
Theory of Elementary Particles homework VII

• submission via ITC-LMS of U Tokyo. Multiple files can be uploaded multiple times

until the deadline (in early August).

• We request that the file name includes the problem number, II-1***.pdf or ****-IV-2-

IX-1.jpeg. The ITC-LMS shows who had submitted the file (student ID and name), so

the file name will not have to contain your name or ID number.

• Reports do not have to be neatly written or type-set just for the reason that the reports

have to be readable for me.

• Pick up any problems that are suitable for your study. You are not expected to

work on all of them!

• A sample solution has been prepared and is made available in the form of a PDF file

on the problems with “?” (e.g., III-1, III-5). The PDF is posted to you through the

ITC-LMS in return for an early submission of a report on that problem during the

semester.

• Keep your own copy, if you need one. Reports will not be returned.

1. Dimensional Regularization 1 (1-Loop Calculation V) [B]

(a) Photon vacuum polarization in QED is given at 1-loop by

Πµν
(1) = −e2

∫
dnk

(2π)n
µ4−n Tr [γµ(/k +m)γν((/k + /q) +m)]

(k2 −m2 + iε)((k + q)2 −m2 + iε)
,

if we use dimensional regularization. Introducing the Feynman parameter and

shifting the origin of the loop momentum integration as usual, the expression

above turns into

Πµν
(1) = −4e2

∫ 1

0

dx

∫
dnk

(2π)n
µ4−n2(kµkν − x(1− x)qµqν) + ηµν(m2 − k2 + x(1− x)q2)

[k2 −m2 + x(1− x)q2]2
.

In order to proceed further with dimensional regularization, replace kµkν with

k2ηµν/n, instead of k2ηµν/4.
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i. Carry out the Wick rotation and integration of (Euclidean) loop momentum,

to show that there is no pole at n = 2; although a factor Γ(1 − n/2) arises

after the loop momentum integration, this term has a coefficient (1 − n/2),

and hence there is no pole at n = 2. [This phenomenon corresponds to the

absence of quadratic divergence in the vacuum polarization in QED.]

ii. Using the relation (1− n/2)Γ(1− n/2) = Γ(2− n/2), show that

Πµν
(1) = −i(q2ηµν−qµqν) e

2

2π2

∫ 1

0

dxx(1−x)Γ
(

2− n

2

)( 4πµ2

m2 − x(1− x)q2

)2−n
2

.

(1)

Miraculously, the vacuum polarization is proportional to (q2ηµν − qµqν), a

combination expected from the gauge invariance of QED.

iii. Confirm that the vacuum polarization in dimensional regularization and Pauli–

Villars regularization have the same regulator dependence, if we adopt the

following interpretation:

1

2− n
2

− γ + ln[(4π)µ2] −→ ln(M2
reg). (2)

(b) Consider a Yukawa theory whose Lagrangian is given in the homework problem

III-2.

i. Compute the scalar self-energy iM = −iΣ at 1-loop, using the dimensional

regularization. The result should be1

iM = i
2|λ|2
16π2

∫ 1

0

dx

(
4πµ2

m2 − x(1− x)q2

)2−n
2

(3)

[
x(1− x)q2Γ

(
2− n

2

)
+ (m2 − x(1− x)q2)Γ

(
1− n

2

)]
.

The pole at n = 2 indicates the existence of quadratic divergence.

ii. The homework problem III-2 asked you to compute the same quantity by

using the Pauli–Villars regularization. The result should have been

iMP.V. = i
2|λ|2
16π2

∫ 1

0

dx

3∑
i=0

[
γi(2m

2
i − 3x(1− x)q2) ln[m2

i − x(1− x)q2]
]
, (4)

1a typo in this “result”. Thanks Tingyu Zhang for point that out!
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where m0 = m is the fermion mass, and mi=1,2,3 are the regulator (Pauli–

Villars field) masses, and γi=0,3 = +1, γi=1,2 = −1; for the reason explained

in the problem III-2, those mass parameters have to satisfy a relation,

m2
0 +m2

3 = m2
1 +m2

2. (5)

Parametrize the regulator masses by

m2
0 = m2 m2

3 = M2, m2
1 = αM2, m2

2 = (1− α)M2 +m2, (6)

and rewrite the Pauli–Villars result iMP.V. by keeping M2, ln(M2) and finite

terms, while ignoring terms that are suppressed by powers of M .

iii. Ignore the pole at n = 2 (ignore the quadratic divergence) in the result of

dimensional regularization, focus on the n → 4 limit, and adopt the inter-

pretation (2). Confirm that the result obtained in this way has the same

coefficient for the ln(M2
reg) term as in the result obtained in the Pauli–Villars

calculation above.

2. Dimensional Regularization 2 (1-Loop Calculation VI) [B]

Consider a scalar QED, where a complex scalar field φ has (−1) unit of electric charge

(just like an electron field Ψ):

L = −1

4
FµνF

µν + (Dµφ)† (Dµφ)−m2|φ|2; Dµφ = (∂µ − ieAµ)φ. (7)

The interaction part of this Lagrangian, therefore, is given by

Lint = ieAµ (φ∗(∂µφ)− (∂µφ∗)φ) + e2AµA
µ|φ|2. (8)

Let us use dimensional regularization in order to calculate the photon vacuum polar-

ization in scalar QED.

(a) There are 2 Feynman diagrams contributing to the photon vacuum polarization

at 1-loop level: Figure 1 (a) using the 3-point coupling (the 1st term in (8)),

and Figure 1 (b) using the 4-point coupling (the 2nd term in (8)). Those two

contributions are given by

Πµν
(1);3(q) =

∫
dnk

(2π)n
µ4−n i

k2 −m2 + iε
(ie(2k + q)µ)

i

(k + q)2 −m2 + iε
(ie(2k + q)ν),

Πµν
(1);4(q) = 2ie2ηµν

∫
dnk

(2π)n
µ4−n i

k2 −m2 + iε
.
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Show that they are

Πµν
(1);3 =

ie2

16π2

∫ 1

0

dx

(
4πµ2

m2 − x(1− x)q2

)2−n
2

(9)

[
−2ηµν(m2 − x(1− x)q2)Γ

(
1− n

2

)
+ (1− 2x)2qµqνΓ

(
2− n

2

)]
,

Πµν
(1);4 =

ie2

16π2

∫ 1

0

dx

(
4πµ2

m2

)2−n
2

m2 2ηµν Γ
(

1− n

2

)
. (10)

(b) Both Πµν
(1);3 and Πµν

(1);4 have a pole at n = 2, but confirm that the residue cancels

when they are added up.

(c) Focus on the n −→ 4 limit, and show that the divergent part is

Πµν
(1);3+4 ' −i(q2ηµν − qµqν) e2

16π2
× 1

3
× 1

2− n
2

, (11)

where ∫ 1

0

dx 2x(1− x) =

∫ 1

0

dx(1− 2x)2 =
1

3
. (12)

[Note that this divergent part for a complex scalar loop is 1/4 of a Dirac fermion

loop (1). This means that a complex scalar contributes a quarter of a Dirac fermion

(a half of a Weyl fermion) to 1-loop beta-function of QED.]

(d) Determine the complex scalar contribution to the photon vacuum polarization (at

1-loop) in the MS scheme.

(e) (if you have enough time) show that the expression above satisfies Ward identity

(Πµν

(1);3+4;MS
× qµ = 0).

3. 1-Loop Calculation VII, Renormalizability and SUSY [B]

Consider a Yukawa theory whose action is given in the homework problem III-2.

(a) There are six Feynman diagrams (like Figure 2 (a)) contributing to the scattering

amplitude (matrix element) iM(ϕ + ϕ∗ −→ ϕ + ϕ∗). Show that two of them

are logarithmically divergent, while the remaining four are finite. Simple momen-

tum cut-off (after introducing Feynman parameters and shifting the origin of the

loop momentum for integration) is enough for this purpose. [The Yukawa theory

without a |ϕ|4 term is therefore not a renormalizable theory. If ∆L = λ|ϕ|2/4
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(a) (b)

Figure 1: Scalar loop contributions to the photon vacuum polarization.

term (and ∆L = gϕ2ϕ∗ + h.c.) is included, however, then the Yukawa + |ϕ|4
(and ϕ2ϕ∗ + h.c.) theory becomes renormalizable. Pure Yukawa theory is not the

same (at least theoretically) as the Yukawa + |ϕ|4 theory where the renormalized

coupling λr just happens to be zero.]

(b) Introduce a pair of complex scalar fields φ and φc, and write down the following

Lagrangian, in addition to what we already have for the Yukawa + |ϕ|4 theory:

∆L = |∂φ|2 −M2
φ|φ|2 + |∂φc|2 −M2

φ|φc|2 − |y|2|φ|2|ϕ|2 − |y|2|φc|2|ϕ|2. (13)

Here, the coefficient of the last two terms, |y|2, is set to be the same as those in the

Yukawa interaction in the problem III-2. Compute the 1-loop contribution with the

φ-loop and φc-loop (as in Figure 2 (b)) to the scattering amplitude iM(ϕ+ϕ∗ −→
ϕ+ ϕ∗). Simple momentum cut-off is enough.

(c) (not a problem) One will find that the 1-loop contributions from the fermion loop

and scalar loop are both logarithmically divergent, and have precisely the same

coefficient for the log divergence with opposite sign. Therefore, the logarithmic

divergence cancels (at least at 1-loop). This phenomenon is actually due to super-

symmetry [ϕ: Higgs scalar, Ψ: quark and φ and φc: scalar quark]. The logarithmic

divergence is made finite at (and above) the mass scale Mφ of the new scalar fields

φ and φc, because of the supersymmetric modification of the Yukawa + |ϕ|4 the-

ory at the energy scale Mφ. Although we often employ such regularizations as

Pauli–Villars, higher covariant derivatives and dimensional regularization, true

mechanism for rendering scattering amplitudes finite in QFT may be something

like this. [N = 1 supersymmetric extension of the Standard Model is known not to
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(a) (b)

Figure 2: 1-loop contributions to the ϕ+ ϕ∗ → ϕ+ ϕ∗ scattering.

be sufficient in rendering all the Standard Model amplitudes UV finite, however.

]

4. Renormalized Perturbation for a Non-Renormalizable Theory [C] ?

Consider a theory with a complex scalar field ϕ (with mass mϕ) and a Dirac fermion

field Ψ (with mass mψ), and let their interactions be given by2

Lint = −λ
4
|ϕ|4 + A ΨΨ|ϕ|2, (14)

for now; λ and A are parameters. The naive mass dimension of the first operator is

+4 (and hence marginally renormalizable), but the second operator is of dimension +5,

and hence this theory is not expected to be “renormalizable”. In the following, let us

carry out the renormalized perturbation of this theory.

Let us first set the renormalization condition for the coupling constants λ and A, by

requiring the matrix element of ϕ + ϕ∗ → ϕ + ϕ∗ scattering and ϕ + ϕ∗ → Ψ + Ψ†

scattering to be given by −iλ(E) and iA(E)(ūv), respectively, at certain kinematical

configuration (like s = t = −E2).

(a) Compute 1-loop contribution to the ϕ+ϕ∗ → ϕ+ϕ∗ scattering amplitude coming

from the diagrams in Figure 2 (b) (in simple momentum cut-off). The result may

be something like this:

iM(1);ϕ = i
λ2

(E)

16π2

∫ 1

0

dx

[
ln

(
m2
ϕ − x(1− x)s+ Λ2

m2
ϕ − x(1− x)s

)
− 1

]
+ [(s→ t)] . (15)

2This model is a simplified version of Standard Model interactions; ϕ for Higgs doublet, Ψ for lepton,
the 1st term of (14) for Higgs quartic coupling and the 2nd term for dimension-5 neutrino mass term. This
model is modified from the Standard Model interactions, in order to avoid Feynman rules for Weyl fermion.
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Figure 3: 1-loop contribution to the ϕ+ ϕ∗ → ϕ+ ϕ∗ scattering involving dim.-5 operators.

(b) Yet another group of diagrams (Figure 3) also contributes to the same scatter-

ing amplitude. Compute them in simple momentum cut-off. The result may be

something like this:

iM(1);ψ = i
4A2

(E)

16π2

∫ 1

0

dx

[
Λ2 − 3(m2

ψ − x(1− x)s) ln

(
m2
ψ − x(1− x)s+ Λ2

m2
ψ − x(1− x)s

)

+2(m2
ψ − x(1− x)s)

]
+ [(s −→ t)] . (16)

(c) The counter term associated with the −(λ/4)|ϕ|4 term also contributes to this

scattering amplitude. If we are to denote the normalization of the ϕ field by

ϕ =

√
Z

(E)
2 ϕr(E), then

λ|ϕ|4 = λ(Z
(E)
2 )2|ϕr(E)|4 ≡ (λ(E) + δλ)|ϕr(E)|4, (17)

and the contribution from this counter term is given by

iM(1);c.t.0 = −i(δλ). (18)

If we are to determine the value of (δλ) in terms of λ(E), A(E) and Λ, by enforcing

the renormalization condition,

[
iMtree = −iλ(E)

]
+
[
iM(1);ϕ + iM(1);ψ + iM(1);c.t.0

] |s=t=−E2 = −iλ(E), (19)

what would δλ be? Confirm further that iMtree + iM(1);ϕ + iM(1);ψ + iM(1);c.t.0

is finite for the special kinematics s = t = −E2 for the renormalization condition,

but is divergent for other kinematics, if we are to set (δλ) in the way specified

above.
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(d) A theory with Lagragian (14) is therefore not renormalizable, but the divergence

we encountered above can be removed (absorbed by the redefinition of coupling

constants), if we are to add one more term in the Lagrangian:

Lint = −λ
4
|ϕ|4 + A ΨΨ|ϕ|2 +

B

2
|ϕ|2(−∂2|ϕ|2). (20)

There is an extra contribution

iM(1);B = i(B(E) + δB)(s+ t). (21)

Determine δλ and δB so that the amplitude at this level remains finite for arbitrary

value of kinematical variables (s, t). [There is a remaining ambiguity in changing

B(E) and δB by finite amount, so that the combination B(E) +δB does not change.

This scheme dependence still remains.] [Such a procedure can be carried out order

by order; in this sense, this “non-renormalizable theory” in the historical sense is

renormalizable.]

(e) Confirm that the quantum corrections to the ϕ + ϕ∗ → ϕ + ϕ∗ scattering am-

plitude from non-renormalizable operators (terms involving A(E) and B(E)) are

much smaller than the corrections coming from renormalizable operators (terms

involving λ2
(E)), when A(E) ∼ 1/M and B(E) ∼ 1/M2 for some mass scale M much

higher than mψ, mϕ,
√
s and

√
|t|. In this sense, quantum corrections from non-

renormalizable operators to processes that exist already within the renormalizable

part of a theory is quite irrelevant.

(f) Derive renormalization group equation for λ(E) and B(E), by requiring that the

renormalized scattering amplitude does not depend on the choice of renormaliza-

tion scale E (for a given choice of kinematical variable s, t).

5. β-function in Non-Abelian Gauge Theories [B] ?

Let us derive the β-function of gauge coupling constant of non-Abelian gauge theories,

and show that non-Abelian gauge theories can be asymptotically free.

In non-Abelian gauge theories, there are two diagrams contributing to the 1-loop ver-

tex correction, as in Figure 4 (a), (b). Its divergent part can be calculated easily in
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(a) (b) (c)

Figure 4: (a)+(b) vertex corrections in non-Abelian gauge theories, and (c) wavefunction
renormalization of a fermion.

dimensional regularization, and the result is as follows:

(−igta)Γµ(1);(a) ∼ (−igta)γµ g2

(4π)2
Γ
(

2− n

2

)[
C2(R)− 1

2
TG

]
[1 + (ξ − 1)] , (22)

(−igta)Γµ(1);(b) ∼ (−igta)γµ g2

(4π)2
Γ
(

2− n

2

)[1

2
TG

] [
3 +

3

2
(ξ − 1)

]
; (23)

here, g is the gauge coupling constant, and ξ is the gauge parameter of vector boson

propagator (ξ = 1 corresponds to the Feynman gauge). TG is a constant that depends

on the choice of gauge group G; TG = N for G = SU(N) gauge theories, while TG = 0

in Abelian gauge theories (like QED). C2(R) is a constant that depends on the particle

species we consider in the vertex correction in Figure 4 (a, b). It corresponds to

(Qf )
2, electric charge squared in the case of QED. Before taking account of energy

scale dependent field renormalization, the coupling constant at energy scale µ would

be given by

(−igta)
[
γµ + Γµ(1);(a+b)|(2−n/2)−1→ln(Λ2/q2) − c.t.

]
, (24)

where c.t stands for the counter terms ∝ ln(Λ2/µ2), which just replace ln(Λ2) by ln(µ2)

in the end.

The divergent part of Fermion self-energy in Figure 4 (c) is given by

iM(1);(c) = −iΣ ∼ i/p
g2

(4π)2
Γ
(

2− n

2

)
C2(R) [1 + (ξ − 1)] ∼ −i/p A(1). (25)

This means

Z2 ∼ 1 + A(1)|(2−n/2)−1→ln(Λ2/p2),
Z2

Z
(µ)
2

∼ 1 + A(1)|(2−n/2)−1→ln(Λ2/p2)

1 + A(1)|(2−n/2)−1→ln(Λ2/µ2)

. (26)
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Figure 5: Vacuum polarization for a non-Abelian vector field.

The vacuum polarization of the vector field arises from vector / ghost loop (Fig-

ure 5), Dirac fermion loop, and scalar loop (like in Figure 1); their divergent part are

given by

Π(1);(d) ∼ g2

(4π)2
Γ
(

2− n

2

)(13

6
− ξ

2

)
TG, (27)

Π(1);(e) ∼ g2

(4π)2
Γ
(

2− n

2

)(
−4

3

)∑

f

TRf , (28)

where f runs over different Dirac fermions in the representation Rf under the gauge

group. If a complex scalar field in representation R is in a theory, its contribution is

1/4 of that of Dirac fermion, just like in QED (see the problem VII-2). This means

that

Z3 ∼ 1 + Π(1)|(2−n/2)−1→ln(Λ2/q2),
Z3

Z
(µ)
3

∼ 1 + Π(1)|(2−n/2)−1→ln(Λ2/q2)

1 + Π(1)|(2−n/2)−1→ln(Λ2/µ2)

. (29)

(a) Use those information to compute the beta-function. It should be

βg ≡ ∂g

ln(E2)
= −1

2
g

g2

(4π)2
b0 ⇐⇒ ∂

∂ ln(E)

(
1

α

)
=

b0

2π
, (30)

with

b0 =
11

3
TG −

∑

i∈Wf

2

3
TRi −

∑
j∈s

1

3
TRj . (31)

Here, i runs over all the Weyl fermion species in a non-Abelian gauge theory

(like, left-handed and right-handed u-quarks, those of d-quarks etc. in QCD (G =

SU(3))), and j over all complex scalar fields charged under the gauge group G

(like the Higgs boson for G = SU(2) × U(1)). Note that b0 can be positive (and

hence βg can be negative) in non-Abelian gauge theories, because TG > 0.
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(b) (if you have enough time) It may be fun to derive (22, 23, 25, 27, 28). [Explicit

calculation is found in the Peskin–Schroeder textbook section 16.5, where the

Feynman gauge ξ = 1 is used.]

(c) (not a problem) Note that the beta function does not depend on the fermion we

chose in the Feynman diagram Figure 4. Although particle spiecies dependence

remains through C2(R) in (22, 25), they eventually cancel, and do not remain in

b0. Note also that the gauge parameter dependence still remains in Z2, Z3 etc.,

but they also cancel eventually in b0.

6. 2-loop in the φ4 theory [C] ?

The Peskin–Schroeder textbook Chapter 10.5 explains how 2-loop computations can

be carried out in dimensional regularization, using the four-point function in the λφ4

theory. It will take much less time to go throught it, if you just try to follow the logic,

without trying to verify all the details in the calculation. Now, here is a homework

(report) problem: what should the O(1/ε2) term be in the O(λ3) counter term δ
(2)
λ ? [It

is all right to trust and use all the results written in Chapter 10.5 of Peskin–Schroeder

without verifying for yourself.]
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