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1. Introduction to Gromov–Witten theory

Let X be a projective manifold.

Definition 1.1. A stable map (f,Σ, z1, . . . , zn) consists of

(1) nodal Riemann surface Σ,
(2) marked points z1, . . . , zn that are pairwise different and not nodal,
(3) f : Σ → X is a continuous map, holomorphic away from the nodal

points,

such that the automorphism group of the configuration (f,Σ, z1, . . . , zn) is fi-
nite.

It is not hard to see that a map is stable iff the following holds. Let Σ0 be
an irreducible genus-g0 component of Σ contracted by f and let n0 be the total
number of marked and nodal points on Σ0, then 2g0 − 2 + n0 > 0.

Definition 1.2. Two stable maps (f,Σ, z1, . . . , zn) and (f ′,Σ′, z′1, . . . , z
′
n) are

called equivalent if there exists a diffeomorphism ϕ : Σ → Σ′, such that:

(1) f = f ′ ◦ ϕ,
(2) ϕ(zi) = z′i (1 ≤ i ≤ n),
(3) ϕ∗j′ = j, where j and j′ are the complex structures on Σ and Σ′.

Given two non-negative numbers g and n and a homology class d ∈ H2(X; Z),
we denote by Mg,n(X; d) the space of equivalence classes of stable maps
(f,Σ, z1, . . . , zn) such that Σ has genus g and f∗[Σ] = d. Sometimes we will
denote the space by Xg,n,d. We refer to it as the moduli space of stable maps.
Using sequential convergence, one can introduce a topology and then it is a
theorem of Gromov [7] that the moduli space is a compact topological space,
i.e., every sequence has a convergent subsequence.

In general, Mg,n(X; d) is not a manifold or an orbifold. The reason for this
is that the infinitesimal deformations of a stable map might have obstructions,
so we can not always extend them to actual deformations. Nevertheless, one
can define a homology cycle, called virtual fundamental cycle, such that the
integration theory on the moduli space is the same as if Mg,n(X, d) were
compact complex orbifolds.
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1.1. Deformations of stable maps. We consider a simplified version of the
deformation theory of a stable map. Namely, let (Σ, z, f), z = (z1, . . . , zn), be
a fixed stable map. We classify the infinitesimal deformations of the map f
and their obstructions, keeping the Riemann surface and the marked points
fixed. Choose an open covering {Vi} of Σ by holomorphic disks and let Ui
be coordinate charts of X such that f(Vi) ⊂ Ui. In each chart Ui we pick
coordinates and so on each Vi the map f is represented by a collection of
holomorphic functions ui = (u1

i , . . . , u
D
i ), D = dimCX. Finally, let gji be the

transition functions between the charts Ui and Uj , i.e., uj = gji(ui).
Case 1: 1-st order deformations. Let ui = ui+ǫvi be first order deformations.

Compare the coefficient in front of ǫ in the gluing identity ūaj = gaji(ū
1
i , . . . , ū

D
i ).

We get:

(1.1) vaj =

D∑

b=1

∂gaji
∂ubi

vbi ,

which implies that the vector fields
∑

a v
a
j

∂
∂ua

j
∈ Γ(Vj, f

∗TX) glue to give a

global section of f ∗TX, i.e., the infinitesimal deformations are classified by
H0(Σ, f ∗TX).

Case 2: 2-nd order deformations. Let ūi = ui + ǫvi + ǫ2wi be a second order
deformation. Comparing the coefficients in front of ǫ2 in the gluing identity
ūaj = gaji(ūi) we get:

waj =
∑

b

∂gaji
∂ubi

wbi +
1

2

∂2gaji
∂ubi∂u

c
i

vbiv
c
i ,

i.e.,

(1.2)
∑

a

waj
∂

∂uaj
=
∑

b

wbi
∂

∂ubi
+

1

2

∑

a,b,c

∂2gaji
∂ubi∂u

c
i

vbiv
c
i

∂

∂uaj
,

The LHS and the first sum on the RHS are elements respectively ofH0(Vi, f
∗TX)

and H0(Vj, f
∗TX). We denote the second term on the RHS by wji. A di-

rect computation (using also formula (1.1)) shows that wki = wkj + wji, i.e.,
w = (wji) give rise to a Cech cocycle. Let [w] ∈ H1(Σ, f ∗TX) be the cor-
responding cohomology class, then formula (1.2) means that [w] = 0, so the
obstructions belong to the cohomology group H1(Σ, f ∗TX).

Let TΣ be the sheaf of holomorphic vector fields on Σ which vanish at the
marked points and at the nodes. A similar argument shows that H1(Σ, TΣ)
classifies the deformations of the complex structure on Σ, and H0(Σ, TΣ) are
the automorphisms of (Σ, z). Finally, for s ∈ Sing(Σ) let T ′

s and T ′′
s be the

tangent spaces at s to the two branches of Σ that meet at s. Then T ′
s⊗T ′′

s can
be identified with a space of infinitesimal deformations of (Σ, z, f) which come
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from resolving s. Namely, let x and y be coordinates on the two branches and
let ǫ∂x⊗∂y ∈ T ′

s⊗T ′′
s . In a neighborhood of s the Riemann surface is given by

the equation xy = 0 and we resolve the singularity by deforming the equation
into xy = ǫ.

The following space is called virtual tangent space

H1(Σ, TΣ) −H0(Σ, TΣ) +
⊕

s∈SingΣ

T ′
s ⊗ T ′′

s +H0(Σ, f ∗TX) −H1(Σ, f ∗TX).

It should be understood as an element of the Grothendick group of vector
spaces. Using the Riemann-Roch formula:

dimCH
0(Σ, E) − dimCH

1(Σ, E) = rk(E)(1 − g) +

∫

Σ

c1(E),

we find that the dimension of the virtual tangent space is

3g − 3 + n +D(1 − g) +

∫

d

c1(TX).

Example. If X is a manifold whose tangent spaces are spanned by global
vector fieldsH0(X, TX) (e.g. Grassmanians, flag manifolds) thenH1(Σ, f ∗TX) =
0 for all genus-0 curves Σ. This implies that the obstructions vanish so the
moduli space M0,n(X, d) is a compact complex orbifold.

Example. If the degree d = 0, i.e., the maps contracts the curve to a point.
We have Mg,n(X, 0) = Mg,n×X. On the other hand H0(Σ, f ∗TX) = Tf(Σ)X,
H1(Σ, f ∗TX) = H0(Σ,OΣ) ⊗ Tf(Σ)X, so the tangent bundle is given by

T = TMg,n
+ TX − E ⊗ TX,

where E is the rank-g bundle on Mg,n whose fiber at (Σ, p) is given by
H1(Σ,OΣ) (the dual to this bundle is known as the Hodge bundle). Since
the obstructions form a bundle we have that the virtual fundamental cycle is
the Poincare dual to the Euler class, i.e.,

∫

Mg,n(X,0)

α =

∫

Mg,n×X
α ` Euler(E ⊗ TX).

1.2. The Mori cone. The space of all fundamental classes f∗[Σ] of holomor-
phic maps f : Σ → X is called the Mori cone of X and it is denoted by
MC(X).

Proposition 1.3. For every d ∈ MC(X) there are only finitely many ways to
decompose d = d′ + d′′, where d′, d′′ ∈MC(X).

Proof. Recall that a Cartier divisor on X is an equivalence class of a collection
{(Ui, fi)} of pairs, such that

(1) {Ui} form an open covering of X,
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(2) fi 6= 0 are meromorphic functions on Ui, such that on the overlaps
Ui ∩ Uj we have fi/fj ∈ O ∗

X(Ui ∩ Uj).
Here O ∗

X is the sheaf of holomorphic functions on X that take only non-zero
values. Two collections {(Ui, fi)} and {(U ′

i , f
′
i)} are equivalent if after passing

to a common refinement {Vi} of the two coverings we have: fi/f
′
i ∈ O ∗

X(Vi).
The set of Cartier divisors is naturally an abelian group:

D = {(Ui, fi)}, D′ = {(Ui, f ′
i)}, D +D′ := {(Ui, fif ′

i)}.
Given a Cartier divisor, we can construct a line bundle L(D) onX as follows.

On the open covering {Ui} we set L(D)|Ui
= Ui×C and on the overlaps Ui∩Uj

we glue the two copies of the line bundle via the isomorphism:

Ui × C → Uj × C, (x, λ) 7→ (x, f−1
i fjλ).

Note that the sheaf L of holomorphic sections of L can be identified with a
subsheaf of the (constant) sheaf of all meromorphic functions on X: L|Ui

∼=
OUi

f−1
i . It turns out that on a projective manifold all line bundles arise this

way. Moreover, L(D) = L(D′) iff the functions fi/f
′
i glue together to produce

a global meromorphic function on X. In this case the divisors D and D′ are
called linearly equivalent.

From a Cartier divisor D = {(Ui, fi)} one can construct a homology class
as follows. Let V be a codimension-1 subvariety of X. Then the local repre-
sentatives fi of D have zeroes or poles of certain order along V ∩ Ui, which if
non-zero is the same for all of them and it is denoted by ordV (D). We set

[D] =
∑

V

ordV (D) [V ] ∈ H2D−2(X; Z) ∼= H2(X; Z),

where the sum is over all codimension-1 subvarieties of X and [V ] is the fun-
damental class of V. By definition, the first Chern class of L is c1(L) = [D].
According to the Lefschetz (1, 1)-theorem the cohomology classes of type [D]
span (over R) the cohomology group H1,1(X; R).

A line bundle L is called very ample if there exists an imbedding i : X →
CPN such that L = i∗O(1). The bundle is called ample if there exists an
integer m > 0 such that L⊗m is very ample. The same terminology applies to
divisors via the correspondance between line bundles and divisors. Note that
ample divisors have the following property:

∫

d

c1(L(D)) = [D] ∩ d ≥ 0, for all d ∈MC(X).

This is because [mD], for m sufficiently large, is very ample, so we can imbed
i : X → CPN and then the intersection number turns into the symplectic area
of the holomorphic map: i ◦ f : Σ → CPN (note that the first Chern class
c1(OCPN (1)) is represented by a Kähler form known as the Fubini-Studi form).
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The symplectic area of a holomorphic map with respect to a Kähler form is
always ≥ 0.

Our manifold X is projective, so it admits a hyperplane section H which is
a very ample divisor. It can be proved that if D is any divisor then D +mH
is ample for m sufficiently large. Therefore, we can choose an integral basis
{pa}ra=1in H

2(X; R) such that 〈pa, d〉 ≥ 0 for all d ∈MC(X).
Assume that there are infinitely many pairwise different decompositions:

d = d′j + d′′j . Then the number 〈d, pa〉 is decomposed into a sum of two non-
negative numbers 〈d′j, pa〉 + 〈d′′j , pa〉. So there are infinitely many j such that
〈d′j, pa〉 = da is a fixed constant. It follows that d′j (and hence d′′j = d− d′j are
the same for all j – contradiction. �

By definition the Novikov ring C[Q] of X is the vector space

C[Q] =
{ ∑

d∈MC(X)

cdQ
d | cd ∈ C

}

equipped with the following multiplication:
( ∑

d′∈MC(X)

cd′Q
d′
)( ∑

d′′∈MC(X)

cd′′Q
d′′
)

=
∑

d∈MC(X)

cdQ
d, cd =

∑

d′+d′′=d

cd′cd′′ .

The multiplication is well defined thanks to Proposition 1.3.

1.3. Gromov–Witten invariants. First we explain the maps that appear in
the following diagram

Mg,n+1(X, d)
evi - X

Mg,n(X, d)

si

6

π

?

(f ′,Σ′, z′) 7→ f(z′i) ∈ X

(1 ≤ i ≤ n)

σ = (f,Σ, z)

π

?

The map π forgets the last marked point and contracts all unstable compo-
nents. The fiber π−1(σ) is canonically identified with Σ, i.e., π is the universal
curve. Indeed, if π(f ′,Σ′, z′) = (f,Σ, z) then an irreducible componenet Σ0 of
Σ′ is contracted iff it is a copy of CP 1 contracted by f and such that one of
the following two cases hold:

(1) the only marke points on Σ0 are z′n+1 and z′i for some i (1 ≤ i ≤ n) and
Σ0 has exactly one nodal point.

(2) the last marked point is sitting on Σ0 and Σ0 has exactly two nodal
points,
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The identification is given by

(Σ′, z′, f ′) 7→
{
zn+1, if no contraction occures

ct(Σ0) otherwise

where ct(Σ0) is the point obtained from the contraction of the irreducible
component Σ0.

The universal curve π has natural sections

si : σ = (Σ, z, f) 7→ zi ∈ Σ ∼= π−1(σ).

Introduce the divisor Si = [si(Mg,n(X, d))] and let Li = s∗iN
∨
Si

be the pullback
of the conormal bundle to Di. Intuitively Li is the bundle formed by the
cotangent lines T∨

zi
Σ.

From now on we will assume that the cohomology algebraH∗(X; C) has only
even degree cohomology classes. Let {φa}Na=1 be a fixed basis. By definition
the descendant GW invariants of X are the following correlators:

(1.3) 〈φa1ψk1, . . . , φan
ψkn〉g,n,d :=

∫

[Xg,n,d]

ψk11 . . . ψkn
n ev∗(φa1 ⊗ . . .⊗ φan

),

where ψi = c1(Li).
Put

t(z) =
∞∑

k=0

tkz
k, tk =

N∑

a=1

takφa,

where tak are formal variables. By definition the total descendant potential of
X is the following generating series:

(1.4) DX(t) = exp
( ∑

g,n≥0

∑

d∈MC(X)

~ g−1

n!
Qd 〈t(ψ1), . . . , t(ψ1)〉g,n,d

)
.

For reasons, which will become clear later, we change the variables according
to the so called dilaton shift:

t0 = q0, t1 = q1 + 1, t2 = q2, . . . , where qk =

N∑

a=1

qakφa.

We introduce the Fock space

(1.5) C~[Q][[q0, q1 + 1, q2, . . .]], C~[Q] := C[Q]((~)).

Note that if we set t = 0 and Q = 0 in (1.4), then the correlators can be
non-zero only if g > 1 (due to stability constraints). Therefore, the total
descendant potential is a well defined element of the Fock space (1.5).
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2. Frobenius structures in GW theory

2.1. Definition of a Frobenius structure. Let M be a small ball (with
center at 0) in CN , equipped with the following structures:

(1) a non-degenerate bi-linear pairing g on TM ,
(2) multiplication •t in TtM that depends holomorphically on t ∈M,
(3) a vector field e, such that its restriction to TtM is a unity with respect

to •t,
(4) a vector field E.

The data (g, •t, e, E) forms a Frobenius structure onM of conformal dimension
D ∈ C, if the following conditions are satisfied.

(i) g and • satisfy the Frobenius property:

g(X • Y1, Y2) = g(Y1, X • Y2),

(ii) The one-parameter group corresponding to E acts on M by conformal
transformations of g, i.e., LEg = (2 −D)g,

(iii) e is a flat vector field: ∇L.C.e = 0, where ∇L.C. is the Levi-Civitá
connection of g,

(iv) The connection operator

(2.1) ∇ = ∇L.C. − z−1
N∑

i=1

∂ti •t dti +
(
z−2 E •t −z−1 µ

)
dz,

where

µ := ∇L.C.(E) − (1 − D

2
)Id : TM → TM

is the Hodge grading operator, is flat, i.e., ∇2 = 0.

Remark. The flatness of the family of connection operators implies that •t
is commutative and associative and that there exists a function F (τ), called
potential of the Frobenius structure, such that the structure constants of the
multiplication •t are given by the third partial derivatives of F, i.e.,

g(∂/∂τa •t ∂/∂τ b, ∂/∂τ c) = ∂3F/(∂τa∂τ b∂τ c),

where τ = (τ 1, . . . , τN) is a flat coordinate system on M .

2.2. Frobenius structures in GW theory. Let H := H∗(X; C[Q]). Using
genus-0 GW invariants we will equip H with a Frobenius structure. Let g =
( , ) be the Poincaré pairing. Note that if we set τ =

∑N
a=1 τ

aφa ∈ H then
(τ 1, . . . , τN ) are flat coordinates. The qunatum cup product is defined by

(φa • φb, φc) =
∑

d,n

Qd

n!
〈φa, φb, φc, τ, . . . , τ〉0,3+n,d.
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Assume that the basis {φa}Na=1 is homogeneous and let degC φa := deg φa/2.
We introduce the following vector field on H :

E =
N∑

a=1

(1 − degCφa)τ
a ∂

∂τa
+ c1(TX).

Here

c1(TX) =
r+1∑

a=2

〈c1(TX), φa〉 ∂

∂τa
,

where we arranged the basis {φa}Na=1 in such a way that φ1 = 1, the next r
cohomology classes φ2, . . . , φr+1 form a basis of H2(X; C), and {φa}ra=2 is a
Poincaré dual basis of H2(X; C).

Theorem 2.1. The data formed by the Poincaré pairing, the quantum cup
product, the cohomology class 1, and the vector field E forms a Frobenius
structure on H of conformal dimension D.

The only non-obvious part in the proof of the above theorem is the flatness
of the connection operators ∇. In other words we have to prove that

(2.2) [∇∂a
,∇∂b

] = 0, and [∇∂a
,∇∂/∂z] = 0,

where ∂a = ∂/∂τa.

2.3. The comparison lemma. Let π : Xg,n+1,d → Xg,n,d be the universal
curve. Denote by Li the pullback via π of the line bundle Li → Xg,n,d. Note
that Li and Li coincide everywhere, except for the points of the divisor Di

consisting of stable maps (f,Σ, z1, . . . , zn+1) such that Σ has an irreducible
component which carries exactly two marked points: zi and zn+1.

Lemma 2.2. The following relations hold:

Li = Li⊗O(Di), π∗(ψn+1) = 2g−2+n, π∗(ev
∗
n+1p) =

∫

d

p, p ∈ H2(X; Z).

Proof. 1 Let (f,Σ, z1, . . . , zn) represent a point in Xg,n,d. Let Y be the blow up
of Σ × Σ at the n points (zi, zi). Introduce also the set of divisors in Σ × Σ:

Si = Σ × {zi} (1 ≤ i ≤ n), ∆ = the diagonal of Σ × Σ

Note that

π−1(Si) = S̃i + Ei and π−1(∆) = ∆̃ +
n∑

i=1

Ei,

where S̃i and ∆̃ are smooth codimension-1 submanifolds of Y , Ei are the
exceptional divisors, and π is the blow-down map. Note that Y is a family of

1I learned this proof from D. Oprea and he learned it from R. Pandharipande.
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curves and that S̃i (1 ≤ i ≤ n) and ∆̃ determine n + 1 sections. Therefore
each fiber represents a point in Xg,n+1,d, i.e., we have an imbedding of Σ into
Xg,n+1,d. In fact the image of this imbedding coinsides with the fiber of the
universal curve at the point (f,Σ, z1, . . . , zn). Moreover, Y is the pullback of
the universal family Xg,n+2,d → Xg,n+1,d.

Recall that if V is a codimension-1 submanifold of X then we have an exact
sequence

0 → TV - TX|V
〈df, 〉- O([V ])|V → 0, i.e., O([V ])|V ∼= NV ,

where f is the section of O([V ] glued by the local equations of the divisor V .
Now the relations are easy to prove. For the first one, note that Li =

Li⊗O(nDi) for some integer n, because the two line bundles are different only
along the divisor Di. By definition

Li|Σ = N∨
S̃i
, Li|Σ = O, O(Di)|Σ = OΣ(zi).

Since π−1(Si) = S̃i + Ei, we get

π∗(O(Si)) = O(S̃i) ⊗O(Ei) ⇒ N∨
S̃i

= π∗N∨
Si
⊗O(Ei)|S̃i

.

It remains only to notice that the bundle NSi
is trivial and that O(Ei)|S̃i

=
O(zi). It follows that the number n = 1.

A similar argument shows that Ln+1|Σ = T ∗Σ(z1 + · · · + zn) (you have to
use here that N∆ = TΣ. The 2-nd relation then follows from the well known
fact that the degree of the cotangent bundle T ∗Σ is 2g − 2.

For the last relation we just have to notice that ev∗
n+1p|Σ = f ∗p. Lemma is

proved. �

2.4. Topological recursion relations. We are going to prove the vanishing
of the first commutator in (2.2) by using the so called genus-0 topological
recursion relations (TRR).

Proposition 2.3. The following identity holds:

1

n!
〈φaψi+1, φbψ

j, φcψ
k, t(ψ) . . . , t(ψ)〉0,n+3,d =

∑

n1+n2=n
d1+d2=d

N∑

µ,ν=1

gµν

n1!n2!
×(2.3)

〈φaψi, φµ, t(ψ), . . . , t(ψ)〉0,n1+2,d1〈φν, φbψj , φcψk, t(ψ) . . . , t(ψ)〉0,n2+3,d2 ,

where gµν = (φµ , φν) are the entries of the matrix of the Poincaré pairing and
gµν are the entries of its inverse.

Proof. Let ct : M0,n+3(X, d) → M0,3 be the map forgetting the map, the last
n marked points, and contracting all unstable components. Let (f,Σ, z) ∈
M0,n+3(X, d). Note that if we forget f and the last n marked points then only
one of the irreducible components of Σ is stable (and hence is not contracted



10 TODOR E. MILANOV

by ct). We call this distinguished component the central component of Σ. Let
D be the divisor consisting of all stable maps such that the first marked point
is not on the central component.

Using Lemma 2.2 we get L1 = L1⊗O(D) = O(D), where L1 is the pullback
via ct of the cotangent line bundle L1 on M0,3. The later is trivial, because
M0,3 is a point. It follows that the LHS of (2.3) can be written in the following
form:

(2.4)
1

n!

∫

[D]

φaψ
i
1φbψ

j
2φcψ

k
3t(ψ4) . . . t(ψn+3).

On the other hand, given a point (f,Σ, z) ∈ D we can split the curve into
two parts Σ′ and Σ′′ such that Σ′ is a tree of CP 1s which carries the first
marked point and such that under the contraction map it is contracted to a
point on the central component. Σ′′ is the complement of Σ′. Thus there is a
natural map gl which to each stable map (f,Σ, z) ∈ D assigns an element of
the preimage of the diagonal of the following map:

M0,n1+1+◦(X, d1) ×M0,•+2+n2(X, d2)
ev◦×ev•- X ×X.

The map gl is a
(
n
n1

)
-covering because if we split the last n marked points of

Σ into two groups then there are exactly that many ways to re-number them
so that the order of the marked points in each group does not change. Since
the Poincaré dual to the diagonal in X ×X has the form

∑
µ,ν g

µνφµ ⊗ φν we
see that (2.4) is transformed into:

∑

n1+n2=n
d1+d2=d

1

n1!n2!

∫

M0,n1+1+◦(X,d1)×M0,•+2+n2 (X,d2)

∑

µ,ν

gµνev∗
◦φµev

∗
•φν(. . .),

where the dots stand for the integrand in (2.4). Formula (2.3) follows. �

We introduce a series

Sτ (z) = 1 + S1(τ)z
−1 + S2(τ)z

−2 + . . . , Sk ∈ End(H),

defined by the following formula

(Sτφa, φb) = (φa, φb) +
∞∑

k=0

〈φaψk, φb〉0,2(τ)z−k−1,

where we used the notation:

〈φa1ψk1, . . . , φan
ψkn〉0,n(τ) =

∑

d,l

Qd

l!
〈φa1ψk1 , . . . , φan

ψkn, τ, . . . , τ〉0,n+l,d .

Proposition 2.4. The series Sτ is a fundamental solution to the following
system of differential equations:

z∂aSτ (z) = (φa•τ )Sτ (z), 1 ≤ a ≤ N.
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Proof. We have to prove that
∞∑

k=0

〈φa, φb, φcψk〉0,3(τ)z−k = (Sτ (z)φc, φa •τ φb)z−k.

On the other hand, thanks to the TRR, the LHS in the above equality is
equivalent to:

〈φa, φb, φc〉0,3(τ) +

∞∑

k=1

∑

µ,ν

〈φa, φb, φµ〉0,3(τ)gµν〈φν, φcψk−1〉0,3(τ)

Using the definitions of the quantum cup product and the series Sτ (z), we get
that the above expression equals

(φa •τ φb, φc) +
∑

µ,ν

(φa •τ φb, φµ)gµν ((Sτ (z) − 1)φc, φν) .

The proposition follows. �

Since Sτ is a fundamental solution the corresponding system is compatible.
We get the following corollary (see 1-st commutator in (2.2)).

Corollary 2.5. The differential operators

∇∂a
= ∂a − z−1(φa•τ ) and ∇∂b

= ∂b − z−1(φb•τ )
commute.

2.5. The divisor equation. Now we turn to proving the vanishing of the
second commutator in (2.2).

Proposition 2.6. Assume that p is a cohomology class of degree ≤ 2. Then

〈φa1ψk1, . . . , φan
ψkn, p〉g,n+1,d =

(∫

d

p
)
〈φa1ψk1, . . . , φan

ψkn〉g,n,d +

n∑

i=1

〈φa1ψk1, . . . , p ∪ φai
ψki−1, . . . , φan

ψkn〉g,n,d

for all g, n, d such that Xg,n,d is non-empty.

Proof. Let

π : Xg,n+1,d → Xg,n,d, Li = π∗(Li → Xg,n,d), ψi = c1(Li),

where π is the universal curve. According to Lemma 2.2, Li = Li ⊗ O(Di),
where the divisor Di is the image of the gluing map:

Mg,n(X, d) ×M0,3
- Mg,n+1(X, d),

which attaches a sphere with 3 marked points by identifying the 1-st marked
point on the sphere with the i-th one and then renumbering the 2-nd and the
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3-rd marked points respectively by i and n + 1. In particular, Li|Di
is the

cotangent line bundle L2 → M0,3, so it is trivial.
Using Lemma 2.2, we get

ψki = (ψi + [Di])ψ
k−1
i = ψiψ

k−1
i = · · · = ψ

k−1

i (ψi + [Di]) = ψ
k

i + [Di]ψ
k−1

i

Note also that [Di] · [Dj ] = 0 for i 6= j, because the divisors do not intersect.
Put α = ev∗(φa1 ⊗ . . .⊗ φan

∈ H∗(Xg,n,d; C). It follows that
∫

Xg,n+1,d

(π∗α) ∧ (ev∗
n+1p)

n∧

i=1

ψki

i =

∫

Xg,n,d

α ∧ π∗(ev∗
n+1p)

n∧

i=1

ψki

i +

n∑

i=1

∫

[Di]

ev∗(φa1 . . . φan
) ∧ ev∗

n+1(p) ∧ ψ
k1
1 . . . ψ

ki−1

i . . . ψ
kn

n .

However Di
∼= Mg,n(X, d) and under this identification evn+1 on Di corre-

sponds to evi. Note that if p has degree < 2 then π∗(p) = 0 =
∫
d
p, while if

the degree is 2 then π∗(ev
∗
n+1p) =

∫
d
p, according to Lemma 2.2. �

In case p ∈ H2(X; Z) the identity in Proposition 2.6 is called the divisor
equation (DivE) and if p = 1 then it is called the string equation (SE). For
completeness we mention one more identity, known as the dilaton equation
(DE).

(2.5) 〈φa1ψk1 , . . . , φan
ψkn, ψ〉g,n+1,d = (2g − 2 + n) 〈φa1ψk1, . . . , φan

ψkn〉g,n,d,
whenever the moduli space Xg,n,d is non-empty. The proof of the dilaton
equation is almost the same as of the divisor equation and it is left as an
exercise to the reader.

Corollary 2.7. The differential operators

∇∂a
= ∂a − z−1(φa•τ ) and ∇∂/∂z = ∂z + (z−2E •τ −z−1µ)

commute.

Proof. Note that in GW theory the Hodge grading operator µ is diagonal:

µ(φa) = (1 − da − (1 −D/2)) φa = (D/2 − da) φa,

where da = degC φa = (deg φa)/2. After a direct computation we find that the
commutator of the differential operators is

(2.6) z−2
(
φa •τ +[µ, φa•τ ] − ∂a(E•τ )

)
.

This expressian vanishes iff (apply (2.6) to φb and Poincaré pair the result with
φc)

∂a〈φb, φc, E〉0,3(τ) = (1 −D + db + dc)〈φa, φb, φc〉0,3(τ).
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Using the definition of the Euler vector field, we get

E〈φa, φb, φc〉0,3(τ) = (da + db + dc −D)〈φa, φb, φc〉0,3(τ).
This identity follows esily from the dimension formula

dimCM0,n(X; d) = D − 3 + n +

∫

d

c1(TX),

and the divisor equation. �
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3. The Lagrangian cone of Givental

3.1. Geometric interpretation of genus-0 GW theory. Last time we
proved that the correlators in GW theory satisfy SE (see Proposition 2.6 with
p = 1), DE (formula (2.5)), and TRR. These identities can be written in the
following form:

∂F (0)

∂t10
=

1

2
(t0, t0) +

∞∑

k=0

N∑

a=1

tak+1

∂F (0)

∂tak
(3.1)

∂F (0)

∂t11
=

∞∑

k=0

N∑

a=1

tak
∂F (0)

∂tak
− 2F (0)(3.2)

∂3F (0)

∂tak+1∂t
b
l∂t

c
m

=
N∑

µ,ν

∂2F (0)

∂tak∂t
µ
0

gµν
∂3F (0)

∂tν0∂t
b
l∂t

c
m

,(3.3)

where

F (0)(t) =

∞∑

n=0

1

n!
〈t(ψ1), . . . , t(ψn)〉0,n

is the genus-0 descendant potential,

t(z) =
∞∑

k=0

tak φa z
k

{φa}Na=1 is a basis of H such that φ1 = 1.
Let H = H((z−1)) be the vector space of all Laurent series in z−1. We equip

H with the symplectic structure:

Ω(f , g) = Resz=0 (f(−z), g(z))dz, f(z), g(z) ∈ H
and will refer to it as the symplectic loop space. There is a natural polarization
H = H+ ⊕ H−, where H+ := H [z] and H− := z−1H [[z−1]] are Lagrangian
subspaces. Using the symplectic pairing we can identify H− with with H∨

+ and
hence H ∼= T ∗H+. It is not hard to see that if we set

f =

∞∑

k=0

pk,a φ
a (−z)−k−1 + qak φa z

k, φa =

N∑

µ=1

gaµφµ

then {pk,a, qak} form a Darboux coordinate system on H.
Exercise. Let

A(z) =
∞∑

k=1

Ak z
k, Ak ∈ End(H).

a) Prove that A(z) is an infinitesimal symplectic transformation iff A(z) +
AT (−z) = 0.
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b) The map f 7→ A(z)f is a linear vector field XA. Prove that XA is Hamil-
tonian iff A is an infinitesimal symplectic transformation and that the corre-
sponding Hamiltonian hA (i.e. dhA + ιXA

Ω = 0) is hA = 1
2
Ω(A(z)f , f).

We change the variables via the so called dilaton shift:

t0 = q0, t1 = q1 + 1, t2 = q2, . . . qk =
N∑

a=1

qakφa,

so that the potential becomes a function on H+, defined in the formal neigh-
borhood of −z.
Definition 3.1. We say that a cone L ⊂ H with vertex at the origin is over-
ruled if for every f ∈ L the tangent space L := TfL has the following property

{g ∈ L | TgL = L} = zL.

Denote by L ⊂ T ∗H ∼= H the graph of the differential dF (0), i.e.,

L =
{ ∞∑

k=0

q̃kz
k + p̃k(−z)−k−1 | p̃k,a =

∂F (0)

∂qak

∣∣∣∣
qa
k
=q̃ a

k

}
.

Note that for a given f ∈ L, the tangent space TfL is given by the following
formulas:

v(z) +
∞∑

k,l=0

N∑

a,b=1

∂2F (0)

∂qak∂q
b
l

vblφ
a(−z)−k−1

Finally, let us stress that L is interpreted in a formal sense, which means that
the coefficients q̃k are formal series in q0, q1+1, q2, . . . , such that limk→∞ q̃k = 0
in the q-adic topology.

Theorem 3.2. Let F (0) be any function on H+ defined in a formal neigh-
borhood of −z. Then F (0) satisfies DE, SE and TRR iff the graph L is an
over-ruled Lagrangian cone in H.

Proof. Assume that L is an over-ruled Lagrangian cone.
Step 1. If (q,p) ∈ L then (tq, tp) ∈ L, because L is a cone. It follows that

∂F (0)

∂qak

∣∣∣∣
q 7→tq

= t
∂F (0)

∂qak

Using the chain rule we get

∂

∂t
F (0)(tq) =

∞∑

k=0

N∑

a=1

∂F (0)

∂qak

∣∣∣∣
q 7→tq

= t

∞∑

k=0

N∑

a=1

∂F (0)

∂qak
.

Integrating from 0 to 1 and recalling the dilaton shift we get that F (0) satisfies
the dilaton equation.
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Step 2. Let f ∈ L arbitrary and L = TfL. Since L is overruled we get that
f ∈ zL, i.e., z−1f ∈ L. In other words the v.f. f 7→ z−1f is tangent to the cone
L. This v.f. is Hamiltonian with Hamiltonian

1

2
Ω(z−1f , f) =

1

2
(q0, q0) +

∞∑

k=0

N∑

a=1

qak+1pk,a.

It follows that F (0) satisfies the string equation.
Step 3. We imbed H into H+ by τ 7→ −z + τ. Put

f =

∞∑

k=0

N∑

a=1

qakφaz
k + pk,aφ

a(−z)−k−1 ∈ L, L = TfL.

Denote by (zL)+ the projection of zL along H−. Then

(zL)+ ∩H = {−z + τ}, where τa(q) =
N∑

b=1

∂2F (0)

∂q1
0∂q

b
0

gab.

Using that zL ⊂ L we get

g := τ(q) − z + dτ(q)−zF (0) ∈ zL,

because we could not have two diffent elements of L whose projection along
H− is the same. Introduce the correlator notation:

〈φa1ψk1 , . . . , φan
ψkn〉0,n(τ) =

∂nF (0)

∂ta1k1 . . . ∂t
an

kn

∣∣∣∣
t0=τ,t1=t2=···=0

.

We must have (since TgL = L = TfL)

∂2F (0)

∂tak∂t
b
l

= 〈φaψk, φbψl〉0,2(τ(q)).

Differentiating with respect to ta0 the string equation

∂F (0)

∂t10
=

1

2
(t0, t0) +

∞∑

k=0

N∑

a=1

tak+1

∂F (0)

∂tak

we get that τ(q) is a solution to the following equation

Ga(τ, t) = 0, Ga(τ, t) = τa − ta0 −
∞∑

k−0

N∑

b,c=1

gactbk+1〈φbψk, φc〉0,2(τ).

Using implicit differentiation it is easy to verify that the matrix with entries
∂Ga/∂tb is the inverse to ∂τ b/∂tc. On the other hand comparing the derivatives
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∂τa/∂tak+1 and ∂Ga/∂τ e we see that

N∑

e=1

∂τ e

∂tbk+1

∂Ga

∂τ e
=

N∑

c=1

gac〈φbψk, φc〉0,2(τ).

In other words
∂τ e

∂tbk+1

=

N∑

a,c=1

∂τ e

∂ta0
gac 〈φbψk, φc〉0,2(τ).

Now we can prove the TRR.

∂3F (0)

∂tbk+1∂t
b
l∂t

c
m

=
∑

〈φbψl, φcψm, φd〉0,3(τ)
∂τd

∂tak+1

=

∑
〈φbψl, φcψm, φd〉0,3(τ)

∂τd

∂te0
gef 〈φaψk, φf〉0,2(τ).

To finish the proof of TRR we just have to notice that
∑

d

〈φbψl, φcψm, φd〉0,3(τ)
∂τd

∂te0
=

∂

∂tl0
〈φbψl, φcψm〉0,2(τ).

The opposite direction is left to the reader. The argument can be found in
[6]. �
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4. From descendant to ancestors

4.1. From two- to one-point descendants. Denote by

Wτ (z, w) =
∑

k,l

Wkl(τ)z
−kw−l, Wkl ∈ End(H),

where the coefficients Wkl are defined by the following formulas

(φa,Wτ (z, w)φb) =
∑

k,l≥0

〈φaψk, φbψl〉0,2(τ)z−kw−l.

Let Sτ (z) be the fundamental solution of the system of quantum differential
equations (see Proposition 2.4.

Lemma 4.1. The following formula holds:

Wτ (z, w) =
tSτ (z)Sτ (w) − 1

z−1 + w−1
,

where the transpose of S is with respect to the Poincaré pairing.

Proof. We need to verify that

(φa,Wτ (z, w)φb)
(
z−1 + w−1

)
+ (φa, φb) = (Sτ (z)φa, Sτ (w)φb).

Using the (SE), it is easy to verify that the LHS of the above identity coincides
with

(4.1)
∑

k,l≥0

〈φaψk, φbψl, 1〉0,3(τ)z−kw−l.

We split the summation range in the above sum into four groups. First if
k = l = 0 then the corresponding summand is just (φa, φb). The summands
corresponding to k, l ≥ 1 can be simplified first with TRR and then they add
up to the following sum:

(4.2)
∑

µ,ν

∑

k,l≥1

〈φaψk−1, φµ〉0,2(τ)gµν〈φν , φbψl, 1〉0,3(τ)z−kw−l.

By definition we have
∑

k≥1

〈φaψk−1, φµ〉0,2(τ)z−k = (φµ, (Sτ(z) − 1)φa)

and∑

l≥1

〈φν, φbψl, 1〉0,3(τ)w−l =
∑

l≥1

〈φν , φbψl−1〉0,2(τ)w−l = (φν , (Sτ (w) − 1)φb),

where for the first equality we used SE. Therefore the sum (4.2) equals
∑

µ,ν

(φµ, (Sτ (z) − 1)φa)g
µν(φν , (Sτ (w) − 1)φb) = ((Sτ (z) − 1)φa, (Sτ (w) − 1)φb).
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Similarly, the summands in (4.1) corresponding to k ≥ 1, l = 0 add up
to ((Sτ (z) − 1)φa, φb), and the ones corresponding to k = 0 and l ≥ 1 to
(φa, (Sτ (w) − 1)φb). The lemma follows. �

Corollary 4.2. The series Sτ is a symplectic transformation of H, i.e.,
TSτ (−z)Sτ (z) = 1.

4.2. Quantization formalism. Given an infinitesimal symplectic transfor-

mation A we define a differential operator Â acting on the space of formal
power series

M := C√
~
[Q][[q0, q1 + 1, q2, . . . ]], C√

~
[Q] = C[Q]((

√
~)).

This space is called Fock space. We use the Weyl quantization rules:

q̂ a
k = qak/

√
~ and p̂k,a =

√
~ ∂/∂qak .

Monomial expressions in p and q are quantized by representing each p (resp.
q) by the corresponding differentiation (resp. multiplication) operator and
moving all differentiation operators before the multiplication ones. We define

Â := ĥA. Notice that the quantization of quadratic Hamiltonians is a projective
representation of Lie algebras, i.e.,

[F̂ , Ĝ] = {F,G}̂+ C(F,G),

where the cocycle is defined by:

C(papb, qaqb) = −C(qaqb, papb) =

{
1 if a 6= b

2 otherwise,

and C vanishes for all other pairs of quadratic Darboux monomials.
By definition, the twisted loop group is defined as

L(2)GL(H) =
{
M(z) =

∑

k

Mkz
k | TM(−z)M(z) = 1

}

Given an element of L(2)GL(H) of the form S(z) = 1+S1z
−1 +S2z

−2 + . . ., we

define its quantization by Ŝ = eÂ, where A = lnS. We would like to describe

the action of Ŝ−1 on the Fock space. Introduce the quadratic form

W (q,q) =
∑

k,l

(Wklql, qk), where
∑

k,l≥0

Wklz
−kw−l =

TS(z)S(w) − 1

z−1 + w−1
.

Theorem 4.3. The follwoing formula holds:

Ŝ−1F = e
1
2~
W (q,q)F([Sq]+),

where f+ means the series obtained from f by truncating the terms with nega-
tive powers of z.
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Proof. Write A(z) =
∑

k≥1Akz
−k. Then it is not hard to see that the corre-

sponding quadratic Hamiltonian is given by:

hA = −1

2
(Aq,q(−z)) − (Ap,q(−z)),

where
q(z) =

∑

k

qkz
k =

∑

k,a

qakφaz
k,

and
p(z) =

∑

k

pk(−z)−k−1 =
∑

k,a

pk,aφ
a(−z)−k−1.

Put G(t,q) = e−tÂF . We compute G for all t. In particular, the Theorem
would follow from the case t = 1.

Notice that G is a solution to the differential equation ∂tG = −ÂG, which
after the substitution g = log G, turns into:

(4.3)
∂g

∂t
=

1

2~
(Aq,q(−z)) +

∑

k,a

(Aφa(−z)−k−1,q(−z)) ∂g
∂qak

.

This is a 1-st order PDE which we solve by the method of the characteristics.
Step 1: first, we solve the homogeneus equation, i.e.,

∂g

∂t
=
∑

k,a

(Aφa(−z)−k−1,q(−z)) ∂g
∂qak

.

The auxiliarly system of ODE’s is

∂qak
∂t

= −(Aφa(−z)−k−1,q(−z)) ⇔ ∂q

∂t
= −[Aq]+.

Notice that [A[. . . [Aq]+]]+ = [Anq]+, where on the LHS A is repeated n times.
Therefore, the system of ODE’s has the following solution: q(t) = [e−tAc]+,
where c = q(0) ∈ H+ = H [z] is an initial condition. The method of the
characteristics is based on the fact that the solutions g(t,q) of the PDE are
constant along the curves (t,q(t)) ∈ C×H+. From here we find that if (t,q) ∈
C×H+ is any point then the curve (s,q(s)) with initial condition (0, [etAq]+)
will pass through the point (t,q). Therefore, the general solution of the PDE
is given by: g(t,q) = f([etAq]+), where f is an arbitrary function on H+.

Step 2: a direct computation shows that the function

Wt(q,q) =
1

2~

∑

k,l

(Wkl(t)ql, qk),

defined by the formula:

∑

k,l≥0

Wkl(t)z
−kw−l =

e
TA(z)teA(w)t − 1

z−1 + w−1
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is a solution to (4.3).
So the general solution to (4.3) is given by g(t,q) = Wt(q,q) + f([etAq]+).

Notice that for t = 0 we have G = F , and W0(q,q) = 0, so f = logF . The
theorem follows. �

4.3. From descendants to ancestor GW invariants. Let

αi(ψ, ψ) =
∑

k,m

αk,mi ψkψ
m ∈ H [ψ, ψ].

The correlator

(4.4) 〈〈α1(ψ, ψ), . . . , αn(ψ, ψ)〉〉g,n(τ)
represents the following sum of integrals over the moduli spaces:

∑

d,l

∑

k.,m.

Qd

l!

∫

Mg,n+l(X;d)

ψk11 ψ
m1

1 . . . ψkn

n ψ
mn

n ev∗(αk1,m1

1 ⊗ αkn,mn

n ⊗ τ⊗l).

Here τ ∈ H is a formal parameter and ψi is the pullback of the ψi-class on Mg,n

via the (forgetfull) map π : Mg,n+l(X, d) → Mg,n which forgets the map, the
last l marked points, and contracts all unstable components. By definition, the
corelator (4.4) is 0 if Mg,n is empty, i.e., for (g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)}.

Lemma 4.4. Assume that α ∈ H∗(X) and (g, n) is a stable pair (i.e. Mg,n

is non-empty). Then the following formula holds:

〈αψk+1ψ
m
, α2(ψ, ψ), . . . , αn(ψ, ψ)〉g,n(τ) =

= 〈αψkψm+1
+ Sk+1αψ

m
, α2(ψ, ψ), . . . , αn(ψ, ψ)〉g,n(τ),

where Sτ (z) = 1 + S1(τ)z
−1 + . . . is the 1-point descendant series.

Proof. Let D1 be the divisor in Mg,n+l(X, d) of all points (Σ, p., f) such that
the first marked point p1 is not on the same irreducible component as any of
the points pi, 2 ≤ i ≤ n. Notice that ψ1 = ψ1 + [D1] and that the divisor D1

can be identified with the image of the gluing map:

gl :
⊔

l′+l′′=l
d′+d′′=d

Mg,n−1+l′+◦(X, d
′) ×X M0,1+l′′+•(X, d

′′) → Mg,n+l(X, d),

where in the fiber product the maps from the moduli spaces to X are given by

the evaluations at the marked points ◦ and •. Writing ψk+1
1 ψ

m

1 = ψk1ψ
m+1

1 +
[D1]ψ

k
1ψ

m
we get that the integral

∫

Mg,n+l(X,d)

ev∗
1(α)ψk+1

1 ψ
m

1 α2 . . . αnτ
⊗l
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equals to∫

Mg,n+l(X,d)

ev∗
1(α)ψk1ψ

m+1

1 α2 . . . αnτ
⊗l +

∑

l′+l′′=l
d′+d′′=d

l!

l′!l′′!

∑

µ,ν

gµν ×

×
∫

Mg,n−1+l′+◦
(X,d′)

α2 . . . αnτ
⊗l′ev∗

◦(φµ)ψ
m

◦

∫

M0,1+l′′+•
(X,d′′)

ev∗
1(α)ψk1τ

⊗l′′ev∗
•(φν),

where the combinatorial factor
(
l
l′

)
comes from the fact that in the gluing map

gl the union of the l′ marked points on the 1-st moduli space and the l′′ marked
points on the second one have to be renumbered with the numbers from n+ 1
to n + l. Notice that the expression

∑
µν g

µνφµ ⊗ φν is the Poincaré dual to
the diagonal in X ×X. The lemma follows. �

By definition the total ancestor potential is defined by the following formula:

Ãτ (t) = exp
(∑

g,n

1

n!
~
g−1〈〈t(ψ1), . . . , t(ψn)〉〉g,n(τ)

)
.

Using the dilaton shift t(z) = q(z) + z, we identify Ãτ with an element Aτ (q)
of the Fock space. Namely,

Aτ (q) = Ãτ (q(z) + z)

The goal now is to express the total ancestor potential in terms of the total
descendant potential.

Theorem 4.5. The following formula holds

D(q) = eF
(1)(τ) Ŝ −1

τ Aτ(q),

where F (1)(τ) = F (0)
∣∣
t0=τ,t1=t2=···=0

is the genus-1 GW potential.

Proof. Recall that the total descendant potential is given by the formula

D̃(t) = exp
(∑

g,n

ǫ2g−2

n!
〈t(ψ), . . . , t(ψ)〉g,n

)
.

It is identified with an element of the Fock space via the dilaton shift:

D(q) = D̃(q(z) + z).

The above lemma implies the following identity:

〈〈t(ψ), . . . , t(ψ)〉〉g,n(τ) = 〈〈[Sτt]+(ψ), . . . , [Sτt]+(ψ)〉〉g,n(τ),
where t(z) =

∑
k,a t

a
kφaz

k ∈ H+. Using the Taylor’s formula we get

Ã0(t(z) + τ) = Ãτ([Sτ (z)t(z)]+

Note that
D̃(t + τ)/Ã0(t + τ) = C(t),
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where

Cτ (t) = eF
(1)(τ) exp

(
〈 〉0,0(τ) + 〈 t(ψ)〉0,1(τ) +

1

2
〈 t(ψ), t(ψ)〉0,2(τ)

)
~
−1.

Therefore
D̃(t + τ) = Cτ (t)Ãτ([Sτt]+).

Replacing in this formula t(z) 7→ q(z) + z − τ , we get

D(q) = Cτ (q(z) + z − τ)Aτ (−z + [Sτ (q(z) + z − τ)]+).

First, let us simplify the argument in the ancestor potential:

−z + [Sτ q(z)]+ + z + S11 − τ = [Sτ q(z)]+.

Where we used that

(S11, φa) = 〈1, φa〉0,2(τ) = 〈1, φa, τ〉0,3,0 =

∫

X

φaτ,

i.e., S1(τ)1 = τ.
On the other hand, using the dilaton equation, it is not hard to verify that

〈ψ − τ,q(ψ)〉0,2(τ) = −〈q(ψ)〉0,1(τ)
〈ψ − τ, ψ − τ〉0,2(τ) = −〈ψ − τ〉0,1(τ)

〈ψ − τ〉0,1(τ) = −2〈〉0,0(τ).
From this formulas we get

Cτ (q(z) + z − τ) = eF
(1)(τ) e

1
2~

〈q(ψ),q(ψ)〉0,2(τ).

It remains only to recall Theorem 4.3 and the formula relating 1- to 2-point
descendants. �
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5. Semi-simple cohomological field theories I

In this lecture, following the work of C. Teleman (see [13]), we will see how
Givental’s quantization formalism arises naturally in the settings of the so
called Cohomological Field Theories (CohFT).

5.1. Definition of CohFT. Let H be a vector space, equipped with a non-
degenerate pairing, and a unit vector 1 ∈ H . From now on we fix a basis
{φµ}Nµ=1 of H , put gµν = (φµ, φν) and denote by (gµν) the matrix inverse to
(gµν).

A CohFT on H is a system of maps

Zg,n : H⊗n → H∗(Mg,n; C), 2g − 2 + n > 0,

satisfying the following axioms

(1) Permutation invariance: the expression Zg,n(a1, . . . , an) is symmetric
in a1, . . . , an.

(2) Boundary axioms: the boundary morphism

b : Mg,n′+1 ×Mg′′,n′′+1 → Mg,n, g′ + g′′ = g, n′ + n′′ = n

defined by gluing the last marked points satisfies

b∗Zg,n(a1, . . . , an) =

N∑

µ,ν=1

gµνZg′,n′+1(ai1 , . . . , ain′
, φµ)Zg,n′′+1(aj1, . . . , ajn′′

, φν),

where

{i1, . . . , in′} ⊔ {j1, . . . , jn′′} = {1, 2, . . . , n}
is the partition imposed by b.

Similarly, the boundary morphism

b′ : Mg,n+2 → Mg+1,n,

consisting of gluing the last two marked points, must satisfy

(b′)∗Zg+1,n(a1, . . . , an) =
N∑

µ,ν=1

gµνZg,n+2(a1, . . . , an, φµ, φν).

(3) Identity axiom: Z0,3(a, b, 1) = (a, b).

The CohFT comming from GW theory satisfy one additional axiom. Namely,

π∗Zg,n(a1, . . . , an) = Zg,n+1(a1, . . . , an, 1),

where π : Mg,n+1 → Mg,n is the universal curve. We refer to this equation as
the flat identity axiom.
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5.2. An important example. Given a CohFT, we define a multiplication •
on H as follows:

(a • b, c) = Z0,3(a, b, c), a, b, c ∈ H.

It is easy to verify that this multiplication and the pairing ( , ) turn H into a
Frobenius algebra.

Assume now that H is a Frobenius algebra equipped with a unity. Then we
can build a whole family of CohFT in the following way. The moduli space
Mg,n carries the so called κ-classes defined by κi = π∗(ψ

i+1
n+1), i ≥ 0 (note that

κ0 = 2g − 2 + n). They satisfy the following crucial property:

b∗κi = κi ⊗ 1 + 1 ⊗ κi,

where b is the boundary morphism from the previous subsection. Let si ∈ H
(i ≥ 1) be any sequence of vectors. It is easy to check that the following
formulas:

Zg,n(a1, . . . , an) = (P g • e
∑

∞

i=1 siκi, a1 • · · · • an),
where

P =
N∑

µ,ν=1

gµνφµ • φν ,

is the so called propagator, form a CohFT. The propagator P is chosen so that
this system of maps is compatible with the boundary morphisms of type b′.
All multiplication in the above formula take place in the Frobenius algebra
and in the cohomology H∗(Mg,n; C).

5.3. Semi-simple CohFT.

Definition 5.1. A CohFT {Zg,n} is called semi-simple if the Frobenius algebra
H is semi-simple, i.e., there exists a basi {ei}Ni=1 such that

(ei, ej) = δij, ei • ej =
√
θiδijej , 1 ≤ i, j ≤ N,

where θi (1 ≤ i ≤ N) are some non-zero complex numbers.

Note that in a semi-simple Frobenius algebra, the propagator

P =

N∑

i=1

ei • ei =

N∑

i=1

√
θi ei

is invertible.
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H⊗n

H∗(Mg,n)

Zg,n

?
- H∗(Mg,n) -

Z
g,n

-

H∗(pt) ∼= C

A
g,n

-

Given a CohFT, we denote by Zg,n and Ag,n its restrictions respectively to
H∗(Mg,n) and H∗(pt) = C (see the above diagram). The set of all Ag,n satisfy
the axioms of the so called topological field theories. They can be computed
explicitly (see [3]). The answer is the following

Theorem 5.2 (Dubrovin). The map Ag,n is given by the following formula:

Ag,n(a1, . . . , an) = (P g, a1 • · · · • an), a1, . . . , an ∈ H.

It turns out that for semi-simple CohFT the maps Zg,n can be computed ex-

plicitly as well. Let M1

g,n be the moduli space of Riemann surfaces equipped
with n marked points and with 1 parametrized boundary. Forgetting the

parametrization gives us a map M1

g,n → Mg,n+1 which turns M1

g,n into a

S1-bundle. In fact, M1

g,n is the S1-bundle associated with L∨
n+1. In partic-

ular its Euler class e(M1

g,n) = −ψn+1. Similarly, one can define Mr

g,n – the
moduli space of Riemann surfaces with r parametrized boundaries, where the
boundary circles are numbered with the integers from n + 1 to n + r.

The moduli space M1

g,n admit the so called genus stabilization map M1

g,n →
M1

g+1,n consisting of sewing a genus-1 Riemann surface with 2 boundary circles.

It follows that the cohomology groups H∗(M1

g,n) form an inverse system with
respect to g. The Mumfords conjecture, proved by Madsen and Weiss ([12])
says

Theorem 5.3 (Madsen–Weiss). In the stable range H∗(M1
g,n) is a polynomial

algebra in κ- and ψ-classes, i.e.,

(5.1) lim
g→∞

H∗(M1

g,n; C) = C[ψ1, . . . , ψn, κ1, κ2, . . . ],

where the limit is the inverse limit of the inverse system {H∗(Mg,n)}g≥0.

Set

Zr
g,n(a1, . . . , an, b1, . . . , br) = π∗ Zg,n+r(a1, . . . , an, b1, . . . , br),

where π : Mr
g,n → Mg,n+r is the map forgetting the parametrizations.
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Proposition 5.4. The class Z1
g,n(a1, . . . , an, b) ∈ H∗(M1

g,n) is a polynomial
expressions in κ- and ψ-classes.

Proof. Consider the stabilization map st = b ◦ i
Mg,n

i- M2
G ×M1

g,n

b- M1
g+G,n,

where b is the map gluing two boundary cicrlces and i is the inclusion map.
Using the gluing axioms, we find

st∗(Z1
g+G,n(a1, . . . , an, P

−g−Gb) = i∗
(
Z2
G(φµ, P

−g−Gb)gµνZ1
g,n(a1, . . . , an, φν)

)
.

Note that

i∗(Z2
G(φµ, P

−g−Gb)) = AG,2(φµ, P
−g−Gb)) = (P−g • b, φµ).

It follows that

st∗(Z1
g+G,n(a1, . . . , an, P

−g−Gb) = Z1
g,n(a1, . . . , an, P

−gb).

Thanks to Mumfords conjecture, by taking G sufficiently large, we can arrange
that the LHS is a polynomial in ψ- and κ-classes. �

In fact, using the gluing axioms, it is not hard to find all Z1
g,n explicitly. The

answer is the following.

Proposition 5.5. There are vectors si ∈ H, i ≥ 1 and a series

R(z) = 1 +R1z +R2z
2 + . . . , Rk ∈ End(H),

such that

Z1
g,n(a1, . . . , an, b) = (P g • e

∑
∞

i=1 siκi, (R(ψ1)a1) • · · · • (R(ψn)an) • b).
We leave the proof of this Proposition as an exercise. The only thing we

have to use here are the boundary axioms.

Proposition 5.6. The series R(z) is a symplectic transformation, i.e.,
TR(−z)R(z) = 1.

Proof. Consider the commutative diagram

E
b̃- M2

g+G

M1
g,1 ×M1

G,1

p

? b- Mg+G,2

i

?

where b is the map that glues the marked points and forgets the parametriza-
tion of the boundary cicrcles. Note that Im b ⊂ Mg+G,2 consists of Riemann
surfaces having exactly two irreducible components of topological type (g, 2)
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and (G, 2) respectively, glued along their 1-st marked points. A tubular neigh-
borhood N of Im b can be identified with a disk bundle of the normal bundle
and then E = b∗(∂N) is the corresponding S1-bundle. The bundle E is natu-
rally imbedded in M2

g+G because ∂N ⊂ Mg+G,2.

Let a, b ∈ H be arbitrary. By the definition of Z2
g+G the following expression

(5.2) b̃ ∗
(
Z2
g+G(a, b) − i∗ Zg+G,2(a, b)

)

is 0. On the other hand, using Proposition 5.5 we have

Z2
g+G(a, b) = i∗

(
P g+Ge

∑
∞

i=1 siκi , a • b
)
.

Using the commutative diagram and computing b∗Zg+G,2 via the boundary
axiom, we get that (5.2) equals equals

p∗
(
b∗
(
P g+Ge

∑
∞

i=1 siκi, a • b
)
− Z1

g,1(φµ, a)g
µνZ1

G,1(φν, b)
)
,

where summation over the repeating indices µ and ν is assumed. Recalling
Proposition 5.5 again and after some simplifications we get

Z1
g,1(φµ, a)g

µνZ1
G,1(φν , b) =

(
T
R(ψ′

1)(P
ge
∑

∞

i=1 siκ′ia),
T
R(ψ′′

1)(P
Ge
∑

∞

i=1 siκ′′i b)
)
.

It follows that

p∗
((
P g+Ge

∑
∞

i=1 si(κ
′

i+κ
′′

i ), a•b
)
−
(
R(ψ′′

1)
T
R(ψ′

1)(P
ge
∑

∞

i=1 siκ
′

ia), PGe
∑

∞

i=1 siκ
′′

i b
))

= 0,

where ′ (resp. ′′) indicate a cohomology class on the first (resp. second) factor
of M1

g,1 ×M1
G,1. Using the Gysin sequence, for the S1-bundle E we get that

the expression in the brackets is a multiple of the Euler class e(E). Note that
the normal bundle to Im b is (L′

1)
∨⊗(L′′

1)
∨, so the Euler class e(E) = −ψ′

1−ψ′′
1 .

Replacing a 7→ P−ga and b 7→ P−Gb and then taking the stable limit
g,G→ ∞ we obtain some identity involving polynomial expressions in ψ′

1, ψ
′′
1

and two coopies of the κ-classes. Thanks to Mumfords conjecture, these are
independent variables, so we can set

ψ′
1 = z, ψ′′

1 = −z, κ′i = κ′′i = 0

and get ((
R(−z) TR(z) − 1

)
a, b
)

= 0.

The Proposition follows. �

It turns out that the symplectic condition is the only constraint that one
has to impose in order to obtain a CohFT. More precisely,
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Theorem 5.7 (Teleman). Let si ∈ H, i ≥ 1 be a sequence of vectors and R(z)
is a symplectic transformation. Then there exists a unique CohFT Zg,n such
that

Zg,n(a1, . . . , an) =
(
P ge

∑
∞

i=1 siκi, R(ψ1)a1 • · · · •R(ψn)an

)
.

For a proof and more conceptual description we refer to the article [13].

5.4. Infinitesimal deformations. Put

Zg,n(q, . . . ,q) =
∑

Zg,n(φa1 , . . . , φan
)ψk11 . . . ψkn

n q
a1
k1
. . . qan

kn
,

where q(z) =
∑∞

k=0

∑N
a=1 q

a
k φa z

k and the summation is over all k1, . . . , kn and
a1, . . . , an.

The total ancestor potential is defined by

A(q) = exp
( ∑

g,n

~g−1

n!

∫

Mg,n

Zg,n(q, . . . ,q)
)
.

In case, the CohFT is semi-simple, the potential will be denoted by As,R, where
the sequence s = (s1, s2, . . . ) and the symplectic transformation R(z) are the
parameters that (according to Proposition 5.7) determine the entire theory.

Given an infintesimal symplectic transformation

A(z) = A1z + A2z
2 + . . . , Ak ∈ End(H), A(z) + TA(−z) = 0,

we define

∂A As,R =
d

dǫ

(
As,ReǫA

) ∣∣∣∣
ǫ=0

.

Theorem 5.8. The follwoing formula holds

∂A As,R = −Â As,R.

Proof. Let M(k)

g,n, k ≥ 0 be the moduli space of Riemann surfaces with at least
k nodes. We have a filtration

· · · ⊂ M(k+1)

g,n ⊂ M(k)

g,n ⊂ · · · ⊂ M(0)

g,n = Mg,n.

For each k ≥ 0, we introduce the open set in M(k)

g,n defined by

M(k)
g,n = M(k)

g,n −M(k+1)

g,n

We would like to find

Zg,n = Zg,n + Z
(1)

g,n + Z
(2)

g,n + . . . ,

where the cohomology classes Z
(k)

g,n ∈ H∗(Mg,n) are supported on M(k)

g,n. First,

we show how to find Z
(1)

g,n. It will be clear that one can proceed inductively.
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Consider the following commutative diagrams:

E - Mg,n

⊔

g′+g′′=g
n′+n′′=n

Mg′,n′+1 ×Mg′′,n′′+1

p

?
b - Mg,n

i

?

and

E ′ - Mg,n

Mg−1,n+2

p

? b′ - Mg,n

i′

?

where b and b′ are the boundary morphisms, and E (resp. E ′) is the S1-bundle
associated to the normal bundle of Im b (resp. Im b′) in Mg,n. Note that
both E and E ′ imbed naturally in Mg,n, because they can be viewed as the
boundary of a tubular neighborhood of Im b and Im b′.

It follows from the explicit formula in Proposition 5.5 that Zg,n is a class on
Mg,n. By definition, i∗(Zg,n − Zg,n) = 0. Therefore, p∗ b∗ (Zg,n − Zg,n) = 0,
i.e.,

b∗ (Zg,n − Zg,n) = e(E)Z(1)
g,n = −(ψ′

n′+1 + ψ′′
n′′+1)Z

(1)
g,n,

for some cohomology class Z
(1)
g,n. It is convenient to introduce

Fg,n(a1, . . . , an) =
(
P ge

∑
∞

i=1 siκi, a1 • · · · • an
)
.

This is a CohFT as it was explained in subsection 5.2 and we have

Zg,n(a1, . . . , an) = Fg,n(R(ψ1)a1, . . . , R(ψn)an).

According to the boundary axioms we have

b∗ Zg,n(q, . . . ,q) =
N∑

µ,ν=1

Fg′,n′+1(Rq, . . . , Rq, Rφµ)g
µνFg′′,n′′+1(Rq, . . . , Rq, Rφν).

and

b∗ Zg,n(q, . . . ,q) =
N∑

µ,ν=1

Fg′,n′+1(Rq, . . . , Rq, φµ)g
µνFg′′,n′′+1(Rq, . . . , Rq, φν).



GW THEORY AND INTEGRABLE HIERARCHIES 31

Using that

Rφµ =

N∑

µ′=1

(Rφµ, φ
µ′)φµ′ and Rφν =

N∑

ν′=1

(Rφν , φ
ν′)φν′

we get

Z(1)
g,n =

N∑

µ′,ν′=1

Fg′,n′+1(Rq, . . . , Rq, φµ′)(V φ
µ′, φν

′

)Fg′′,n′′+1(Rq, . . . , Rq, φν′)

where

V = V (ψ′
n′+1, ψ

′′
n′′+1), V (z, w) =

1 − R(w)RT (z)

z + w
.

A similar argument shows that we have

(b′)∗(Zg,n − Zg,n) = e(E ′)(Z ′)(1)
g,n = −(ψn+1 + ψn+2)(Z

′)(1)
g,n

and therefore

(Z ′)(1)
g,n =

N∑

µ,ν=1

Fg,n+2(Rq, . . . , Rq, φµ, φν)(V φ
µ, φν)

Set

Z
(1)

g,n = (b′)∗(Z
′)(1)
g,n +

∑

b

b∗(Z
(1)
g,n) ∈ H∗(Mg,n).

Then the restriction of the cohomology class Zg,n − Zg,n − Z
(1)

g,n to M(1)
g,n is 0

(recall that b∗b∗(z) = e(E) ∧ z), so we can proceed inductively. Now one has
to check that

Zg,n + Z
(1)

g,n + Z
(2)

g,n + . . .

defines a CohFT. Apriori, this theory might be different from Zg,n. The differ-
ence is given by a cohomology class ∆g,n ∈ H∗(Mg,n) such that the restriction

of ∆g,n to M(i)
g,n is 0 for all i ≥ 0. There is no guarantee that ∆ = 0. However,

according to C. Teleman, if two CohFT have the same restriction to Mg,n then
they must coincide.

Let us apply the infinitesimal derivative ∂A to each Z
(k)

g,n. Using that

∂AR = RA and ∂A V (z, w) = −R(w)
A(w) + AT (z)

w + z
RT (z)

we get

∂A Zg,n(q, . . . ,q) = nFg,n(RAq, Rq, . . . , Rq) =
∑

(Akql, φ
a)

∂

∂qak+l
Zg,n(q, . . . ,q).
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The infinitesimal derivative ∂A Z
(1)
g,n(q, . . . ,q) is the sum of

∑
(Akql, φ

a)
∂

∂qak+l
Z(1)
g,n(q, . . . ,q),

and infitesimal deformations corresponding two boundary morphisms. The
later are devided into two types – that do not change genus and that do.
Contributions from the first type look this way (the sum is over repeating
indices)

−
∑

b∗

(
Fg′,n′+1(Rq, . . . , Rq, φµ)Fg′′,n′′+1(Rq, . . . , Rq, φν)(ψ

′′
n′′+1)

k(ψ′
n′+1)

l ×

(R(ψ′′
n′′+1)aklR

T (ψ′
n′+1)φ

µ, φν)
)
,

where
A(w) + AT (z)

w + z
=

∞∑

k,l=0

aklw
kzl ⇒ akl = (−1)lAk+l+1.

The above expression is simplified as follows. Combine the second line with
the Fg′′,n′′+1-term and sum over ν. We get

Zg′′,n′′+1(q, . . . ,q, aklR
T (ψ′

n′+1)φ
µ) =

N∑

ν=1

(φµ, R(ψ′
n′+1)φν)Zg′′,n′′+1(q, . . . ,q, aklφ

ν)

It follows that the infinitesimal contribution is

−
∑

b∗

(
Zg′,n′+1(q, . . . ,q, φν)Zg′′,n′′+1(q, . . . ,q, φµ)(aklφ

ν , φµ) (ψ′′
n′′+1)

k(ψ′
n′+1)

l
)
.

A similar computation gives us that the infinitesimal contribution from the
boundary terms of the second type is:

−(b′)∗

(
Zg−1,n+2(q, . . . ,q, φµ, φν)(aklφ

ν , φµ) (ψn+2)
k(ψn+1)

l.
)

I have not analyzed the infinitesimal deformations of Z
(k)

g,n for k ≥ 2 yet, but
it should be clear that if we include their contributions as well, we would get
that ∂AZg,n equals

∞∑

k,l=0

N∑

a=1

(Akql, φ
a)

∂

∂qak+l
Zg,n(q, . . . ,q)

−1

2

∑

b

(
n

n′

)
b∗

(
Zg′,n′+1(q, . . . ,q, φν)Zg′′,n′′+1(q, . . . ,q, φµ)(aklφ

ν , φµ) (ψ′′
n′′+1)

k(ψ′
n′+1)

l
)

−1

2
(b′)∗

(
Zg−1,n+2(q, . . . ,q, φµ, φν)(aklφ

ν , φµ) (ψn+2)
k(ψn+1)

l
)
,

where with respect to b the sum is over all boundary morphisms such that the
marked points {1, 2, . . . , n′} and {1, 2, . . . , n′′} correspond to {1, . . . , n′, n′ +
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1, . . . , n′+n′′} (and hence we need the combinatorial factor
(
n
n′

)
). Both factors

of 1/2 comes from the fact that switching

Mg′,n′+1 ×Mg′′,n′′+1 7→ Mg′′,n′′+1 ×Mg′,n′+1

(resp. switching the last two marked points) does not change the image of
b (resp. b′), i.e., b (resp. b′) defines a 2-fold covering of the corresponding
boundary stratum.

Now we are ready to prove the theorem. Let

F =
∑

g,n

~g−1

n!

∫

Mg,n

Zg,n(q, . . . ,q).

Then the formula for the infinitesimal deformation yields

∂AF =

∞∑

k,l=0

N∑

a=1

(Akql, φ
a)

∂

∂qak+l
F − ~

2

∞∑

k,l=0

N∑

µ,ν=1

(aklφ
ν , φµ)

( ∂F
∂qµk

∂F
∂qνl

+
∂2F
∂qµk∂q

ν
l

)
.

It remains only to notice that

Â =
1

2
Ω(Af , f) = −

∞∑

k,l=0

(Akql, pk+l)̂ +

∞∑

k,l=0

(−1)l(Ak+l+1pl, pk) ,̂

where

qk =
N∑

a=1

qakφa and pk =
N∑

a=1

pk,aφ
a.

Recall that ak,l = (−1)lAk+l+1. The Theorem follows. �

Corollary 5.9. Let {Zg,n} be a semi-simple CohFT, whose restriction to Mg,n

is described by the sequence {si}Ni=1 and by the symplectic transformation R(z).
Then

As,R = R̂−1As,Id.

Proof. Write R(z) = eA(z) and set At = As,etA. By the Theorem we have

∂tAt = −ÂAt. Solving this equation for t and using the initial condition
A0 = As,Id proves the Corollary. �
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6. Semi-simple CohFT II

6.1. The quantization operator of Givental. Assume that H is a vector
space equipped with a Frobenius structure. Let •t, t ∈ H be the corresponding
multiplication in TtH , (τ 1, . . . , τN) flat coordinate system on H . We denote
the flat vector fields ∂/∂τa by ∂a. Finally, let E be the corresponding Euler
vector field.

Definition 6.1. The Frobenius structure is called semi-simple if there are local
coordinates, called canonical, {ui}Ni=1 near some point t0 ∈ H such that

∂

∂ui
•t

∂

∂uj
= δij

∂

∂uj
, for all t near t0.

Note that in canonical coordinates, due to the Frobenius property, the flat
pairing takes the form ( ∂

∂ui
,
∂

∂uj

)
= δij

1

∆i
,

where ∆i are some functions, defined in a neighborhood of t and taking only
non-zero values.

The canonical coordinates determine a trivialization of the tangent bundle

Ψ(t) : C
N → TtH, ei 7→

√
∆i∂/∂u

i, 1 ≤ i ≤ N.

Exercise 1. Put A =
∑N

a=1(∂a•)dτa. Prove that Ψ(t)−1AΨ(t) = dU(t), where
U(t) is the diagonal N ×N matrix whose diagonal entries are u1(t), . . . , uN(t).

Consider a formal series of the follwoing type

R(t, z) = 1 +R1(t)z +R2(t)z
2 + . . . , Rk ∈ End(CN).

It is easy to check that the following systems of differential equations

∂a R(t, z) = z−1[∂aU(t), R(t, z)] − Ψ−1 (∂aΨ)R, 1 ≤ a ≤ N(6.1)

z∂z R(t, z) = z−1[R(t, z), U(t)] + V (t)R(t, z), V (t) = Ψ−1(t)µΨ(t),(6.2)

and

∂a ΨReU/z = (∂a•t)ΨReU/z, 1 ≤ a ≤ N

(z∂z + LE)ΨReU/z = µ ΨReU/z,

where µ is the Hodge grading operator, are equivalent.

Theorem 6.2 ([5]). There exists a unique series R(t, z) such that R(t, z)
satisfies the differential equations (6.1) and (6.2). Moreover, the series R is a
symplectic transformation, i.e., R(t,−z)TR(t, z) = 1.

It is easy to chek that the differential equations (6.1) are equivalent to

(6.3) ∂a R̃(t, z) = z−1[∂a•t, R̃(t, z)] − R̃(t, z) ∂aΨ Ψ−1,

where R̃ := Ψ−1RΨ.
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6.2. Deformations of CohFT. Let Zg,n be a semi-simple CohFT. In the
previous lecture we proved that the restriction of Zg,n to Mg,n has the following
form

Zg,n(φa1 , . . . , φan
) =

(
P ge

∑
∞

k=1 skκk , R̃−1(ψ1)φa1 • · · · • R̃−1(ψn)φan

)

where sk ∈ H and R̃ is a symplectic tranformation of H. From now on we will
assume that the flat identity axiom holds, i.e.,

π∗Zg,n(φa1 , . . . , φan
) = Zg,n+1(φa1 , . . . , φan

, 1)

where π : Mg,n+1 → Mg,n is the universal curve. In particular, we have

π∗Zg,n(φa1 , . . . , φan
) = Zg,n+1(φa1, . . . , φan

, 1).

Using that π∗(κk) = κk − ψkn+1 we obtain the following relation:

(6.4) R̃−1(t, z) 1 = e−
∑

∞

k=1 skz
k

.

Given a formal parameter τ ∈ H we set

Zτ,g,n =
∞∑

l=0

1

l!
π∗Zg,n+l(φa1 , . . . , φan

, τ, . . . , τ),

where π is the morphism forgetting the last l marked points and contracting
the unstable components. It is easy to check that Zτ,g,n is a CohFT and there-
fore we have a Frobenius multiplication •τ and a symplectic transformation

R̃(t, z). Moreover, the family of Frobenius multiplications •τ forms a Frobenius
structure. We are going to assume that this Frobenius structure is semi-simple
and assume the same notations Ψ(t), u1, . . . , uN as in the previous subsection.

Proposition 6.3. The operator R̃(t, z) coincides with Givental’s quantization
operator.

Proof. We need to check that R = Ψ−1R̃Ψ satisfies the differential equations
(6.1) and (6.2). We will verify only (6.1) and leave (6.2) as an exercise.

So we need to prove (6.3) or equivalently

∂i(R̃
−1) = z−1[φi•τ , R̃−1] + [φi•, R̃1(τ)]R̃

−1.

Condsider the following diagram

Mg,2 ×M0,3

b- ι∗Mg,3

ι̃ - Mg,3

Mg,2

π̃

?

ι
- Mg,2

π

?
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where π is the universal curve and b is a boundary morphism. By definition

(6.5) ∂i Zτ,g,2(φa, φb) = π∗Zτ,g,3(φa, φb, φi).

The goal now is to compute the restriction of this identity to Mg,2. For the
LHS we have

ι∗∂i Zτ,g,2(φa, φb) = ∂i Zτ,g,2(φa, φb) = ∂i

(
Eτ , (R̃−1

τ (ψ1)φa) •τ (R̃−1
τ (ψ2)φb)

)
,

where Eτ = P ge
∑

∞

k=1 skκk ∈ H∗(Mg,2).
In order to find the restriction of the RHS in (6.5) we set

Zτ,g,3(φa, φb, φi) = α + Zτ,g,3(φa, φb, φi)

where α := Zτ,g,3(φa, φb, φi) − Zτ,g,3(φa, φb, φi) is a cohomology class on Mg,3

supported on the codimension-1 stratum consisting of Riemann surfaces with

at least one nodal point. This implies that (see the formula for Z
(1)

g,3 from the
previous lecture) ι̃ ∗α is a sum of two boundary terms

b∗

((
Eτ , R̃

−1(τ, ψ′
1)φa •τ φµ

) (1 − R̃−1(τ, ψ′
2)
T R̃−1(τ, ψ′′

1)

ψ′
2 + ψ′′

1

φµ, φν
)

(φν , φb •τ φi)
)

and

b∗

((
Eτ , R̃

−1(τ, ψ′
1)φb •τ φµ

) (1 − R̃−1(τ, ψ′
2)
T R̃−1(τ, ψ′′

1 )

ψ′
2 + ψ′′

1

φµ, φν
)

(φν , φa •τ φi)
)
.

Here both boundary morphisms glue the second marked point in Mg,2 with
the 1-st marked point in M0,3. The difference is only in the enumeration of
the marked points after the gluing. Namely, in the first case we obtain nodal
Riemann surfaces such that 2-nd and 3-rd marked points are on the genus-0
component, while in the second one the 1-st and the 3-rd marked points are
on the genus-0 component.

Note that ψ′′
1 = 0 because the moduli space M0,3 is a point. Using that

ι∗ ◦ π∗ = π̃∗ ◦ ι̃ ∗ we get

ι∗(π∗α) =
(
Eτ , (R̃−1(τ, ψ1)φa) •τ

(
1−R̃−1(τ,ψ2)

ψ2
(φb •τ φi)

)
+

+
(

1−R̃−1(τ,ψ1)
ψ1

(φa •τ φi)
)
•τ (R̃−1(τ, ψ2)φb)

)

In order to compute the pushforward via π of
(6.6)

Zτ,g,3(φa, φb, φi) =
(
P ge

∑
∞

k=1 skκk , (R̃−1(τ, ψ1)φa)•τ (R̃−1(τ, ψ2)φb)•τ (R̃−1(τ, ψ3)φi)
)

we have to use the following identities

κk − π∗κk = ψk3
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and

R̃−1(τ, ψj) = R̃−1(τ, ψj) +
R̃−1(τ, ψj) − 1

ψj
[Dj ],

where ψj = π∗ψj , j = 1, 2 and Dj is the divisor in Mg,3 consisting of Riemann
surfaces that have a genus-0 irreducible components that carries only the j-th
and the 3-rd marked points. It is easy to see that the pushforward of (6.6) is

(
P ge

∑
∞

k=1 skκk , (R̃−1(ψ1)φa) •τ (R̃−1(ψ2)φb) •τ
(∑∞

l=1Alφi κi−1

)
+

+
(
R̃−1(ψ1)−1

ψ1
φa

)
•τ (R̃−1(ψ2)φb) •τ φi +

+(R̃−1(ψ1)φa) •τ
(
R̃−1(ψ1)−1

ψ1
φb

)
•τ φi

)
,

where
∞∑

l=0

Alz
l = e

∑
∞

k=1(sk•τ )zk

R̃−1(z).

Combining this formula and the formula for ι∗π∗α we get that the restriction
of the differential equation (6.5) to Mg,2 is

∂i

(
Eτ , (R̃

−1(ψ1)φa) •τ (R̃−1(ψ2)φb)
)

=

(
Eτ , (R̃−1(ψ1)φa) •τ (R̃−1(ψ2)φb) •τ

(∑∞
l=1Alφi κi−1

)
+

+
(
[φi•τ , R̃

−1(ψ1)
ψ1

]φa

)
•τ (R̃−1(ψ2)φb) +

+(R̃−1(ψ1)φa) •τ
(
[φi•τ , R̃

−1(ψ1)
ψ1

]φb

))
,

Now the proposition follows easily. Namely, first set ψ1 = ψ2 = 0. We get

∂i(Eτ , φa •τ φb) =
(
Eτ , φa •τ φb •τ

(∑∞
l=1Alφi κi−1

)
+

+([φi•τ ,−R̃1]φa) •τ φb) +

+φa •τ ([φi•τ ,−R̃1]φb)
)
.

To finish the proof simply put ψ2 = 0 and write the LHS in the following way:

∂i

( N∑

c=1

(Eτ , φc •τ φb)(R̃−1(ψ1)φa, φ
c)
)
.

It remains only to apply the product rule and to use the above formula with
c instead of a. �
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6.3. Removing the κ-classes. Recall that the total ancestor potential is by
definition

As,R̃−1(q) = exp
∑

g,n

~
g−1

n!

∫

Mg,n

Zg,n(q, . . . ,q).

According to Corollary 5.9 we have

As,R̃−1(q) = (R̃)̂As,Id(q).

Our goal now is to compute As,Id(q). When R = Id, the CohFT is given by
the following formulas

Zg,n = (P ge
∑

∞

k=1 skκk ,q • · · · • q).

Put

q(z) =

N∑

i=1

qi(z)
∂

∂ui
, sk =

N∑

i=1

sik
∂

∂ui
.

Note that the propagator is

P =

N∑

i=1

√
∆i∂/∂u

i ⇒ P g =

N∑

i=1

∆g
i ∂/∂u

i.

It follows that

Zg,n(q, . . . ,q) =
N∑

i=1

∆g−1
i e

∑
∞

k=1 s
i
k
κkqi(ψ1) . . .q

i(ψn).

Proposition 6.4. The following formula holds

e
∑

∞

k=1 s
i
k
κk = 1 +

∞∑

k=1

1

k!
π∗

( k∏

j=1

(1 − e−
∑

∞

a=1 s
i
aψ

a
n+j )ψn+j

)
.

The proof of this proposition is a direct consequence from the results in [9].
Namely, the authors derived a formula expressing any polynomial expression
in κ classes in terms of pushforward of a polynomial expression in ψ-classes.

Put
ti(z) = (1 − e−

∑
∞

a=1 s
i
az

a

)z ∈ z2H [z].

Then we have
∫

Mg,n

Zg,n(q, . . . ,q) =
N∑

i=1

∆g−1
i

1

k!

∫

Mg,n+k

qi(ψ1) . . .q
i(ψn)t

i(ψn+1) . . . t
i(ψn+k).

Note that in order to derive this formula we have to use that for each i,
1 ≤ i ≤ n, the difference ψi − π∗ψi is anihilated by ψn+1. Therefore, since
ti(ψn+1) is divisible by ψn+1, we can replace π∗(ψi) with ψi without changing
the value of the integral.
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From here we get that

As,Id(q) =
N∏

i=1

Dpt(∆i~,q
i(z) + ti(z)),

where
N∑

i=1

ti(z)
∂

∂ui
= (1 − e−

∑
∞

k=1 skz
k

)z = (1 − R̃−1(z) 1)z = z − R̃−1(z) z.

Here the second equality follows from the flat identity axiom (see (6.4)).

Lemma 6.5. Assume that a(z) ∈ H [z] is an arbitrary vector. Let TaF(q) =
F(q + a) be the translation operator. Then

Ta R̂ = R̂ TR−1a.

The proof of this lemma is left as an exercise. From here we get

As,R̃−1(q(z) + z) = Tz As,R̃−1(q(z)) = Tz (R̃)̂As,Id(q(z)) = (R̃)̂TR̃−1z As,Id.

Note that

R̃−1z =
N∑

i=1

(z − ti(z))
∂

∂ui
.

Therefore,

TR̃−1z As,Id(q(z)) =
N∏

i=1

Dpt(
√

∆i~;qi(z) + z).

6.4. Givental’s formula. Cohomological field theories arise in Gromov–Witten
theory in the following way. Let X be a projective manifold. Then we define

Zτ,g,n(a1, . . . , an) =

∞∑

l=0

∑

d∈MC(X)

1

l!
Qdπ∗(ev

∗(a1 ⊗ . . .⊗ an ⊗ τ⊗l),

where π : Xg,n+l,d → Mg,n is the map that forgets the stable map and the last
l marked points and conttracts the unstable components. It is straightforward
to check that this is a CohFT. Moreover, the total ancestor potential of the
CohFT coincides with the total ancestor potential of the manifold X. There-
fore, we have the following formula, which was conjectured by Givental (see
[5])

Theorem 6.6. Assume that the quantum cohomology is semi-simple. Then

DX(q) = eF
(1)(τ)Ŝ(τ, z)−1 (R̃(τ, z))̂

N∏

i=1

Dpt(
√

∆i~;qi),

where the generating functions are identified with elements of the Fock space
via the dilaton shift.
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7. Singularity theory

Givental’s formula makes sense for any semi-simple Frobenius manifold. It
is known that this formula is always a highest weight vector for the Virasoro
algebra. One of the main open questions is whether one can associate an
integrable hierarchy with any semi-simple Frobenius manifold. If yes then is
it true that Givental’s formula is a tau-function.

In the remaining lectures, we will address this question in the settings of
singularity theory. In particular, we will describe completely the case of simple
singularities.

7.1. Frobenius structures. Let f : (C2l+1, 0) → (C, 0) be the germ of a
holomorphic function with an isolated critical point at 0.

Definition 7.1. The family of holomorphic functions

F : S × C
2l+1 → C,

where S ⊂ CN is a small ball with center the origin, is called a miniversal
deformation of f if

(1) F (0, x) = f(x) for all x ∈ C
2l+1.

(2) The partial derivatives

∂F

∂ti
(0, x), 1 ≤ i ≤ N

represent a basis in the local algebra

H := C[[x0, . . . , x2l]]/〈∂x0f, . . . , ∂x2l
f〉.

A miniversal deformation always exists: it is enough to pick F = f + t1g1 +
· · ·+ tNgN where {gi}Ni=1 represents a basis in the local algebra H .

In what follows we denote by Bn
r the ball in C

n with center 0 and radius r.
We pick ρ > 0 so small that the fiber f−1(0) interesects the boundary of B2l+1

r

transversely for every 0 < r ≤ ρ. Given t ∈ S we denote by ft = F |{t}×C2l+1 .

Choose δ and S so small that f−1
t (λ) intersects transversely the boundary of

B2l+1
ρ for all (t, λ) ∈ S ×B1

δ .
Let

V =
{

(t, x) ∈ S × B2l+1
ρ | F (t, x) ∈ B1

δ

}
.

The map

∂/∂ti 7→ ∂F

∂ti
mod

( ∂F
∂x0

, . . . ,
∂F

∂x2l

)

gives an isomorphism between sheaves

(7.1) TS ∼= p∗OV /
〈 ∂F
∂x0

, . . . ,
∂F

∂x2l

〉
,
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where p : V → S is induced from the projection S × B2l+1 → S. Using this
isomorphism we equip each tangent space TtS with a multiplication •t.

Given a holomorphic volume form

ω = g(t, x)dx0 ∧ · · · ∧ dx2l, g(t, 0) 6= 0,

we introduce the following residue pairing

(∂/∂ti, ∂/∂tj)t =
1

(2πi)2l+1

∫

|∂xF |=ǫ

∂tiFg(t, x)∂tjFg(t, x)

∂x0F . . . ∂x2lF
dx0 ∧ · · · ∧ dx2l.

It is independent of the choice of the coordinate system (x0, . . . , x2l) (see [8]).
We introduce the oscillating integral

(7.2) (JB(t, z), ∂/∂ti) = (−2πz)−l−
1
2 (z∂ti)

∫

B
eF (t,x)/zω

where the integration cycle B is an element of the homology group

lim
M→∞

H2l+1(C
2l+1,Re(ft/z) < −M ; C).

We view JB as a section of the cotangent bundle which via the residue pairing
is identified with the tangent bundle.

Theorem 7.2 (K. Saito, M. Saito). There exists a volume form ω such that
the oscillating integral satisfies the following system of differential equations:

z∇L.C.
∂/∂tiJB = ∂ti •t JB, 1 ≤ i ≤ N(7.3)

(z∂z + ∇L.C.
E )JB = µJB(7.4)

Here E is the vector field which under the identification (7.1) corresponds
to the function F . The last equation expresses homogeneity properties of the
oscillating integral.

It follows that the residue pairing is flat. We denote by (τ 1, . . . , τN) a flat
coordinate system on S and set ∂a := ∂/∂τa. It can be proved that in an
appropriately chosen flat coordinate system, the Euler vector field has the
form

E =

N∑

a=1

(1 − da)τ
a∂a +

N∑

a=1

ra∂a,

where the degree spectrum da is in the interval [0, D] (the minimal degree is 0
and the maximal one is D). In this case the Hodge grading operator is

µ(∂a) = (D/2 − da)∂a, 1 ≤ a ≤ N.

Theorem 7.3 (Hertling). The residue metric, the multiplication •t, and the
Euler vector field form a Frobenius strcture on S of conformal dimension D.
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Proposition 7.4. If t ∈ S is a sufficiently generic point then the critical
values ui(t), 1 ≤ i ≤ N form a canonical coordinate system, i.e.,

∂/∂ui • ∂/∂uj = δij∂/∂u
j , (∂/∂ui, ∂/∂uj) = δij/∆i.

Proof. Let t ∈ S be such that ft is a Morse function and its critical values
ui(t) form a coordinate system. By definition

(∂/∂ui, ∂/∂uj) =
1

(2πi)2l+1

∫

|∂xF |=ǫ

∂ui
Fg(t, x)∂uj

Fg(t, x)

F ′
x0
. . . F ′

x2l

dx0 ∧ · · · ∧ dx2l.

The residue on the RHS equals sum of the residues at the critical points ξk
(1 ≤ k ≤ N) of ft. Let y0, . . . , y2l be a Morse coordinate system near x = ξk,
i.e.,

ft = uk +
1

2
(y2

0 + · · · + y2
2l).

We get
∂uift = δik +O(y) and ∂ujft = δjk +O(y).

On the other hand the residue pairing is independent of the choice of coordinate
system. Therefore, we can compute the residue at x = ξk by switching to the
Morse coordinates. It follows that the residue at x = ξk equals

1

(2πi)2l+1

∫

|y|=ǫ

δikδjka
2
k +O(y)

y0 . . . y2l

dy0 ∧ · · · ∧ dy2l = δikδjka
2
k,

where ak = g(t, ξk). This implies that

(∂/∂ui, ∂/∂uj) =
N∑

k=1

δikδjka
2
k = δija

2
i .

By definition

(∂/∂ui•∂/∂uj , ∂/∂uk) =
1

(2πi)2l+1

∫

|∂xF |=ǫ

∂ui
F∂uj

Fg(t, x)∂uk
Fg(t, x)

F ′
x0
. . . F ′

x2l

dx0∧· · ·∧dx2l.

Choosing Morse coordinates y0, . . . , y2l near the critical point x = ξm we get
that the residue at ξm is

δimδjmδkma
2
m,

so

(∂/∂ui • ∂/∂uj , ∂/∂uk) =

N∑

m=1

δimδjmδkma
2
m = δij(∂/∂u

i, ∂/∂uk).

�

Note that in particular we proved the following fact. Let t be a generic point
such that the critical values {ui}Ni=1 form a coordinate system. Let ξi be the
critical point of ft corresponding to the critical value ui, then

(7.5) ∆i = (g(t, ξi))
2.
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7.2. The Milnor fibration. Put Vt,λ := f−1
t (λ) ∩ B2l+1

ρ . According to our
choices of S, ρ, and δ, the boundaries of Vt,λ are smooth manifolds. They form
a smooth fibration over S × B1

δ , which must be trivial, because S × B1
δ is

contractible.
Let Σ ⊂ S×B1

δ be the set of all pairs (t, λ) such that the fiber Vt,λ is singular,
i.e., λ is a critical value of ft. The collection of all fibers

⋃ {
Vt,λ | (t, λ) ∈ S ×B1

δ − Σ
}

forms a smooth fibration over S ×B1
δ − Σ called the Milnor fibration.

Now we would like to describe the so called vanishing cycles. Let t be a
generic point, such that the function ft has N different Morse type critical
points. Let

c : [0, 1] → S ×B1
δ − Σ, c(0) = (0, 1), c(1) = (t, u(t)) ∈ Σ

be a path. Here u(t) = ft(ξ) is a critical value of ft. We assume that c(s) =
(t, λ(s)) for s sufficiently close to 1. Near the point x = ξ we pick a Morse
coordinate system (y0, . . . , y2l), so that the function ft takes the form:

ft = u+
1

2
(y2

0 + · · ·+ y2
2l).

Set yk = (qk +
√
−1pk)

√
2(λ− u). Then the equation

y2
0 + · · ·+ y2

2l = 2(λ− ui)

is equivalent to

(7.6)

2l∑

k=0

q2
k − p2

k = 1, and

2l∑

k=0

qkpk = 0.

On the other hand the map

(q, p) 7→
( q

1 +
∑

k p
2
k

, p
)

identifies (7.6) with the tangent bundle TS2l of the unit sphere. In other words
for each s sufficiently close to 1, we obtain a map

b(s) : D(TS2l) → Vci(s),

where D(TS2l) is a disk bundle associated to the tangent bundle. Note that
b(1) is a constant map – it contracts the disk bundle to a point. Using the
homotopy lifting property, we obtain a map

b(s) : D(TS2l) → Vc(s), for all s ∈ [0, 1].

The cycle b(0)[S2l] ∈ H2l(V0,1; Z) is called vanishing cycle.
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Proposition 7.5. Let t ∈ S be a generic point and ci(s), 1 ≤ i ≤ N is a set
of paths starting at (0, 1) and terminating at the points (t, ui(t)), where ui are
the critical values of ft. Then the homology group H2l(V0,1; Z) is spanned over
Z by the corresponding vanishing cycles.

Given a loop γ ∈ π1(S × B1
δ − Σ) based at (t, λ) we obtain (using the

homotopy lifting property) a map

hγ : Vt,λ → Vt,λ, hγ |∂Vt,λ
= Id.

The map hγ is unique up to homotopy and it is called geometric monodromy.
We have an induced map hγ∗ on homology and cohomology and the set of
all such transformations forms a group called the monodromy group of the
singularity.

Let γ be a path starting form (0, 1), avoiding the discriminant and ter-
minating at a generic point on the discriminant. Let β ∈ H2l(V0,1; Z) be a
corresponding vanishing cycle.

Lemma 7.6. The self-intersection index β ◦ β is (−1)l2.

Proof. Indeed β is the zero section of the tangent bundle TS2l which is known
to have self-intersection index equal to the Euler characteristic of the sphere
S2l which is 2. The sign (−1)l comes from the difference in the orienta-
tions. Namely, the local coordinates on Vt,λ are given by y1, . . . , y2l, i.e.,
q1, p1, . . . , q2l, p2l, while the local coordinates on TS2l are q1, . . . , q2l, p1, . . . , p2l.

�

Let

(α|β) = (−1)l(α ◦ β), α, β ∈ H2l(V0,1; C)

be the intersection form normalized by a sign, so that the self-intersection of a
vanishing cycle is 2. Slightly abusing the notations, we denote by γ the path
that coincides with γ except that at the end isntead of approaching a point on
the discriminant, it makes a small loop around it.

Proposition 7.7 (Picard-Lefschetz formula). The following formula holds

hγ∗(x) = x− (α|x)α, x ∈ H2l(V0,1; C).

Definition 7.8. We say that the singularity is simple of type XN , X = ADE
if the vansihing cycles and the intersection form ( | ) form a root system of
type XN .

For more details and for the proves of the Propositions in this section we
refer to the book [1].
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7.3. The Leray periods. Let α ∈ H2l(V0,1; C) be a middle homology cycle.
We denote by αt,λ ∈ H2l(Vt,λ; C) the cycle obtained from α via a parallel trans-
port along some path connecting (0, 1) and (t, λ). Let d−1ω be any holomorphic
2l-form on C2l+1 (possibly depending on t) whose De Rham differential is the
primitive form ω. For each k ∈ Z we associate the following period vector:

(7.7) (I(k)
α (t, λ), ∂a) = (2π)−l (−∂a) (∂λ)

k+l

∫

αt,λ

d−1ω, 1 ≤ a ≤ N.

This definition is consistent with the operation of stabilization of the singular-
ity. Namely, the following lemma holds

Lemma 7.9. Let f̃ = f + 1
2
(y2

1 + y2
2), ω̃ = ω ∧ dy1 ∧ dy2. Then

∫

αt,λ

d−1ω = (2π)−1∂λ

∫

α̃t,λ

d−1ω̃

Proof. Note that f̃t := ft + 1
2
(y2

1 + y2
2) is a miniversal deformation of ft. Let

Uλ = {(y1, y2) | y2
1 + y2

2 = 2λ} be the fibers of the Milnor fibration for the A1

singularity. It is known (see [1]) that the Milnor fiber

Ṽt,λ := f̃−1
t (λ) ∩B2(l+1)+1

ρ̃

is homotopic to the joint

Vt,λ ∗ Uλ = Vt,λ × [0, 1] × Uλ/ ∼,
where the equivalence relation is

(x, 0, y) ∼ (x′, 0, y), (x, 1, y) ∼ (x, 1, y′), for all x, x′ ∈ Vt,λ, y, y
′ ∈ Uλ.

In fact a map g : Vt,λ ∗ Uλ → Ṽt,λ that induces a homotopy equivalence can be
constructed as follows. First, since Vt,λ ≃ V0,λ we may assume that t = 0. Fix
a path c : [0, 1] → B1

δ connecting 0 and λ. There exists a continuous family of
continuous maps

hs : V0,λ → V0, c(s), s.t., h0(V0,λ) = 0 ∈ C
2l+1, h1 = Id.

Put

g(x, s, y) = (hs(x), (2 − 2c(s)/λ)1/2y).

By definition the vanishing cycle ϕ ∈ H1(Uλ; Z) is given by the following
equations:

ϕ = {(
√

2λy1,
√

2λy2) | y2
1 + y2

2 = 1, y1, y2 ∈ R}.
Therefore, the vanishing cycle α̃ = α ∗ ϕ is the union of

α0,c(s) × (
√
λ− c(s) y1,

√
λ− c(s) y2) , 0 ≤ s ≤ 1.
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We have
∫

α̃0,c(s)

y1dy2 ∧ ω =

∫ 1

0

2(λ− c(s))

∫

S1

y1dy2

∫

α0,c(s)

ω ds.

The integral
∫
S1 y1dy2 = π. Note that the union of all α0,c(s), 0 ≤ s ≤ 1 is a

relative homology cycle L ∈ H2l(V, V0,λ; Z). Therefore we get

2

∫ 1

0

(λ− c(s))

∫

α0,c(s)

ω ds = 2

∫

L

(λ− f(x))ω = 2

∫

α0,λ

d−1((λ− f(x))ω),

where for the last equality we used the Stoke’s theorem. The derivative with
respect to λ of this integral is

2

∫

α0,λ

(λ− f(x))
ω

df
+ 2

∫

α0,λ

d−1ω = 2

∫

α0,λ

d−1ω.

The lemma follows. �

From this lemma we get that in the definition (7.7) of the period vectors we
can take l as large as we wish. In particular, the period vectors can be defined
unambiguously for all negative values of k.

7.4. Stationary phase asymptotic. Let t ∈ S be a generic value such that
ft is a Morse function and its critical values {ui(t)} form a canonical coordinate
system. Let Bi be the cycle in C2l+1 swept by the flat family of cycles βi(t, λ) ∈
H2l(Vt,λ; Z) parametrized by the points λ of a semi-infinite path C in C starting
at the critical value ui(t) and such that Re(λ/z) → −∞ when λ → ∞ along
C. Assume also that when λ is close to ui(t) then the cycle βi coincides with
the vanishing cycle corresponding to the generic point (t, ui(t)) ∈ Σ.

Lemma 7.10. The oscillating integral (7.2) is a Laplace transform of the
period vectors, i.e.,

JBi
(t, z) =

1√
−2πz

∫ ∞

ui

eλ/zI
(0)
βi

(t, λ) dλ.

The proof here is straightforward and it is left as an exercise.

Lemma 7.11. Assume that λ is close to the critical value ui(t) then

I
(0)
βi

(t, λ) =
2√

2(λ− ui)

(√
∆i

∂

∂ui
+

∞∑

k=1

Aik(t)(2(λ− ui))k
)
.

Proof. By definition

(I
(0)
βi

(t, λ), ∂a) = (2π)−l(−∂a)∂lλ
∫

βi

1√
∆i

y0dy1 ∧ · · · ∧ dy2l + . . . ,
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where (y0, . . . , y2l) is a Morse coordinate system for ft and the dots stand for
higher order terms in y. Here the leading term in the integrand on the RHS
was determined in (7.5). Using that the vanishing cycle is

βi = {
√

2(λ− ui)(y0, . . . , y2l) | y2
0 + . . . y2

2l = 1, yi ∈ R }

we get (we ignore the higher order terms)

(7.8) (2π)−l(−∂a)∂lλ
1√
∆i

(2(λ− ui))l+1/2

∫

S2l

y0dy1 . . . dy2l.

Using Stokes theorem we get that the above integral equals the volume of the
unit ball, i.e.,

∫

S2l

y0dy1 . . . dy2l =
πl

(l + 1/2) . . . (1/2)
.

It follows that the lowest degree term in (7.8) is

(2(λ− ui))−1/2 ∂au
i 2√

∆i

.

The lemma follows because dui/
√

∆i =
√

∆i ∂/∂u
i. �

Recall that Givental’s quantization operator

R̃(t, z) = 1 + R̃1(t)z + R̃2(t)z
2 + . . . , R̃k ∈ End(H)

is defined as R̃ = ΨRΨ−1, where to define R we have to take a formal asymp-
totical solution ΨReU/z that satisfies the differential equations (7.3) and (7.4).
The differential equations uniquely determine R. Let us introduce the linear
operators

Ak(t) : H → H, Ak(t)
√

∆i ∂/∂u
i = Aik(t),

where Aik(t) are the vector coefficients that appear in the expansion in Lemma
7.11.

Proposition 7.12. We have R̃k = (2k − 1)!! (−1)k Ak.

Proof. Using the previous two lemmas we get

JBi
(t, z) ∼ 2√

−2πz

∞∑

k=0

∫ ∞

ui

eλ/zAk(2(λ− ui))k−1/2
√

∆i ∂/∂u
i

Changing the variables

(λ− ui)/z = −t2/z, dλ = −ztdt,
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we get that JBi
is asymptotic to

2√
−2πz

eu
i/z

∞∑

k=0

(−z)k+1/2

∫ ∞

0

e−t
2/2t2kdt Ak

√
∆i ∂/∂u

i =

eu
i/z

∞∑

k=0

(2k − 1)!!(−z)kAk
√

∆i ∂/∂u
i.

By definition Ψ(t)ei =
√

∆i ∂/∂u
i. It follows that

Rk = (2k − 1)!!(−1)k Ψ−1AkΨ.

�
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8. Vertex operators
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