
QFT II/QFT “Category D” homework problems (ver 1 (Sep/28, 2020))

• Reports on these homework problems are supposed to be submitted through the U

Tokyo ITC-LMS. We request that the file name includes the problem number, such as

II-1***.pdf or ****-IV-2-IX-1.jpeg. The ITC-LMS will show who had submitted the

file (student ID and name), so the file name will not have to contain your name or ID

number. (this instruction may be updated later)

[D-2] see homework E-4.

[D-3] Rξ Gauge

Read appropriate resources to learn how to deal with massive vector fields in a non-

abelian gauge theory with spontaneous symmetry breaking (key word: Rξ-gauge), and

write a summary as a report. For example, [Peskin Schroeder] textbook §20.1, §20.2
and §21.1 (based on §9.4 and 16.2) cover this subject.

[D-4] see homework V-1.

[D-5] see homework X-1.

[D-1] Spinor Helicity formalism

Conventions

In this note, we use the following convention.1

γµ =

(
σµ

σ̄µ

)
, σµ = (12×2,−τ⃗) , σ̄µ = (12×2, τ⃗) , (1)

so that {γµ, γν} = 2ηµν = 2diag(+,−,−,−). A four component spinor Ψ is split into two

component spinors as

Ψ =

(
ψα

χ̄α̇

)
, Ψ := Ψ†γ0 = (ψ̄α̇, χ

α), α = 1, 2, α̇ = 1, 2. (2)

Individual entries of the 2× 2 matrices σµ and σ̄µ are denoted by (σµ)αα̇ and (σ̄µ)α̇α.

The two component spinors, ψα, χ̄
α̇ etc. are in separate irreducible spinor representations

of Spin(1, 3). There are two irreducible spinor representations of Spin(1, 3), 2R and 2L.

When the Lorentz transformation of the spinor ψα is given by ψα → ψ′
α = (ρ(g)) β

α ψβ, the

1This choice of σµ and σ̄µ is to follow the convention of a textbook “Supersymmetry and Supergravity,”
by J. Wess and J. Bagger.
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Lorentz transformation of the spinor χα is χα → (χ′)α = χβρ(g) α
β . In the sense that we can

use the same 2 × 2 matrix (representation), we say that the spinors ψα and χα are in the

representation, 2R. Similarly, ψ̄α̇ and χ̄α̇ are in the other spinor representation 2L.

Using Spin(1, 3) invariant anti-symmetric tensors2 ϵαβ and ϵα̇β̇,

ϵ12 = ϵ1̇2̇ = −1, ϵ21 = ϵ2̇1̇ = +1, ϵαβϵ
βγ = δ γ

α , ϵα̇β̇ϵ
β̇γ̇ = δ γ̇

α̇ , (3)

spinor indices are raised and lowerd by

ψαβ = ϵαβψβ, ψα = ϵαβψ
β, ψ̄α̇ = ϵα̇β̇ψ̄

β̇, ψ̄α̇ = ϵα̇β̇ψ̄β̇. (4)

The fact that both ΨΨ and Ψγ5Ψ are Lorentz invariant is equivalent to a statement that

both

χψ := χαψα = ϵαβχ
αψβ, ψ̄χ̄ := ψ̄α̇χ̄

α̇ = ϵα̇β̇ψ̄α̇χ̄β̇ (5)

are Lorentz invariant.

Later on, we will use the following relations,

σ̄µα̇α = ϵα̇β̇ϵαβσµ

ββ̇
, σµ

αα̇ = ϵαβϵα̇β̇σ̄
µβ̇β, (6)

σµ
αα̇σ̄

β̇β
µ = 2δ β

α δ
β̇
α̇ and σµ

αα̇σ̄
ν α̇α = 2ηµν . (7)

On shell states (recap)

Solution to the Dirac equation

(iγµ∂µ −m) e−ip·xu(p) = 0, (iγµ∂µ −m) e−ip·xv(p) = 0, (8)

are in the form of

u(p) =

( √
p · σξ√
p · σ̄ξ

)
, v(p) =

( √
p · ση

−
√
p · σ̄η

)
, p2 = m2 (9)

for some SO(3) ⊂ SO(1, 3) spinors ξ and η. There are two positive energy solutions (due to

the choice of ξ) and two negative energy solutions (due to the choice of η).

When we consider the case the mass parameter vanishes,m = 0, things simplify a lot. The

mode function u(p) vanishes in the lower two components in the positive energy states with

2The tensor ϵαβ can be regarded as the Clebsh–Gordon coefficient of 2R⊗2R
∼= 1⊕3 for the 1 component.
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helicity h = +1/2, while the upper two components of u(p) vanish in the positive energy

states with helicity h = −1/2. An anti-particle state with momentum pµ = (E, p⃗) with

helicity h = ±1/2 corresponds to v(p) with the two component spinors
√
p · ση and

√
p · σ̄η

in the ∓1/2 eigenspace of p⃗·τ⃗ [as explained in the lecture]. For this reason, the two component

spinor field ψ is the annihilation operator of right-handed (h = +1/2) particles and creation

operator of left-handed (h = −1/2) anti-particles, while χ̄ is the annihilation operator of

left-handed (h = −1/2) particles and creation operator of right-handed (h = +1/2) anti-

particles.

Step 1

Now, let us introduce a treatment of spinors for massless and on-chell states that is

much more simple than kepping track of all the
√
p · σ’s and

√
p · σ̄’s above. Note first that

the on-shell massless condition p2 = 0 for a four momentum pµ is equivalent to a condition

that the following 2× 2 matrix

pαα̇ := pµσ
µ
αα̇ (10)

has a vanishing determinant. This matrix is rank-1, unless pµ = 0. So, there must be3 some

two-component spinors λα and λ̃α̇ for a given on-shell massless pµ so that

pαα̇ = λαλ̃α̇. (11)

Lorentz transformation on pµ in the vector representation of SO(1, 3) is equivalent to the

Lorentz transformation on λα and λ̃α̇ that are in the 2R and 2L representations combined.

Solutions to the massless Dirac equation are given by

e−ip·x
(
λα
0

)
, e−ip·x

(
0

λ̃α̇

)
, eip·x

(
0

λ̃α̇

)
, eip·x

(
λα
0

)
(12)

for h = ±1/2 particle states and h = ±1/2 anti-particle states, respectively. To see this, it

is enough, in the case of h = +1/2 particle state as an example, to see that4

(p · σ̄)α̇αλα = λ̃α̇λαλα = 0. (13)

3The choice of λ and λ̃ is not unique for a given four momentum pµ; we can replace λ and λ̃ by λ× a and
λ̃/a, respectively.

4Spinors λα and λ̃α̇ are C-valued, just like u(p) and v(p) are. The fermion fields ψα and χ̄α̇ are Grassmann,
because they are given by those solutions multiplied by fermion annihilation/creation operators.
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Proof for the three other solutions are the same. The following short-hand notation is used

frequently in the following:

|p⟩ :=
(
λα
0

)
, |p] :=

(
0

λ̃α̇

)
, ⟨p| := (λα, 0), [p| := (0, λ̃α̇). (14)

Exercise

1. If you find any statements that are non-trivial for you, verify them, whenever you can.

[If you understand the meaning of the statements, but do not understand why, it is an

option to accept the statement and move on.] If you find a statement whose meaning

is not clear, ask others what it means. .... This “Exercise” applies also to the rest of

this note.

2. Verify, in the simplest example of pµ = (E, 0, 0, E) that the solutions derived in the

two different ways—one is those using u(p) and v(p), and the other using λα and λ̃α̇—

are the same. [Here, we need to fix an ambiguity in choosing λα and λ̃α̇ for a given

momentum pµ. We do so as in the next exercise problem.]

3. Compute explicitly the following:

λα = λ̃α̇ = exp
[
i
φ

2
τ3

]
exp

[
i
θ

2
τ2

] ( √
2E
0

)
, (15)

which is for a massless on-shell four momentum pµ = E(1, sin θ cosφ, sin θ sinφ, cos θ).

Step 2

The Feynman rule for QED is given by

i/p

p2 + iϵ
,

−iηµν
p2 + iϵ

(16)

for a fermion and photon propagator, and

−iγµeQΨ (17)

for a vertex,5 as usual. For fermion external states, see Table 1

Step 3: First example, s-channel scattering.

Consider e+ + e− scattering procsses in the s-channel, as in Figure 1 (a). The particle 1

5Convention: the covariant derivative for Ψ is Dµ = ∂µ + ieQΨAµ, where QΨ is the electric charge of Ψ.
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m ̸= 0 h = +1/2 h = −1/2
particle incoming u(p) |λ⟩ |λ]

anti-particle incoming v̄(p) ⟨λ| [λ|
particle outgoing ū(p) [λ| ⟨λ|

anti-particle outgoing v(p) |λ] |λ⟩

Table 1: Feynman rule assigns to fermion external states four component spinors shown in
the second column, in QED with m ̸= 0 fermions. When the fermions are massless ( when
the massless approximation can be made), however, we can use the ones in the 3rd and 4th
columns instead.

e
−

e
+

µ
−

µ
+

p1 p2

p4p3

e−

e−

f

f

k

k′

p

p′

(a) (b)

Figure 1: (a) is the only one Feynman diagram contributing to the e− + e+ → f− + f+

scattering (at tree level), whereas (b) is the one contributing to the e− + f → e− + f
scattering (at tree level).
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is an electron with incoming momentum pµ1 and the particle 2 a positron with momentum

pµ2 . As a first application of the spinor-helicity formalism, we consider this s-channel process

that goes to µ+ + µ−. The particle 3 is µ− with outgoing momentum pµ3 and the particle 4

µ+ with momentum pµ4 . The Feynman rule given above immediately leads us to the following

expression for the scattering amplitude of e−h=+1/2 + e+h=−1/2 −→ µ−
h=+1/2 + µ+

h=−1/2 at energy

scale
√
s much higher than the muon mass mµ:

iM
(
e−+1/2(p1) + e+−1/2(p2) −→ µ−

+1/2(p3) + µ+
−1/2(p4)

)
(18)

=
−i

s+ iϵ
(−ieQe[2|γµ|1⟩) (−ieQµ[3|γµ|4⟩) .

Here, |i⟩, |i] etc. stand for |pi⟩, |pi] etc. It is straightforward to write down the expression

for three other processes

e−+1/2 + e+−1/2 →µ−
−1/2 + µ+

+1/2,

e−−1/2 + e++1/2 →µ−
+1/2 + µ+

−1/2,

e−−1/2 + e++1/2 →µ−
−1/2 + µ+

+1/2.

The scattering amplitude vanishes, when the initial states are in the helicity configuration

of e++1/2 + e++1/2 or e−−1/2 + e+−1/2. Similarly, the final states never come out in the hilicity

configuration of (+1/2,+1/2) or (−1/2,−1/2). Let us now work on the amplitude (19).

Exercise

1. Verify [pi|γµ|pj⟩ = ⟨pi|γµ|pj]. Use (6).

2. We will use this notation heavily in the following:

⟨ij⟩ := ⟨pipj⟩ := λ(pi)
αλ(pj)α, [ij] := [pipj] := λ̃(pi)α̇λ̃(pj)

α̇. (19)

Note that ⟨pipi⟩ and [pipi] vanish, because the spinors λα(pi) and λ̃(pi)α̇ are not Grass-

mann. Now, verify the following relation (using (7)):

⟨ij⟩[ji] = 2pi · pj. (20)

3. Verify, using (7), that

[i|γµ|j⟩ [k|γµ|l⟩ = [i|γµ|j⟩⟨l|γµ|k] = −2⟨jl⟩[ik]. (21)
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4. Derive, for the amplitude (19), that

iM =
i(e2QeQµ)

s
2[23]⟨41⟩, |M|2 = 4(e2QeQµ)

2u
2

s2
= 4(e2QeQµ)

2 cos4
(
θ

2

)
. (22)

5. Verify that iM for the process e−+1/2 + e+−1/2 → µ−
−1/2 + µ+

+1/2 is given by (22) with

[23]⟨41⟩ replaced by [24]⟨31⟩.

If there is a complex scalar field Φ wich QED charge QΦ, the scattering amplitude of

e−+1/2(p1) + e+−1/2(p2) → Φ−(p3) + Φ+(p4) at high energy (E ≫ mΦ) is given by

iM =
−i

s+ iϵ
(−ieQe[2|γµ|1⟩) (−ieQΦ(p3 − p4)µ) . (23)

So,

iM =
i(e2QeQΦ)

s
[2|(/p3 − /p4)|1⟩ =

i(e2QeQΦ)

s
[2| (2/p3 − /p1 − /p2) |1⟩ =

i(e2QeQΦ)

s
2[23]⟨31⟩,

(24)

and we arrive at the result

|M|2 = (e2QeQΦ)
24ut

s2
= (e2QeQΦ)

2 sin2(θ), (25)

from which we can recover the result of homework IV-2 by taking average over the initial

state spin configuration.

All the computations above only reproduce the results that we have already been familiar

with (either in the lecture, or in homework IV-2). You will have noticed, however, that once

you start to use the formula (20, 21), it is much easier and faster in this spinor–helicity

formalism to compute the scattering amplitudes without summing/averaging over the spin

configuration. This spinor–helicity formalism is only for massless states, but still this is very

useful.

Step 3.5 forward–backward asymmetry (≃ homework IV-3)

There is a vector boson—called Z-boson—in the Standard Model in addition to photon,

and it couples to a Dirac fermion f (such as f = e, µ, τ, u, d, · · · ) as in

Lint ∋ −ψ†σ̄µZµg
Rψ − χσµZµg

Lχ̄. (26)

In the case of photon, the coupling constants satisfies the relation gR = gL = eQf , but the

coupling constants of the Z boson does not satisfy this condition.

Exercise
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1. Verify that the scattering amplitude for e−+1/2 + e+−1/2 → f+1/2 + f̄−1/2 is given by

|M|2 = u2

∣∣∣∣∣QeQfe
2

s
+

gRe g
R
f

s−m2
Z

∣∣∣∣∣
2

, (27)

and the amplitude for e−+1/2 + e+−1/2 → f−1/2 + f̄+1/2 by

|M|2 = t2

∣∣∣∣∣QeQfe
2

s
+

gRe g
L
f

s−m2
Z

∣∣∣∣∣
2

, (28)

when the center of mass energy
√
s of these scattering processes is much higher than the

mass of e± and f, f̄ . The distribution of the final states as a function of the scattering

angle θ therefore depends, in a very non-trivial way, on the coupling constants gRf , g
L
f

of the final state fermions, and on the energy scale
√
s relatively to the mass of the Z

boson.

Step 4: t-channel scattering

Consider, now, another 2-body to 2-body scattering between e− and another fermion f

with an electric charge Qf at energy scale much higher than the masses of e± and f, f̄ . [we

ignore Z-boson exchange in this Step 4.] Feynman diagram in Figure 1 (b) allows us to write

down the amplitude right away.

iM
(
e−+1/2(k) + f+1/2(p) → e−+1/2(k

′) + f+1/2(p
′)
)
=

−i
t+ iϵ

(−ieQe[k
′|γµ|k⟩) (−ieQf [p

′|γµ|p⟩) ,
(29)

iM
(
e−−1/2(k) + f+1/2(p) → e−−1/2(k

′) + f+1/2(p
′)
)
=

−i
t+ iϵ

(−ieQe⟨k′|γµ|k]) (−ieQf [p
′|γµ|p⟩) .

(30)

The amplitudes with f−1/2 in the initial (and final) states are also obtained in a similar way.

Exercise

1. Verify, in the two scattering processes above, that

iM =
i(e2QeQf )

t

{
2[k′p′]⟨pk⟩,
2⟨k′p⟩[p′k], |M|2 = 4(e2QeQf )

2

{
s2/t2,
u2/t2,

(31)

respectively.
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2. Verify, in the e−he=±1/2(k) + Φ(p) −→ e−he=±1/2(k
′) + Φ(p′) scattering, that

iM = i
e2QeQΦ

t

{
2[k′p]⟨pk⟩,
2⟨k′p⟩[pk], |M|2 = 4(e2QeQΦ)

2 s(−u)
t2

. (32)

Remark The matrix elements have different dependence on the kinematical varaibles

depending on whether the target particle has spin 1/2 or spin 0. This aspect was crucial in

determining the spin of “quarks” within a hadron. We just need to measure the energy and

momentum distribution of an outgoing electron in a electron–hadron collision experiment;

in this kind of experiments called deep inelastic scattering, it is conventional to introduce a

kinematical parameter

y :=
s+ u

s
= 1 +

u

s
. (33)

In terms of this y,

s2 + u2

t2
=
t2

s2
[
1 + (1− y)2

]
,

s(−u)
t2

=
t2

s2
[1− y] . (34)

The y-dependence was determined in deep inelastic scattering experiments, and the spin of

quarks was determined to be 1/2.

Remark See references in the homework [E-1] for advantages of the spinor-helicity for-

malism in uncovering theoretical aspects of scattering amplitudes in general.
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