of completion of a square in LDirac must be the effective theory

Lagrangian of the non-relativisitic two component fermion.]
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(b) If one hopes to write down a quantum field theory for a spin-0 particle whose

number conserves (imagine an alkali atom), the field theory of a complex scalar

field will usually be the first choice. If you are interested only in using it in a

non-relativisitc regime, however, it is not necessary to retain both the particle

and its anti-particle in your theory; there must be a low-energy effective theory

where you only retain the particle without its anti-particle. What is the process

of deriving this low-energy effective theory like? Here is how.

i. The path integral of a theory of a complex scalar field Φ is carried out over the

space with the coordinates (Φ(k0, k⃗),Φ∗(k0, k⃗)). Let ϕ+(k
0, k⃗) and ϕ−(k

0, k⃗)

for ω > 0 be the positive and negative frequency parts of Φ(k0, k⃗); similarly, we

put the positive and negative frequency parts of Φ∗ as ϕ∗
− and ϕ∗

+, respectively.

The path integral measure is now

Dϕ+Dϕ−Dϕ∗
−Dϕ∗

+. (5)

When you start from

LKG = (∂µΦ)
∗(∂νΦ)−M2|Φ|2, (6)

verify that this Lagrangian is already in the form of a sum of a square (so we

do not need to complete a square), and that we are ready to integrate out ϕ−

and ϕ∗
−.

ii. (this is a remark, not a problem) Now you are left with Dϕ+(k
0
≥0, k⃗) and

Dϕ∗
+(k

0
≤0, k⃗). Quantization of this field theory leads to ϕ+ containing just the

annihilation operators of a particle, without the creation opertor of its anti-

particle, because the ϕ+(k
0
≥0, k⃗) field does not admit a negative frequency

solution to the equation of motion.

iii. Rewrite the effective theory Lagrangian of ϕ+–ϕ
∗
+ in terms of a new pair

of fields ϕ+ =: e−iMtϕ
+

and ϕ∗
+ =: e+iMtϕ∗

+
. Once you have done that,

you will presumably feel motivated to make a furtuer redefinition, ϕ
+

:=

ϕ
+
/
√
2M . Verify then that the effective theory Lagrangian written in terms

of ϕ
+
and its Hermitian conjugate contains terms that look like the action for

the Schroedinger equation.

iv. Suppose that we are interested in using this effective theory only in circum-

stances where |⃗k| ≪ M (that is, in non-relativistic situations). This is trans-

lated into the presence of a small parameter λ ≪ 1 so that |⃗k| ∼ λ×O(M).
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Then the operator ∂⃗2/M is given a scaling behavior M ×λ2. This means that

we should assign the same scaling behavior M × λ2 to the operator ∂t. What

is the scaling dimension of the operator (∂t)
2/M , then? [That fact that this

operator is assigned a higher scaling dimension (simply the power of λ) than

the two others justifies to drop this (∂t)
2/M operator from consideration (or

to treat this operator as a correction term).]

v. If you are interested, repeat the same procedure for a complex sclar field

theory, but now with an interaction term −κ
4
|Φ|4 term added to LKG.

2. Real-time formalism propagators and Fluctuation Dissipation theorem [C]

(a) Consider a harmonic oscillator, where the unit excitation energy (frequency) is E.

ϕ(t) = (ae−iEt + a†eiEt)/
√
2E, p(t) =

√
E/2(ae−iEt − a†e+iEt)/i. Now, compute

∆<(t) :=
Tr

[
e−βH0ϕ(0)ϕ(t)

]
Tr [e−βH0 ]

, ∆>(t) :=
Tr

[
e−βH0ϕ(t)ϕ(0)

]
Tr [e−βH0 ]

, (7)

and find their expressions that use the Bose–Einstein distribution

nE :=
1

(eβE − 1)
. (8)

(b) Note that the τ -ordered propagator in the imaginary time formalism corresponds

to {
∆<(t→ −iτ), if τ < 0,
∆>(t→ −iτ), if τ > 0.

(9)

(c) Verify, by using eβH0ϕ(t)e−βH0 = ϕ(t− iβ), that ∆<(t) = ∆>(t− iβ).

(d) Now, we examine relations among those propagators in their Fourier-transformed

version. As a preparation, verify that

Θ(t) =

∫
dω

2π
e−iωt i

ω + iϵ
, −Θ(−t) =

∫
dω

2π
e−iωt i

ω − iϵ
. (10)

(e) Let

⟨0| [ϕ(t), ϕ(0)] |0⟩ =:

∫
dω

2π
e−iωtρ(ω), (11)

∆R(t) = Θ(t)⟨0| [ϕ(t), ϕ(0)] |0⟩ =:

∫
dω

2π
e−iωt∆̃R(ω), (12)

∆A(t) = −Θ(−t)⟨0| [ϕ(t), ϕ(0)] |0⟩ =:

∫
dω

2π
e−iωt∆̃A(ω). (13)
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Verify that

∆̃R(ω) =

∫
dω′

2π

i

ω − ω′ + iϵ
ρ(ω′), ∆̃A(ω) =

∫
dω′

2π

i

ω − ω′ − iϵ
ρ(ω′), (14)

Re
(
∆̃R(ω)

)
=

1

2
ρ(ω). (15)

An example: in the case of a harmonic oscillator, ⟨0| [ϕ(t), ϕ(0)] |0⟩ = (e−iEt −
eiEt)/(2E), so ρ(ω) is the following:

ρ(ω) =
2π

2E
(δ(ω − E)− δ(ω + E)) , (16)

(f) Using the fact that ∆R(t) = Θ(t)(∆>(t) − ∆<(t)), and the fact that ∆<(t) =

∆>(t − iβ), derive the following relations on the Fourier transforms of ∆< and

∆<:

∆̃<(ω) = e−βω∆̃>(ω), (17)

ρ(ω) = ∆̃>(ω)− ∆̃<(ω) = (1− e−βω)∆̃>(ω). (18)

(g) (remark, not a homework problem) Combining all the results we have derived

above, we see that

Re
(
∆̃R(ω)

)
=

1

2
ρ(ω) =

1− e−βω

1 + e−βω

(
∆̃> + ∆̃<

)
2

= tanh(βω/2)

(
∆̃> + ∆̃<

)
2

. (19)

This relation is an example of the Fluctuation–dissipation theorem; in fact, this

relation holds not just for fields ϕ that are used for perturbative computations

in a quantum field theory system, but also for any kinds of operators O. Two

point functions ∆<(t) and ∆>(t) are defined as in (7) by simply replacing ϕ by

O. The statement ∆<(t) = ∆>(t − iβ) still holds true. In the expressions (11–

13), [ϕ(t), ϕ(0)] is replaced by [O(t),O(0)], and the vacuum expectation value by

thermal average, because [O(t),O(0)] is an operator in general, rather than a C-
number. The algebra that we have gone through, (10, 14–18), still holds true,

and hence the relation (19) follows. The combination (∆̃> + ∆̃<)(ω) in the right-

hand side is the power spectrum (Fourier transform) of the thermal average of
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the fluctuation of the operator at the quadratic order, {O(t),O(0)}. On the other

hand, ∆̃R on the left-hand side determines (linear) response of the system under

an external time-varying field coupled to the operator O; its real part1 corresponds

to the dissipation in the O–O channel

1The imaginary part of the response function is not dissipative in nature. Imagine a free electron moving
in an AC electric field. The current due to the oscillating electron motion tracks the oscillating electric field,
but with the delay in phase by π/2, so the response function is pure imaginary.
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