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Abstract. The notion of a primitive form was introduced in the 80’s in order to de-

fine a period map in singularity theory similar to the classical period map for Riemann

surfaces. A decade later, it was discovered that the primitive form plays an impor-
tant role in the formulation of mirror symmetry. Moreover, the period integrals of

the primitive forms found several interesting applications for constructing integrable

hierarchies in the form of Hirota Bilinear Equations. This book is an introduction to
the theory of primitive forms and its applications to integrable hierarchies. The first

part of the book is written more abstractly using the general framework of semi-simple
Frobenius manifolds. We introduce a certain set of vertex operators and propagators

and establish their general properties. The main result of the book is in chapter 3

where the analytic properties of the propagators are established. The second part
of the book is an introduction to the theory of primitive forms. Strictly speaking,

we have extended the original framework having in mind the applications to mirror

symmetry. Semi-simple Frobenius structures appear quite naturally in the theory
of primitive forms and the vertex operators have a clear geometric significance, i.e.,

their coefficients are period integrals of vanishing cycles. The last chapter is an ex-

ample of how the constructions from the previous chapters work in the case of simple
singularities.

The book could be of interest to people working in Gromov–Witten theory, de-

formations of complex structures and singularity theory, vertex operator algebras and
integrable hierarchies. We have tried to keep the exposition as elementary as possible

and to make the text accessible to graduate students and young researchers.
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Preface

The notion of a primitive form was introduced by one of the authors in the early 80’s
(see [53]) in order to define a period map in singularity theory similar to the classical
period map for Riemann surfaces. To give some idea of the definition, let us consider
a triple (π : Y → B, f, ω) consisting of a family π : Y → B of complex manifolds, a
holomorphic functions f : Y → C and a holomorphic volume form ω on Y relative to B.
If ω is a primitive form then the oscillatory integrals

∫
ef/zω provide a solution to a certain

family of flat connections on the tangent bundle TB. The flat connection can be described
in terms of the residue pairing and the local algebra of f . In particular, the existence of
a primitive form implies that the base B of the family caries a special structure which
was called by Saito flat structure. A decade later, in the early 90’s, the theory proposed
by Saito had an important application to the so-called mirror symmetry phenomenon.
The later has its origin in string theory as a duality between certain classes of Quantum
Field Theories. Mathematically, the predictions coming from mirror symmetry are quite
striking. Namely, there is a duality between symplectic and complex geometry. Giving
a precise mathematical statement of mirror symmetry is not easy. There are several
proposals which motivated many developments in both symplectic and complex geometry.
It was Givental who noticed that the flat structure of Saito plays an important role in
the formulation of mirror symmetry. Let us briefly explain the connection. Suppose that
we have a compact Kähler manifold X. Let Mg,n(X, d) be the moduli space of stable
maps from a genus-g nodal Riemann surface equipped with n marked points to X, such
that, the image of the fundamental class of the Riemann surface has a fixed homology
class d ∈ H2(X,Z). Such moduli spaces were proposed by Witten [64] in order to give
a mathematical definition of the correlation functions in the so-called topological string
model. Mathematically, the correlation functions are symplectic invariants of X that are
now known as the Gromov–Witten (GW) invariants of X. The genus-0 GW invariants of
X can be used to define a deformation of the classical cup product known as the quantum
cup product. The cohomology vector space H∗(X,C) equipped with the quantum cup
product is known as the quantum cohomology of X. It was Dubrovin who was able to
give a geometric formulation of the properties of quantum cohomology. He introduced the
notion of a Frobenius manifold which turns out to be an important object not only in GW
theory but also in complex geometry and in the theory of integrable systems. It turns out
that the flat structure of Saito is an example of a Frobenius manifold. Givental’s proposal
for mirror symmetry is that the Frobenius structure underlying quantum cohomology is
isomorphic to the flat structure of Saito associated to an appropriate family of functions
and an appropriate primitive form. Making Givental’s proposal a precise mathematical
conjecture requires a little bit more work. Namely, the original definition of a primitive
form is in the settings of singularity theory where the manifold Y is a germ of a complex

vii
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manifold, while in most examples of mirror symmetry Y is a global complex manifold.
Therefore, the question is what are the most general settings in which the theory of
primitive forms makes sense. This question is partially addressed in chapter 4 of this
book. We gave a precise definition for a family of functions, introduced Gauss-Manin
connection and higher residue pairing. Although we can define a primitive form, proving
its existence in such a generality is quite difficult.

The applications to mirror symmetry will not be pursued in this book. We would like
to focus instead on the applications to integrable systems. Let us point out that at the
time when the primitive form was invented M. Sato and his students were investigating
an approach to the Kadomtsev–Petviashvili (KP) equation based on ideas from quantum
field theory. Sato was able to prove that the solutions of the KP hierarchy are naturally
parameterized by the points of an infinite Grassmannian which is now known as the Sato
Grassmannian (see [56]). The Plücker relations describing the embedding of the Grass-
mannian in an infinite dimensional Fock space can be identified with an infinite system of
PDEs known as the Hirota Bilinear Equations (HBEs). The HBEs are given by certain
quadratic polynomials in the partial derivatives and for that reason they are also some-
times called Hirota Quadratic Equations (HQEs). On the other hand, the definition of
the primitive form involves an infinite system of quadratic relations. Already in the early
80’s there was a question whether the primitive form and the HQEs are closely related.
The first evidence for such a relation is the conjecture of Witten proved by Kontsevich
which says that the generating function of the GW invariants of a point is a tau-function
(a solution to the HQEs) of the KdV hierarchy. The mirror partner of the point is the
A1-singularity, so this is the first example for which the answer is yes. The next important
evidence comes from the work of Givental. Let us point out that the Frobenius manifolds
that come from the flat structure of Saito are always generically semi-simple because
the critical values of f provide local coordinates in which the Frobenius multiplication
is semi-simple. Motivated by several computations with fixed-point localization Givental
conjectured (see [19]) and Teleman proved (see [60]) that if the quantum cohomology
of X is semi-simple, then the higher genus GW invariants are uniquely determined from
the Frobenius structure. More precisely, Givental has invented a certain quantization
formalism that allows us to construct a formal function for any semi-simple Frobenius
manifold. This formal function is called the total descendant potential of the Frobenius
manifold. It is obtained from the product of several copies of the total descendant poten-
tial of a point by the action of a quantized symplectic transformation. Therefore, there
is a natural project to construct HQEs for the total descendant potential of any semi-
simple Frobenius manifold by using several copies of the HQEs for the KdV hierarchy and
the quantized symplectic transformation of Givental. Let us try to give several evidence
in favor of this project. First of all, if we conjugate the vertex operators of KdV with
Givental’s quantized symplectic transformation we obtain a vertex operator that has a
very elegant interpretation (see [22]): the coefficients of the vertex operator are period
integrals. In the case of simple singularities (see [24]) and Fano orbifold lines (see [47])
the HQEs of the total descendant potential exist and they can be identified either with
the HQEs of a Kac–Wakimoto hierarchy or an extended Kac–Wakimoto hierarchy. The
main feature of the works [24, 47] is that there was a natural candidate for the HQEs.
There was no need to construct HQEs but only to check that they hold. The main
difficulty in the proof comes from the so-called propagators. The latter are certain multi-
valued functions arising when we consider the product of two vertex operators. These
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propagators appear naturally when we start conjugating vertex operators by quantized
symplectic transformations. The proofs in both [24] and [47] amount to establishing cer-
tain identities between the propagators. More precisely, one has to understand how the
propagators behave under the analytic continuation along a closed loop and along a path
approaching the discriminant. It turns out that these two kinds of analytic continuations
of the propagators can be described in general in the settings of all semi-simple Frobenius
manifolds. This is exactly one of the main goals of this book. The corresponding results
are contained in chapter 3. Our expectation is that if one has a conjecture saying that
the total descendant potential of a semi-simple Frobenius manifold satisfies HQEs, then
the techniques developed in chapter 3 should be sufficient to prove this conjecture. Let
us point out that the work [24] did not make use of propagators. The importance of the
latter was discovered in [16]. In chapter 6 we will give an alternative proof of the main
result in [24] by demonstrating how the techniques from chapter 3 work.

The main question that remains to be addressed is whether the HQEs exist. There
is a very interesting observation which might provide an answer to this question. The
idea comes from the work of Bakalov–Milanov [8]. It can be explained using the language
of lattice vertex algebras (see [38] for some background). For simplicity, let us consider
the case when the Frobenius structure comes from Saito’s flat structure. Let us consider
the lattice vertex algebra VΛ corresponding to the Milnor lattice Λ. Following Bakalov–
Milanov we can construct a twisted representation of VΛ on the Fock space to which the
total descendant potential belongs, such that, the state eα ∈ VΛ, where α ∈ Λ, is mapped
to the vertex operator corresponding to the periods of the cycle α. This representation
induces a representation of VΛ⊗ VΛ on the tensor square of the Fock space. In all known
examples the HQEs represent a state Hir ∈ VΛ ⊗ VΛ satisfying the screening equations
(eα(0)⊗1+1⊗eα(0)) Hir = 0 for all vanishing cycles α. Let us point out that most probably

we have to complete VΛ ⊗ VΛ appropriately in order to have a chance that such a state
Hir exist. Therefore, the existence of the HQEs for the total descendant potential of a
semi-simple Frobenius manifold seems to be a problem in the theory of lattice vertex
algebras, that is, it is a problem independent from the theory of semi-simple Frobenius
manifolds and its solution requires new ideas.

Let us comment on the structure of this book. We have tried to write a self-contained
pedagogical text accessible to graduate students. In general, we omitted the proofs only
of results which can be found in standard textbooks, such as, [7, 45] in commutative
algebra, [62] in homological algebra, [25, 28, 63] in complex geometry. Chapter 1 is
an introduction to Givental’s higher genus reconstruction. We introduce the necessary
background of Frobenius manifolds and semi-simple Frobenius manifolds. Only Section
1.2 requires a deeper understanding of complex geometry. The rest of the chapter should
be easy to follow. Chapter 2 can be viewed as an introduction to the analytic theory of
Ordinary Differential Equations (ODEs). The first goal in this chapter is to prove the
Painleve property for the Schlesinger equations. This result is due to Malgrange and one
of the pedagogical goals of this books is to make the result accessible to a wider audience.
The original proof requires specialized knowledge of functional analysis. On the other
hand, Bolibruch outlined an elementary proof of Malgrange’s result in his book [10].
We filled in the missing details and hence obtained an elementary self-contained proof
of Malgrange’s result. This allows us to prove the Painleve property for all semi-simple
Frobenius manifolds which will be used later on in an essential way in chapter 3. The
content of chapter 3 was already mentioned above. We introduce vertex operators and
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their propagators and establish their properties. This chapter contains the main tools
that are needed in order to prove that the total descendant potential satisfies HQEs. In
some sense the results of this chapter are one of the main motivations for writing this
book. The next two chapters can be viewed as an introduction to the theory of primitive
forms. In chapter 4 we developed the theory in quite general settings. Following ideas
of Iritani, we also introduced certain families of functions for which one can apply Morse
theory. We have to admit that proving the existence of a primitive form in such general
settings is quite challenging. In chapter 5 we specialize the theory from chapter 4 to the
case of weighted homogeneous singularities. We prove the existence of a primitive form
and classify all Frobenius (or flat) structures that arise from opposite subspaces. Many
of the concepts introduced in chapters 3 and 4 have a very elegant interpretation in the
settings of singularity theory. Chapter 5 provides a huge class of examples of semi-simple
Frobenius manifolds that are expected to be very important in the applications to mirror
symmetry and integrable systems. The last chapter is an example of how the techniques
developed in chapter 3 work in the settings of simple singularities.



CHAPTER 1

Semi-simple Frobenius manifolds

1.1. Frobenius manifolds

The main goal of this section is to recall the notion of a semi-simple Frobenius man-
ifold and to prove that semi-simple Frobenius manifolds can be classified by solutions of
a certain system of PDEs. The general references for more details are [12, 31, 44].

1.1.1. Definition. There are several ways to introduce the notion of a Frobenius
manifold. Our definition is equivalent to (Definition 1.2 in [12]). Let M be a complex
manifold and TM denotes the sheaf of holomorphic vector fields on M . Let us assume
that M is equipped with the following structures

(a) Each tangent space TtM , t ∈ M , is equipped with the structure of a Frobenius
algebra depending holomorphically on t. In other words, we have a commutative
associatve multiplication •t and symmetric non-degenerate bi-linear pairing ( , )t
satisfying the Frobenius property

(v1 •t w, v2) = (v1, w •t v2), v1, v2, w ∈ TtM.

The pointwise multplication •t defines a multiplication • in TM , i.e., a OM -
bilinear map

TM ⊗ TM → TM , v1 ⊗ v2 7→ v1 • v2.

The pairing ( , )t determine a OM -bilinear pairing

( , ) : TM ⊗ TM → OM .

(b) There exists a global vector field e ∈ TM , called unit vector field, such that

∇L.C.
v e = 0, e • v = v, ∀v ∈ TM ,

where ∇L.C. is the Levi–Civita connection on TM corresponding to the bi-linear
pairing ( , ).

(c) There exists a global vector field E ∈ TM , called Euler vector field, such that

E(v1, v2)− ([E, v1], v2)− (v1, [E, v2]) = (2−D)(v1, v2),

for all v1, v2 ∈ TM and for some constant D ∈ C.

The above data allows us to define the so-called structure connection or Dubrovin’s con-
nection ∇ on the vector bundle TM × C∗ →M × C∗. Namely,

∇v := ∇L.C.
v − z−1v•, v ∈ TM

∇∂/∂z :=
∂

∂z
− z−1θ + z−2E•,

1



2 1. SEMI-SIMPLE FROBENIUS MANIFOLDS

v• and E• are OM -linear maps TM → TM corresponding to the Frobenius multiplication
by respectively v and E. The OM -linear map θ : TM → TM is defined by

(1.1) θ(v) := ∇L.C.
v E − (1−D/2)v.

The operator θ is sometimes called grading operator. Let us point out that the term
(1 − D/2)v in the definition of θ(v) is inserted so that θ becomes skew-symmetric with
respect to the Frobenius pairing

(θ(v1), v2) + (v1, θ(v2)) = 0, v1, v2 ∈ TM .

Definition 1.1. The data (( , ), •, e, E) satisfying conditions (a), (b), and (c) from
above is said to be a Frobenius structure on M of conformal dimension D if the structure
connection ∇ is flat.

1.1.2. Properties. The following proposition is a direct consequence of the defini-
tion.

Proposition 1.2. Suppose that (M, ( , ), •, e, E) is a Frobenius structure. Then
a) The Levi–Civita connection ∇L.C. is flat.
b) Let t = (t1, . . . , tN ) be ∇L.C.-flat coordinates defined on a contractible open subset

U ⊂M . There exists a holomorphic function F ∈ OM (U), such that

(∂/∂ta • ∂/∂tb, ∂/∂tc) =
∂3F

∂ta∂tb∂tc

and

EF = (3−D)F +H,

where H is a polynomial in t1, . . . , tN of degree at most 2.
c) The grading operator is covariantly constant: ∇L.C.

v θ = 0. Equivalently, in flat
coordinates t = (t1, . . . , tN ), the matrix (θab)

N
a,b=1 of θ defined by

θ(∂/∂tb) =

N∑
a=1

θab∂/∂tb

is constant.
d) The following identity holds

[E, v • w]− [E, v] • w − v • [E,w] = v • w, v, w ∈ TM .

Proof. Parts a) and b) are straightforward. We will prove c) and d) simultaneously.
To begin with note that both c) and d) are OM -linear in v and w. Therefore, we may
assume v and w are flat with respect to ∇L.C.. The flatness of ∇ implies that

∇z∂z+E∇vw −∇v∇z∂z+Ew −∇[E,v]w = 0.

By definition

∇v = ∇L.C.
v − z−1v•

and

∇z∂z+E = z∂z +∇L.C.
E − θ.
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Substituting these operators in the 0-curvature equation and using that v and w are flat
we get a polynomial expression in z−1 of degree 1 for which the coefficient in front of z0

is

∇L.C.
v θ(w)

and the coefficient in front of z−1 is

(1.2) v • w + [E, v] • w − v • θ(w) + θ(v • w)−∇L.C.
E (v • w).

Therefore both expressions must vansih. The vanishing of ∇L.C.
v θ(w) for all flat vector

fields v and w is equivalent to the statement in c). Using the definition (1.1) of θ and
that ∇L.C. is torsion free we get

−v • θ(w) + θ(v • w) = v • [E,w]− [E, v • w] +∇L.C.
E (v • w).

Substituting this identity in (1.2) we get the identity of part d). �

Remark 1.3. Locally the Frobenius structure is completely determined by the Euler
vector field E and the holomorphic function F . It is possible to give a definition of a
Frobenius manifold in terms of F (see [12]). This leads to the so-called WDVV equations
for F . In many applications the Frobenius structures arise as solutions of the WDVV
equations. �

1.1.3. Semi-simple Frobenius manifolds.

Definition 1.4. A Frobenius manifold (M, ( , ), •, e, E) is said to be semi-simple if
there are local coordinates u = (u1, . . . , uN ) defined in a neighborhood of some point on
M such that

∂/∂ui • ∂/∂uj = δij∂/∂uj , 1 ≤ i, j ≤ N.
The coordinates ui are called canonical coordinates.

As we will see now, canonical coordinates are unique up to parmutation and constant
shifts. To avoid cumbersome notation we put ∂ui := ∂/∂ui.

Proposition 1.5. Let u = (u1, . . . , uN ) be canonical coordinates defined on some
open subset U ⊂M . Then

a) The Frobenius pairing takes the form

(∂/∂ui, ∂/∂uj) = δijηj(u), 1 ≤ i, j ≤ N,
where ηj ∈ OM (U) and ηj(u) 6= 0 for all u ∈ U .

b) The unit vector field takes the form e =
∑N
i=1 ∂/∂ui.

c) The 1-form
∑N
i=1 ηi(u)dui is closed.

d) There are constants ci (1 ≤ i ≤ N) such that

E =

N∑
i=1

(ui + ci)
∂

∂ui
.

Proof. a) If i 6= j then we have

(∂ui , ∂uj ) = (e • ∂ui , ∂uj ) = (e, ∂ui • ∂uj ) = 0.

The fact that ηi(u) := (∂ui , ∂ui) 6= 0 follows from the non-degeneracy of the Frobenius
pairing.
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b) Let e =
∑N
i=1 ei(u)∂ui . Then

∂uj = ∂uj • e = ej(u)∂uj .

Therefore ej(u) = 1 for all j.
c) We have to check that ∂ujηi = ∂uiηj . On the other hand

∂ujηi = ∂uj (∂ui , e) = (∇L.C.
∂uj

∂ui , e),

where we used the Leibnitz rule and the fact the e is a flat vector field. It remains only
to recall that the Levi–Civita connection is torsion free, so

∇L.C.
∂uj

∂ui = ∇L.C.
∂ui

∂uj .

d) Put E =
∑N
i=1Ei(u)∂ui . Let us recall Proposition 1.2, part d) with v = ∂ui and

w = ∂uj . For i 6= j we get

(∂uiEj)∂uj + (∂ujEi)∂ui = 0.

Hence ∂uiEj = 0 for i 6= j. If i = j then we get ∂uiEi = 1. Therefore Ei(u) = ui + ci for
some constant ci. �

Part d) of the above proposition shows that in every canonical coordinate system
up to some constant shifts the canonical coordinates coincide with the eigenvalues of the
operator E•. Therefore, up to constant shifts and permutations the canonical coordinates
are uniquely determined. From now on we will work only with canonical coordinates such
that

E =

N∑
i=1

ui∂ui .

The question that we would like to answer now is the following: Suppose that U is an

open contractible subset of CN and that
∑N
i=1 ηi(u)dui is a closed 1-form on U . Using

the 1-form we define a pairing

(∂ui , ∂uj ) = δij ηj(u).

Let us also define multiplication

∂ui • ∂uj = δij∂uj

and vector fields

e =

N∑
i=1

∂ui , E =

N∑
i=1

ui∂ui .

The problem then is to classify all 1-forms
∑N
i=1 ηi(u)dui such that the above data deter-

mines a Frobenius structure on U with canonical coordinates (u1, . . . , uN ). The answer
is given by the following theorem:

Theorem 1.6. The closed 1-form
∑N
i=1 ηi(u)dui determines a Frobenius structure

on U of conformal dimension D if and only if the following conditions are satisfied:

(1) ηi(u) 6= 0 for all i and for all u ∈ U .
(2) eηi(u) = 0 for all i.
(3) Eηi(u) = −Dηi(u).
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(4) For all k 6= i 6= j 6= k we have

∂ηij
∂uk

=
1

2

(ηijηkj
ηj

+
ηjkηik
ηk

+
ηkiηji
ηi

)
,

where ηab(u) := ∂uaηb(u).

Proof. Step 1. Determine when does the 1-form
∑
i ηi(u)dui defines data satisfying

conditions (a), (b), and (c) in the definition of a Frobenius manifold.
In part (a), we would like the multiplication and the pairing to give a holomorphic

family of Frobenius algebras. This is clearly satisfied for any choice of the 1-form. The
requirement that the pairing is non-degenerate yields that ηi(u) 6= 0 for all i and for all
u ∈ U .

For condition (b), we would like to know when is e a flat vector field. Let Γkij be the
Christoffel’s symbols of the pairing gij(u) = δijηj . A straightforward computation yields

Γjij = Γjji =
ηij
2ηj

, 1 ≤ i, j ≤ N,

Γjii = − ηij
2ηj

, 1 ≤ i 6= j ≤ N,

and

Γkij = 0, k 6= i 6= j 6= k.

Using the above formulas we compute directly that

∇L.C.
∂ui

e =
eηi
2ηi

∂ui .

Therefore e is a flat vector field if and only if eηi = 0 for all i.
Finally, for condition (c) to hold we must have Eηi = −Dηi for all i. Therefore, the

1-form will define a data satisfying conditions (a), (b), and (c) if and only if the functions
ηi(u) satisfy conditions (1), (2), and (3) in Theorem 1.6.

Step 2. When is the Levi–Civita connection flat?
The flatness of ∇L.C. is equivalent to: the expression

2(∇L.C.
∂ui
∇L.C.
∂uj

∂uk , ∂u`)

is symmetric in i and j. Using the Leibnitz rule we transform this expression into

(1.3) ∂ui

(
2Γ`jkη`

)
−

N∑
a=1

2ΓajkΓai`ηa.

Let us assume first that i, j, and k are pairwise distinct. Then we get

δ`j

(∂ηjk
∂ui

− ηijηkj
2ηj

)
+ δ`i

(ηkjηij
2ηj

+
ηjkηik

2ηk

)
+ δ`k

(∂ηjk
∂ui

− ηikηjk
2ηk

)
.

The last term is symmetric in i and j, so a non-trivial condition will be obtained either
if ` = i or ` = j. Due to the symmetry between i and j we may assume that ` = j. Then
we get

∂ηjk
∂ui

− ηijηkj
2ηj

=
ηkiηji

2ηi
+
ηikηjk

2ηk
.

This is exactly the PDE given in condition (4).
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There are 3 more cases to analyze. Indeed, since we may assume that i 6= j we get
that k = i or k = j. Again exchanging the role of LHS and RHS provides a symmetry
between i and j, which allows us to assume that k = i. Therefore the remaining cases are:
(k, `) = (i, i), (i, j), or k = i and ` 6= i, j. The first case yields ∂uiηij = ∂ujηii, which is
always satisfied because the 1-form

∑
i ηidui is closed. The 2nd case (k, `) = (i, j) yields

∂uiηij + ∂ujηij =
ηijηij
2ηi

+
ηijηij
2ηj

+
ηijηii
2ηi

+
ηijηjj
2ηj

−
∑

a:a6=i,j

ηiaηja
2ηa

.

It is easy to see that this identity is a consequence of (2) and (4). In the last case if k = i
and ` 6= i, j we get

∂ujηi` =
ηijηi`
2ηi

+
ηi`ηj`
2η`

+
ηijηj`
2ηj

which is equivalent to (4).
Step 3. It remains only to varify that under the conditions (1)–(4) the structure

connection ∇ is flat. The argument is similar to the argument in Step 2, so it will be left
as an exercise. �

Remark 1.7. The system of PDEs in condition (4) of Theorem 1.6 is equivalent to
the so-called Darboux–Egoroff equation – see [44], Chapter 2, Section 1.2.

1.2. Analytic spectrum of a Frobenius manifold

Let M be a Frobenius manifold. We say that a point t◦ ∈ M is semi-simple if
there exists an open coordinate chart of M containing t◦, such that, the corresponding
coordinates are canonical coordinates. Clearly, if a point t◦ is semi-simple, then the
Frobenius algebra Tt◦M is semi-simple, i.e., a direct sum of fields. We would like to
prove that the converse is also true. Moreover, we would like to establish several other
criteria for semi-simplicity. Also, the problem of analytic continuation of the canonical
coordinates comes up in many applications. It turns out that all these problems can be
reformulated in terms of the so-called analytic spectrum of the Frobenius manifold (see
[31], Section 2.2) which allows us to use the methods of complex geometry.

1.2.1. Analytic spectrum. The tangent sheaf TM has a structure of a sheaf of
OM -algebras induced from the Frobenius multiplication. Let us define a complex sub-
space L of T ∗M. Suppose that U ⊂ M is a coordinate chart with coordinates t =

(t1, . . . , tN ). Note that every ω ∈ T ∗t U can be written as ω =
∑N
i=1 pidti. We can

interpret (t1, . . . , tN , p1, . . . , pN ) as coordinate functions which turn T ∗U into a coordi-
nate chart of T ∗M . Let ckij(t) be the structure constants of the Frobenius multiplication,

that is, ∂
∂ti
• ∂
∂tj

=
∑N
k=1 c

k
ij(t)

∂
∂tk

. Let IU ⊂ OT∗U be the ideal sheaf generated by the

functions

fUij (t, p) := pipj −
N∑
k=1

ckij(t)pk (1 ≤ i, j ≤ N), p1 − 1,

where we assume that ∂
∂t1

is the unit vector field. It is easy to check that the ideal
sheaves IU can be glued to an ideal sheaf I ⊂ OT∗M . Let L ⊂ T ∗M be the complex
space corresponding to the ideal sheaf I and π : L → M be the map induced from the
natural projection T ∗M →M .
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There is a natural way to construct holomorphic functions on T ∗M from vector fields
on M . Namely, suppose that v ∈ Γ(U, TM) is a holomorphic vector field, then we define
fv : T ∗U → C by fv(t, ξ) = 〈ξ, v(t)〉, where t ∈ U , ξ ∈ T ∗t M , and v(t) ∈ TtM . This
construction yields the following important map

(1.4) α : TM → π∗OL, v 7→ fv|L.
We claim that π : L→M is a proper finite map and that α is an isomorphism identifying
the Frobenius multiplication on TM with the natural multiplication in π∗OL. We are
not going to use this fact in the sequel, but one can easily check that L is the analytic
spectrum L := Specan(TM ) of TM . Namely, if ϕ : X → M is a proper finite map, then
the natural map

HolM (X,L)→ HomOM (TM , ϕ∗OX), (f, f ]) 7→ π∗(f
]) ◦ α,

is a bijection. Here HolM denotes the set of morphisms of complex spaces overM , HomOM
denotes the set of morphisms of sheaves of OM -modules, and the pair (f, f ]) consisting
of a continuous map f : X → L and a sheaf morphism f ] : OL → f∗OX is a morphism of
complex spaces (X,OX)→ (L,OL). We refer to[15], Section 1.14 for some introduction
to analytic spectrum.

Recall that a commutative ring A is said to be Artinian if it satisfies the descending
chain condition: every descending sequence of ideals I1 ⊇ I2 ⊇ · · · stabilizes, that is,
there exists n, such that, In+i = In for all i ≥ 0. In our case A will be a C-algebra which
is a finite dimensional vector space over C. Note that since C ⊂ A every ideal is a vector
subspace of A, so the descending chain condition is obvious. According to the structure
theorem for Artin rings (see [7], Theorem 8.7), we have a direct sum decomposition
A = ⊕ri=1Ai, where Ai is an Artin local ring. Note that the maximal ideals of A are
precisely mi := mAi ⊕ ⊕j:j 6=iAj , where mAi is the maximal ideal of Ai. In particular,
A has finitely many maximal ideals. It is easy to check that under the localization map
A→ Ami all subrings Aj (j 6= i) are mapped to 0, while Ai is mapped isomorphically to
Ami

.

Lemma 1.8. The map π : L→M is a proper finite map.

Proof. Suppose that t ∈ M , then π−1(t) coincides with the points p ∈ CN , such
that,

pipj =

N∑
k=1

ckij(t)pk (1 ≤ i, j ≤ N), p1 = 1.

However, the quotient ring

A := C[p1, . . . , pN ]/(pipj −
N∑
k=1

ckij(t)pk (1 ≤ i, j ≤ N), p1 − 1) ∼= TtM

is Artinian, so it has finitely many maximal ideals. Since the points in π−1(t) are in
bijection with the maximal ideals of A, we get that π−1(t) consists of finitely many
points. In order to prove that π : L → M is a proper map, it is sufficient to prove that
the map πU := π|L∩T∗U : L ∩ T ∗U → U is proper for all coordinate charts U ⊂ M .
Suppose that K ⊂ U is a compact subset. Clearly π−1

U (K) is a closed subset of L∩ T ∗U ,

so we need only to prove that π−1
U (K) is a bounded subset of T ∗U = U × CN . Let C be

the maximal possible value of |ckij(t)| for t ∈ K and 1 ≤ i, j, k ≤ N . Since K is compact,
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0 < C < ∞. Given a point (t, p) ∈ T ∗U ∩ L, such that t ∈ K, let us denote by i the
index for which |pi| is maximal, that is, p = (p1, . . . , pN ) and |pj | ≤ |pi| for all j. Using

the equation p2
i =

∑N
k=1 c

k
ii(t)pk and the triangle inequality we get |pi|2 ≤ CN |pi|, that

is, |pi| ≤ CN , which implies that the set π−1
U (K) is bounded as claimed. �

In the proof of next lemma we will make use of the GAGA principle (see [57]) in
the case of a point. Recall that a commutative ring B with a unity 1 ∈ B is said to be
faithfully flat over its subring A if the following conditions are satisfied:

(i) 1 ∈ A.
(ii) B is a flat A-module.
(iii) For every non-zero A-module X, the B-module B ⊗A X is non-zero.

It is well known (see [59], Theorem 13.3.5) that the analytic local ring OCN ,0 := C{p1, . . . , pN}
consisting of convergent power series in p1, . . . , pN is faithfully flat over the algebraic local
ring C[p1, . . . , pN ](0) consisting of rational functions h(p)/g(p) regular at 0 (i.e. g(0) 6= 0).
We will need the following characterization of faithful flatness (see [59], Lemma 13.1.2):
B is faithfully flat over A if and only if B is a flat A-module and BI ∩ A = I for every
ideal I of A.

Lemma 1.9. The sheaf π∗OL is locally free of rank N .

Proof. Since π is a proper map, the sheaf π∗OL is coherent. Since M is a non-
singular variety, it is sufficient to prove that the fibers of π∗OL are vector spaces of
the same dimension N . Suppose that t ∈ M is an arbitrary point. Let mM,t ⊂ OM,t

be the ideal of the point t, and I ⊂ C[p1, . . . , pN ] be the ideal generated by (pipj −∑N
k=1 c

k
ij(t)pk (1 ≤ i, j ≤ N), p1− 1). Using the direct image theorem for finite maps we

get that the fiber of π∗OL at t is

(π∗OL)t/mM,t
∼=

⊕
ω∈π−1(t)

OL,ω/mM,t =
⊕

ω∈π−1(t)

OCN ,ω/IOCN ,ω.

In order to complete the proof of the lemma it is sufficient to construct an isomorphism

(1.5)
⊕

ω∈π−1(t)

OCN ,ω/IOCN ,ω ∼= TtM.

As we already pointed out above, the Frobenius multiplication turns TtM into an Artin
ring isomorphic to A := C[p1, . . . , pN ]/I. According to the structure theorem for Artin
rings, if mi (1 ≤ i ≤ r) are the maximal ideals of A, then TtM ∼= A ∼= ⊕ri=1Ami . Every
maximal ideal m of A corresponds via the quotient map C[p1, . . . , pN ]→ A to a uniquely
determined maximal ideal (p1 − ω1, . . . , pN − ωN ) of C[p1, . . . , pN ] containing I. Put
ω = (ω1, . . . , ωN ), then the condition (p1 − ω1, . . . , pN − ωN ) ⊃ I is equivalent to the
system of algebraic equations

ωiωj =

N∑
k=1

ckij(t)ωk (1 ≤ i, j ≤ N), ω1 = 1

which are the defining equations of the fiber π−1(t). In other words we have a one-to-
one correspondence between the maximal ideals of m ⊂ A and the points ω ∈ π−1(t).
We need only to prove that there is an isomorphism of local rings Am

∼= OL,ω/mM,t. By
definition OL,ω/mM,t = OCN ,ω/I, where OCN ,ω := C{ p1−ω1, . . . , pN−ωN} is the ring of
convergent power series. The natural inclusion C[p1, . . . , pN ] ⊂ OCN ,ω induces an injective
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map Am → OL,ω/mM,t, because OCN ,ω is a faithfully flat C[p1, . . . , pN ](p1−ω1,...,pN−ωN )-
module and hence

IOCN ,ω ∩ C[p1, . . . , pN ](p1−ω1,...,pN−ωN ) = IC[p1, . . . , pN ](p1−ω1,...,pN−ωN ).

Finally, to prove that Am → OL,ω/mM,t is surjective, note that the zero locus of the
ideal I in a neighborhood of ω ∈ CN is {ω}, so by Rückert Nullstellensatz there exists
an integer k > 0 such that (pi − ωi)k ∈ IOCN ,ω for all 1 ≤ i ≤ N . Therefore, every
element of OL,ω/mM,t can be represented by a polynomial, i.e., the map A→ OL,ω/mM,t

is surjective, so the induced map Am → OL,ω/mM,t is also surjective. �

The map (1.4) induces a map α(t) between the fibers at t, that is, α(t) : TtM →
(π∗OL)t/mM,t(π∗OL)t. Comparing the definitions we get that α(t) coincides with the
isomorphism (1.5). Since both TM and π∗OL are locally free OM -modules we get that
α must be an isomorphism. Moreover, since (1.5) is an isomorphism of algebras, we get
that α identifies the Frobenius multiplication on TM with the natural multiplication in
π∗OL.

1.2.2. Semi-simplicity criteria. Using the results from the previous section we
will give several equivalent characterizations of when is a given point t◦ ∈M semi-simple.

Lemma 1.10. The map π : L→M is flat and hence it is an open finite surjection.

Proof. The local freeness of π∗OL implies that π : L → M is a flat map. Indeed,
suppose that ω ∈ L and t = π(ω). Recalling the direct image theorem for finite maps,
we get that the local ring OL,ω is a direct summand of (π∗OL)t. Since (π∗OL)t is a free
OM,t-module, we get that OL,ω is a projective module. However for local Noetherian
rings the notion of a projective module, free module, and flat module are equivalent.
Therefore OL,ω is a flat OM,t-module. Since flat maps are known to be open, we get that
π : L→M is open. On the other hand π is also a closed map, because proper maps are
closed. Therefore π(L) is both an open and a closed subset of M . Since M is a connected
topological space we must have π(L) = M . �

Lemma 1.11. A point t ∈ M is semi-simple if and only if the algebra TtM has no
nilpotents.

Proof. If the point t is semi-simple then clearly TtM ∼= C⊕N has no nilpotents.
The difficult part is to prove the inverse. Suppose that Tt◦M has no nilpotents. Let
Tt◦M = ⊕ri=1Ai be the decomposition of the Artin ring Tt◦M into direct sum of Artin
local rings. The maximal ideal mAi of Ai is nilpotent, so mAi = 0 (since we assumed that
Tt◦M has no nilpotents), Ai ∼= C, and r = N . Let ω ∈ π−1(t◦). According to Lemma
1.10 (π∗OL)t◦ = ⊕ω∈π−1(t◦)OL,ω is a free OM,t◦ -module, so OL,ω is a free OM,t◦ -module.
On the other hand, OL,ω/mt◦ ∼= Ai ∼= C for some i, where mt◦ ⊂ OM,t◦ is the ideal of the
point t◦ ∈ M . We get that the rank of OL,ω is 1, that is, OL,ω = OM,t◦ · 1ω, where 1ω
is the unit of the ring OL,ω. Let us fix a coordinate chart U of M containing the point
t◦ and let (t, p) = (t1, . . . , tN , p1, . . . , pN ) be the coordinates on T ∗U . Each pi represents
the germ of a holomorphic function in OL,ω. Therefore, there exists hiω ∈ OM,t◦ such
that pi = hiω (mod IU ), where IU = (fUij (t, p) (1 ≤ i, j ≤ N), p1− 1) ⊂ OT∗U is the ideal
sheaf of L ∩ T ∗U . Since π : L → M is a proper finite map, we can choose U to be so
small that π−1(U) = L ∩ T ∗U is a disjoint union of N open subsets Lω (ω ∈ π−1(t◦)).
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Decreasing U if necessary we may assume that all the germs hiω ∈ OM,t◦ are represented
by holomorphic functions on U . We claim that

(1.6) (p1 − h1ω, . . . , pN − hNω)OT∗U,ω = IUOT∗U,ω.

We already know that pi−hiω ∈ IUOT∗U,ω. The rest of our claim follows easily if we knew
that OM,t◦ ∩ IUOT∗U,ω = {0}, where we view OM,t◦ ⊂ OT∗U,ω via the natural pullback
map. If ∆ is a holomorphic function representing a non-zero germ in OM,t◦ ∩ IUOT∗U,ω,
then we have

∆(t) =

N∑
i,j=1

gij(t, p)f
U
ij (t, p) + g1(t, p)(p1 − 1),

for some gij , g1 ∈ OT∗U,ω. If (t, p) ∈ L, then ∆(t) = 0, so the image via the projection π
of the germ of L at the point ω is contained in the closed hypersurface {∆(t) = 0} ⊂M
– contradicting the fact that the map π is open (see Lemma 1.10). This proves (1.6) and
we get

(1.7) Lω = {(t, p) ∈ T ∗U | pi = hiω(t) ∀1 ≤ i ≤ N }.
Suppose that t ∈ U and let us consider the Artin ring

TtM ∼= C[p1, . . . , pN ]/(pipj −
N∑
k=1

ckij(t)pk (1 ≤ i, j ≤ N), p1 − 1).

Since this is the coordinate ring of π−1(t) = L ∩ T ∗t U = CN , using (1.7), we get that
TtM contains precisely N maximal ideals, i.e., the maximal ideals of TtM are (p1 −
h1ω(t), . . . , pN −hNω(t)) (ω ∈ π−1(t◦)). Note that if we decompose A := TtM as a direct
sum of local Artin rings, then we have a decomposition of the form A ∼= ⊕mA/m ∼= C⊕N ,
where the sum is over the maximal ideals of A and A → A/m is the natural quotient
map. In other words, we get that for all t ∈ U the map

TtM
∼= // CN , ∂

∂ti
7→ (hiω(t))ω∈π−1(t◦)

is an isomorphism of algebras, where the multiplications in TtM and CN are respectively
the Frobenius multiplication and the componentwise multiplication. We get that the
N×N matrix with entries hiω is invertible for all t ∈ U and hence the inverse matrix exists.
Let us denote the entries of the inverse matrix by hωi(t). Then eω :=

∑N
i=1 h

ωi(t) ∂
∂ti

are
holomorphic vector fields on U that are idempotents for the Frobenius multiplication, that
is, eω • eη = δω,ηeη. It is an easy exercise to prove that there are holomorphic coordinates

uω(t) on U , such that, eω = ∂
∂uω

(see [12], Lecture 3, Main Lemma). This implies that
the open chart U has canonical coordinates, so t◦ is a semi-simple point. �

Following Abrams [1] let us define the characteristic element ∆(t) :=
∑N
i=1 ei • ei,

where {ei}Ni=1 and {ei}Ni=1 is a pair of bases of TtM dual with respect to the Frobenius
pairing. The definition is independent of the choice of bases and t 7→ ∆(t) is a holomorphic
vector field on M .

Proposition 1.12. Let t ∈ M be an arbitrary point. The following conditions are
equivalent:

(i) The point t is semi-simple.
(ii) The Frobenius algebra TtM has no nilpotent elements.
(iii) The Frobenius algebra TtM ∼= C⊕ · · · ⊕ C.
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(iv) The characteristic element ∆(t) is invertible in TtM .

Proof. The equivalence of (i) and (ii) follows from Lemma 1.11. The equivalence of
(ii) and (iii) follows from the structure theorem for Artin algebras. The equivalence of (iii)
and (iv) is Theorem 3.4 in [1]. For the sake of completeness let us reproduce the argument
(with small modifications). The implication (iii) ⇒ (iv) is obvious. Suppose that ∆(t)
is invertible in A := TtM . By the structure theorem for Artin rings A = ⊕ri=1Ai, where
Ai are local Artin rings. Since AiAj = 0 and (Ai, Aj) = 0 the characteristic element of
A is a sum of the characteristic elements ∆i(t) of Ai. Moreover, the invertibility of ∆(t)
implies the invertibility of each ∆i(t). Therefore, it is sufficient to prove that if A is a
local Artin algebra whose characteristic element is invertible, then A = C, that is, the
maximal ideal m of A is 0. It is known that m is a nilpotent ideal. We have a filtration

0 ⊂ mk ⊂ mk−1 ⊂ · · ·m ⊂ A =: m0,

where k is the smallest integer such that mk+1 = 0. Note that mi 6= mi+1 for i < k + 1,
otherwise mi = 0 by Nakayama’s lemma. Let us first choose a basis of mk, extend it to
a basis of mk−1, etc. We get a basis e1, . . . , eN of A that has the following property: for
every i there exists an l, such that, ei ∈ ml and ei /∈ ml+1. If a ∈ m, then eia ∈ ml+1 is a
linear combination of elements ej different from ei. Therefore, (eia, e

i) = 0⇒ (eie
i, a) = 0

for all a ∈ m. This implies that (eie
ia, x) = (eie

i, ax) = 0 for all x ∈ A. However, since
the Frobenius pairing is non-degenerate, we get eie

ia = 0 for all a ∈ m. Summing over i
we get ∆(t)a = 0 and since ∆(t) is invertible, we get a = 0, that is, m = 0. �

1.2.3. The caustic of a semi-simple Frobenius manifold. Suppose now that
M is a semi-simple Frobenius manifold. The subset K of all points in M that are not
semi-simple is called the caustic of M . Proposition 1.12 gives us various conditions that
characterize the points of K. In particular, condition (iv) implies the following proposi-
tion.

Proposition 1.13. If M is a semi-simple Frobenius manifold, then the caustic K is
either the empty set or it is an analytic hypersurface of M .

Proof. Let f(t) be the determinant of the linear operator in TtM defined by Frobe-
nius multiplication by the characteristic element ∆(t) of TtM . Clearly f(t) is a holomor-
phic function on M and according to Proposition 1.12, (iv) K = {t ∈M | f(t) = 0}. �

Let us point out that in the proof of Lemma 1.11 (see formula (1.7)) we also proved
that π induces a regular covering L \ π−1(K) → M \ K, while Proposition 1.13 implies
that M \K is dense in M .

Lemma 1.14. The complex space L is reduced.

Proof. We already know that the points in L \ π−1(K) are smooth and hence re-
duced. Suppose that t◦ ∈ K is an arbitrary point and ω◦ ∈ π−1(t◦). We have to prove
that the local ring OL,ω◦ has no nilpotents. Since π : L→M is an open finite surjection,
we can find a sufficiently small open neighborhood U ⊂M , t◦ ∈ U , such that, π−1(U) is
a disjoint union of open subsets Li (1 ≤ i ≤ k) and πi := π|Li : Li → U is an open finite
surjection. Without any lost of generality we may assume that ω◦ ∈ L1. By shrinking
U we can make L1 as small as we wish. In particular, given a germ in OL1,ω◦ we may
assume that it is represented by a function in Γ(L1,OL). Since Li for i 6= 1 are disjoint
from L1 we can extend by 0 any holomorphic function on L1 to a holomorphic function on
Li. Shrinking U even further if necessary we may assume that π∗OL|U ∼= ON

U . We have
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to prove that if f ∈ Γ(π−1U,OL) and the germs fω ∀ω ∈ L are nilpotent, then f = 0. Let
φi ∈ Γ(π−1U,OL) (1 ≤ i ≤ N) be an OU -basis, that is, π∗OL|U = OU φ1 ⊕ · · · ⊕OU φN .
We have

f =

N∑
i=1

αi φi, αi ∈ Γ(U,OM ).

Let φ̃i ∈ OT∗U be a holomorphic function defined in a neighborhood of π−1(U) = L∩T ∗U
that represents φi ∈ OL = OT∗U/IUOT∗U where IU is the ideal sheaf of L. Clearly∑N
i=1 αiφ̃i ∈ OT∗U represents the class of f and since the germs of f are nilpotent we have∑N
i=1 αi(t)φ̃i(t, p) = 0 for all (t, p) ∈ L. On the other hand, if t ∈ U \K and ω ∈ π−1(t),

that is, ω = (t, p) ∈ L, then the local algebras OL,ω/mM,t
∼= C and therefore using that

{φi}Ni=1 is a OU -basis of (π∗OL)t = ⊕ω∈π−1(t)OL,ω, we get that the columns of the N×N
matrix, whose (i, ω)-entry (1 ≤ i ≤ N,ω ∈ π−1(t)) is φ̃i(ω), are linearly independent.

Therefore, the rows are also linearly independent, so from
∑N
i=1 αi(t)φ̃i(t, p) = 0 for all

(t, p) =: ω ∈ π−1(t) we get that αi(t) = 0 for all i. We proved that αi(t) = 0 for all
t ∈ U \ K. Since K is a thin set and αi are continuous functions on U , we must have
αi(t) = 0 for all 1 ≤ i ≤ N and t ∈ U . �

The main result of this section can be stated as follows.

Theorem 1.15. A Frobenius manifold M is semi-simple if and only if its analytic
spectrum L is an analytic variety, i.e., reduced complex space. If M is semi-simple, then
the projection π : L → M is a branched covering with branching locus the caustic K of
M .

1.3. Genus-0 gravitational descendants

Motivated by Witten’s formulation of topological gravity, Givental has proposed in
[21] a geometric interpretation of the so-called genus 0 gravitational descendants. The
latter can be organized into a single generating formal power series F satisfying three
axioms: an infinite set of Topological Recursion Relations (TRR), Dilaton Equation (DE),
and String Equation (SE). The three axioms can be reformulated in terms of the geometry
of the graph L of the differential of F . It turns out that L is a Lagrangian cone with vertex
at the origin and that its tangent spaces vary in a finite dimensional family generating
a Variation of Semi-infinite Hodge Structures (VSHS) in the sense of Barannikov [9]. In
particular, the base of the family has a natural formal germ of a Frobenius structure. In
this section we would like to prove that the above construction of a Frobenius structure
is general, i.e., the formal germ of a Frobenius structure at any point t◦ ∈ M can be
obtained by Givental’s Lagrangian cone and Barannikov’s VSHS.

1.3.1. Calibration at a point. Suppose that M is a Frobenius manifold and that
t◦ ∈ M is an arbitrary fixed point. Let H := Tt◦M be the holomorphic tangent space.
The restriction of the Dubrovin’s connection at t = t◦ is a connection on the trivial bundle
H × C∗ → C∗ that has an irregular singular point at z = 0 and a regular singular point
at z =∞. The general theory of Fuchsian systems implies that near the regular singular
point z =∞, there exists a fundamental solution

(1.8) Y ◦(z) = S◦(z) zδ zν ,
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where S◦(z) =
∑∞
k=0 S

◦
kz
−k is an operator-valued series, that is, S◦k ∈ End(H), δ is a

diagonalizable operator, and ν is a nilpotent operator. We would like however to prove
a slightly stronger result. Let us introduce some more notation. Let θ = θs + θn be the
Jordan–Chevalley decomposition of the grading operator, where θs is diagonalizable, θn
is nilpotent, and [θs, θn] = 0. If δ is a diagonalizable operator, then

adδ : gl(H)→ gl(H), X 7→ [δ,X]

is also diagonalizble, where gl(H) is the Lie algebra of all linear transformations of H.
Let spec(δ) be the set of eigenvalues of adδ. We have a direct sum decomposition into
eigensubspaces

gl(H) =
⊕

a∈spec(δ)

gla(H), gla(H) = {X ∈ gl(H) | [δ,X] = aX}.

If X ∈ gl(H), then we denote by X[a] the projection of X onto gla(H) for a ∈ spec(δ).

Proposition 1.16. Let t◦ ∈ M be any point. The restriction of the Dubrovin’s
connection to t = t◦ has a fundamental solution of the form (1.8), such that,

(i) The operator δ coincides with the semi-simple part θs of θ.
(ii) The nilpotent operator decomposes as ν = ν0 +

∑∞
l=1 νl, where ν0 = θn and

[δ, νl] = −lνl, that is, νl ∈ gl−l(H).

(iii) S◦0 = idH and S◦(−z)T S◦(z) = 1, where T is transposition with respect to the
Frobenius pairing on the tangent space H.

Proof. The Proposition is proved in the master’s thesis of Chenghan Zha [66]. For
the reader’s convenience we reproduce Zha’s argument. Substituting Y ◦(z) in∇∂z (Y ) = 0
and comparing the coefficients in front of the powers of z, we get first that the projection
ν[a] = 0 if a is not an integer ≤ 0 and the following system of recursion equations:

θ =δ + ν[0]

kS◦k + [θ, S◦k ] =E • S◦k−1 +

k∑
l=1

S◦k−lν[−l] (k > 0).(1.9)

Since [δ, ν[0]] = 0, the uniqueness in the Jordan–Chevalley decomposition implies that
δ = θs and ν[0] = θn. We argue by induction on k that the recursion equations (1.9) have
a solution, such that S◦0 := 1 and

(1.10)

k∑
i=0

(−1)i(S◦k−i)
T S◦i = 0, ∀k > 0.

Before proving our claim, let us point out the following two properties of the transposition
T with respect to the Frobenius pairing:

(X[a])
T = (XT )[a], X ∈ gl(H), a ∈ spec(δ)

and (adν[0](X))T = adν[0](X
T ). Both properties follow easily from the identities δT = −δ

and (ν[0])
T = −ν[0] which can be proved as follows. We have θ = −θT = −δT − (ν[0])

T .

Since δT is a diagonalizable operator and (ν[0])
T is a nilpotent operator the uniqueness

of the Jordan–Chevalley decomposition implies that δT = −δ and νT[0] = −ν[0].
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For k = 0 our claim is trivially satisfied. Suppose that we proved the existence of S◦i
and ν[−i] for 1 ≤ i ≤ k − 1. Decomposing each S◦k =

∑
a∈spec(δ)(S

◦
k)[a] into eigenvectors,

we get that (1.9) is equivalent to

(1.11) (k + a+ adν[0])(S
◦
k)[a] = (E • S◦k−1)[a] +

k∑
l=1

(S◦k−l)[a+l]ν[−l],

where we used that adν[0] preserves the eigensubspace gla(H). If k + a 6= 0, then we can

uniquely solve for (S◦k)[a], because the operator k+ a+ adν[0] is invertible. Hence, (S◦k)[a]

is uniquely determined by S◦k−l and ν[−l] for 1 ≤ l ≤ k− 1. Let us prove that if a+k 6= 0,
then

(1.12)
( k∑
i=0

(−1)i(S◦k−i)
TS◦i

)
[a]

= 0,

where note that although S◦k is still not defined completely, only the component (S◦k)[a]

is needed and since we have already defined it, our claim makes sense.

Using the recursion formula (1.11), we get that (k+ a+ adν[0])
(

(S◦k)T + (−1)kS◦k

)
[a]

is equal to

(1.13)
(

(E•S◦k−1)T[a]+

k−1∑
j=1

νT[−j](S
◦
k−j)

T
[a+j]

)
+(−1)k

(
(E•S◦k−1)[a]+

k−1∑
j=1

(S◦k−j)[a+j]ν[−j]

)
.

Note that

(k + a+ adν[0])((S
◦
k−i)

TS◦i )[a] = (k + a+ adν[0])
∑

b∈spec(δ)

((S◦k−i)
T )[b] (S◦i )[a−b]

is equal to∑
b∈spec(δ)

(k − i+ b+ adν[0])
(

(S◦k−i)
T
[b]

)
(S◦i )[a−b] + (S◦k−i)

T
[b](i+ a− b+ adν[0])(S

◦
i )[a−b]

Usng the recursion relation (1.11) with (k, a) replaced by (k − i, b) and (i, a − b) we get

that (−1)i (k + a+ adν[0])
(

((S◦k−i)
TS◦i )[a]

)
is equal to

(−1)i
∑

b∈spec(δ)

((E • S◦k−i−1)T[b] +

k−i∑
j=1

νT[−j](S
◦
k−i−j)

T
[b+j]

)
(S◦i )[a−b] +(1.14)

(S◦k−i)
T
[b]

(
(E • S◦i−1)[a−b] +

i∑
j=1

(S◦i−j)[a−b+j] ν[−j]

) .

Since the operator (k + a+ adν[0] for k 6= −a is invertible, formula (1.12) will be proved

if we prove that the sum of (1.14) for 1 ≤ i ≤ k − 1 and (1.13) is 0.
The sum of the terms involving E• cancels out. Indeed, first note that since • is

a Frobenius multiplication the operator E• is self-adjoint, that is, (E•)T = E•. This
implies that the terms (involving E•) in (1.13) cancel out with therm on the first line of
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(1.14) for i = k−1 and the term on the second line of (1.14) corresponding to i = 1. The
remaining terms involving E• are(

k−2∑
i=1

(−1)i(S◦k−i−1)TE • S◦i +

k−1∑
i=2

(−1)i(S◦k−i)
TE • S◦i−1

)
[a]

,

where again we used that (E•)T = E•. Shifting the summation index in the second sum
i 7→ i+ 1, we see that the above two sums cancel out.

Let us fix j (1 ≤ j ≤ k − 1). We claim that the sum of the terms involving νT[−j]
cancels out. Indeed, the sum is equal to

νT[−j]

( k−j∑
i=0

(−1)i
∑

b∈spec(δ)

(S◦k−i−j)
T
[b+j](S

◦
i )[a−b]

)
= νT[−j]

k−j∑
i=0

(−1)i
(

(S◦k−i−j)
TS◦i

)
[a+j]

= 0,

where we used the inductive assumption (1.10). Similarly, the sum of the terms involving
ν[−j] is

k∑
i=j

(−1)i
(

(S◦k−i)
TS◦i−j

)
[a+j]

and it vanishes according to the inductive assumption (1.10).
In order to define S◦k , we need only to specify the component (S◦k)[−k]. Let us choose

Bk ∈ gl−k(H) arbitrary, such that, BTk = −(−1)kBk, for example pick an arbitrary

B ∈ gl−k(H) and let Bk := B − (−1)kBT . Let us define

(S◦k)[−k] := Bk −
1

2

k−1∑
i=1

(−1)k−i
(

(S◦k−i)
TS◦i

)
[−k]

.

Note that the symplectic condition (1.12) for a = −k is trivially satisfied due to the above
choice of (S◦k)[−k]. In other words, the operators S◦i (1 ≤ i ≤ k) satisfy the symplectic
condition (1.10) and the recursion (1.11) for all a 6= −k. On the other hand, if a = −k,
then the LHS of (1.11) depends only on operators S◦i and ν[−i] that are already defined,
while the RHS has the form ν[−k] + · · · , where the dots stand for some term in gl−k(H)
that depends only on S◦i and ν[−i] for 1 ≤ i ≤ k − 1. Therefore, we can define ν[−k]

uniquely, so that (1.11) holds for a = −k too. This completes the induction step and the
proof of the proposition. �

Definition 1.17. Suppose that t◦ ∈M is a given point. An operator series

S◦(z) = 1 +

∞∑
k=1

S◦kz
−k, S◦k ∈ End(Tt◦M)

is said to be a calibration of the Frobenius manifold at the point t◦ if there exists an
operator ν, such that Y ◦(z) = S◦(z)zδzν is a fundamental solution of the restriction of
the Dubrovin’s connection to t = t◦ satisfying conditions (i)–(iii) of Proposition 1.16. �

As we will see now, for a given operator series S◦(z), if ν exists, then it is unique.
Moreover, we are going to prove that the set S◦ of all pairs (S◦(z), ν) satisfying conditions
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(i)–(iii) of Proposition 1.16 form a single orbit for the following unipotent group

(1.15) G = {C(z) = 1 +

∞∑
m=1

Cmz
−m | Cm ∈ gl−m(H), C(−z)T C(z) = 1}.

The group G acts on S◦ as follows:

C(z) · (S◦(z), ν) = (S◦(z)C(z), C(1)−1νC(1)), C(z) ∈ G, (S◦(z), ν) ∈ S◦.

The result is again due to Chenghan Zha (see [66]) and we will follow his argument.

Proposition 1.18. The action of G on S◦ is faithful and transitive.

Proof. The fact that the action is faithful is obvious. We need only to prove that
it is transitive. Suppose that (T ◦(z), µ) ∈ S◦ is an arbitrary element. Since Y ◦(z) and

Ỹ ◦(z) = T ◦(z)zδzµ are fundamental solutions of the same connection, there exists a
constant invertible operator C ∈ GL(H) such that

T ◦(z)zδzµ = S◦(z)zδzνC.

We have

S◦(z)−1T ◦(z) = zδzνCz−µz−δ = zN(z)C(z)z−M(z),

where N(z) = zδνz−δ, M(z) = zδµz−δ, and C(z) = zδCz−δ.
The main difficulty is to prove that C(z) ∈ 1 +gl(H)[z−1]z−1. Suppose that this fact

was established. Then

(1.16) zN(z)C(z)z−M(z) = eN(z) log zC(z)e−M(z) log z = C(z) +

∞∑
i=1

Pi(z)(log z)i,

where Pi(z) ∈ gl(H)[z−1] (i ≥ 1) and only finitely many Pi(z) are non-zero, because N(z)
and M(z) are nilpotent operators. Since (1.16) coincides with S◦(z)−1T ◦(z) which is a
single-valued analytic function in a neighborhood of z =∞, we get that Pi(z) = 0 for all
i ≥ 1. In particular, C(z) = S◦(z)−1T ◦(z) satisfies C(−z)T C(z) = 1, that is C(z) ∈ G
and 0 = P1(z) = N(z)C(z) − C(z)M(z), that is, νC = Cµ. Therefore, C(z) ∈ G and
(T ◦(z), µ) = C(z) · (S◦(z), ν), which is exactly what we have to prove.

Let us prove that C(z) ∈ 1+gl(H)[z−1]z−1. We will need the following simple lemma:

Lemma 1.19. If β1, . . . , βm ∈ R\{0} are pairwise different real numbers and C1, . . . , Cm ∈
gl(H) are such that limt→+∞

∑m
i=1 Cie

βit
√
−1 exists, then C1 = · · · = Cm = 0.

Proof. Put L(t) =
∑m
i=1 Cie

βit
√
−1 and let us choose a real number ε, such that,

ε
2π (βi − βj) /∈ Z for all 1 ≤ i < j ≤ m. We have

m∑
i=1

Cie
βi(t+jε)

√
−1 = L(t+ jε), 0 ≤ j ≤ m− 1.

This is a system of m linear equations for Cie
βit
√
−1 whose coefficient matrix is given by

λj−1
i (1 ≤ i, j ≤ m), where λi = eβiε. The determinant is a Vandermond determinant,

that is,
∏

1≤i<j≤m(λj − λi) 6= 0, according to our choice of ε. Therefore, we can write

each Cie
βit
√
−1 as a linear combination of L(t + jε) (0 ≤ j ≤ m − 1) with coefficients

independent of t. Since limt→+∞ L(t+ jε) exists for all j, we get that limt→+∞ Cie
βit
√
−1

exists for all i. However βi 6= 0, so the limit will exist only if Ci = 0. �
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By definition,

C(z) = zδCz−δ = C[0] +
∑

a∈spec(δ)\{0}

C[a]z
a.

We claim that if C[a] 6= 0, then Re(a) < 0. Let m be the maximal number in the set
{Re(a) | a ∈ spec(δ) \ {0}, C[a] 6= 0}. Let us restrict z to be a positive real number. The
limit

(1.17) lim
z→+∞

C(z) = lim
z→+∞

e−N(z) log zS◦(z)−1T ◦(z)eM(z) log z = 1.

If m > 0, then limz→+∞ C(z)z−m = 0. Let {ai}si=1 be the set of all a ∈ spec(δ), such
that Re(a) = m. Then ai = m+

√
−1βi, where βi (1 ≤ i ≤ s) are pairwise distinct. Let

us write z = et, then we have

0 = lim
z→+∞

C(z)z−m = lim
t→+∞

s∑
i=1

C[ai]e
√
−1βit.

If all βi are non-zero, then Lemma 1.19 would imply that C[ai] = 0 – contradiction with
the fact that m = Re(a) for some a with C[a] 6= 0. If βi = 0 for some i, then we get

0 = C[ai] + lim
t→+∞

∑
j:j 6=i

C[aj ]e
√
−1βjt.

However, we can recall Lemma 1.19 again and we get that C[aj ] = 0 for all j 6= i and
the above identity will be reduced to C[ai] = 0, that is, we get the same contradiction as
above. This proves that m ≤ 0. If m = 0, then we have

1 = lim
z→+∞

C(z) = C[0] + lim
z→+∞

( ∑
a:Re(a)=0,a 6=0

C[a]z
a
)
.

Recalling Lemma 1.19, we get C[a] = 0 for all a with Re(a) = 0. This is again contradic-
tion, so our claim that Re(a) < 0 for all a with C[a] 6= 0 is proved.

The condition limz→+∞ C(z) = 1 implies that C[0] = 1. Note that

eN(z) log zC(z)e−M(z) log z = S◦(z)−1T ◦(z)

is invariant under the analytic continuation around z =∞. Therefore,

(1.18)
∑
a

e2π
√
−1N(z)C[a]z

ae2π
√
−1ae−2π

√
−1M(z) =

∑
a

C[a]z
a.

Suppose that there exists some a /∈ Z, such that, C[a] 6= 0. Put

m := max {Re(a) | a /∈ Z, C[a] 6= 0}.

Suppose that a /∈ Z, C[a] 6= 0, and Re(a) = m. Let us compare the coefficients in front

of za in (1.18). Since N(z) = ν[0] +
∑
l≥1 ν[−l]z

−l and M(z) = µ[0] +
∑
l≥1 µ[−l]z

−l, the
coefficients ν[−l] and µ[−l] with l ≥ 1 do not contribute. Note also that µ[0] = ν[0] = θn,
we get

e2π
√
−1ν[0]C[a]e

−2π
√
−1ν[0]e2π

√
−1a = C[a].

This formula implies that

(1.19) e2π
√
−1ν[0]kC[a]e

−2π
√
−1ν[0]ke2π

√
−1 k a = C[a], ∀k ∈ Z.



18 1. SEMI-SIMPLE FROBENIUS MANIFOLDS

Let us denote by fij(x) the (i, j)-entry of the matrix e2π
√
−1ν[0]xC[a]e

−2π
√
−1ν[0]x. Note

that fij(x) ∈ C[x] is a polynomial because ν[0] is a nilpotent operator. Formula (1.19) is

equivalent to fij(k) = e−2π
√
−1akfij(0) for all k ∈ Z and 1 ≤ i, j ≤ N . Let us pick (i, j),

such that fij(0) 6= 0. This is possible because fij(0) is the (i, j)-entry of the non-zero
matrix C[a]. First observe that Im(a) = 0. Otherwise, if Im(a) > 0 (resp. < 0), then

e−2π
√
−1akfij(0) has an exponential growth for k → −∞ (resp. k → +∞), while fij(k)

has at most polynomial growth. This proves that a is a real number. In particular, the

set e−2π
√
−1akfij(0) (k ∈ Z) is bounded. The only way that fij(k) is bounded for k ∈ Z

is if fij(x) = fij(0) is the constant polynomial (∵ if the polynomial has positive degree
d > 0, then fij(k) = O(kd) as k → ∞, so in particular fij(k) is not bounded). But if

fij(x) is the constant polynomial then clearly e2π
√
−1a = 1, which means that a ∈ Z –

contradiction. This completes the proof of our claim that C(z) ∈ 1 + gl(H)[z−1]z−1 and
hence the proof of the proposition too. �

Proposition 1.20. Suppose that (S(z), ν) ∈ S◦ is a calibration at a point t◦ ∈ M .
Let us decompose ν =

∑∞
l=0 νl as in Proposition 1.16. Then νTl = (−1)l+1νl.

Proof. The fact that the transposition operation T commutes with the projection to
gl−l(H) is already established in the proof of Proposition 1.16. By definition, νl = ν[−l].

Therefore, (νl)
T = (νT )[−l]. It remains only to prove that (νT )[−l] = (−1)l+1νl.

By definition Y (z) = S(z)zδzν is a solution to the differential equation

z∂zY (z) =
(
− z−1E •+θ

)
Y (z),

where E• is the operator in H = Tt◦M of Frobenius multiplication by E. Let us assume
that z is a positive real number and let us denote by Y (−z) the analytic continuation of
Y (z) along the arc s 7→ eπisz, 0 ≤ s ≤ 1. Using the above differential equation and the
fact that (E•)T = E• and θT = −θ, we get that Y (z)TY (−z) is a constant C independent
of z. Using that S(z)T S(−z) = 1, we get

C = zν
T

zδ
T

(−z)δ(−z)ν .
Since δT = −δ and [δ, νl] = −lνl, the above identity can be written us

zν
T

z
∑∞
l=0(−1)lνl = Ce−πiνe−πiδ.

Setting z = 1 we get that the RHS must be 1, that is, C = eπiδeπiν . Differentiating by
z∂z and setting z = 1, we get νT +

∑∞
l=0(−1)lνl = 0. Projecting this identity to gl−l(H)

we get (νT )[−l] + (−1)lνl = 0 which completes the proof. �

1.3.2. Gravitational descendants. The notion of calibration was introduced in
the settings of quantum cohomology by Givental [20]. One of its main applications is
that it allows us to reconstruct all genus 0 Gromov–Witten invariants. Since we proved
that the calibration exists, we can use Givental’s formula (see [20], Corollary 5.4) to
define gravitational descendants for any Frobenius manifold.

Let us fix a point t◦ ∈M and denote by H := Tt◦M the holomorphic tangent space.
Suppose that S◦(z) is a calibration at the point t◦. Put a = S◦(z)e and for technical
convenience let us assume that φ1 = e coincides with the unit of the Frobenius algebra
H. The genus 0 total descendant potential of the Frobenius manifold, will be an element
of the following ring of formal power series:

C[[q0 − a, q1 + e, q2, q3, . . . ]],
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where qk :=
∑N
i=1 qk,iφi are formal vector variables. The formal power series of the vector

variables should be understood as formal power series of the components of the vectors,

that is, let us write a =
∑N
i=1 aiφi and recall that e = φ1, then the above ring is defined

to be the ring of formal power series in

q0,i − ai (1 ≤ i ≤ N), q1,i + δi,1 (1 ≤ i ≤ N), qk,i (k ≥ 2, 1 ≤ i ≤ N).

Sometimes, it is convenient to substitute t0 := q0 − a, t1 = q1 + e, and tk = qk for k ≥ 2,

where tk =
∑N
i=1 tk,iφi. This gives an identification

C[[q0 − a, q1 + e, q2, q3, . . . ]] = C[[t0, t1, . . . ]].

Let τi ∈ OM,t◦ (1 ≤ i ≤ n) be the set of holomorphic germs uniquely determined by the
following conditions:

(i) (τ1, . . . , τN ) define a holomorphic flat coordinate system on some open neigh-
borhood V of the point t◦.

(ii) τi(t
◦) = 0 (1 ≤ i ≤ N).

(iii) ∂
∂τi

= φi (1 ≤ i ≤ N) in Tt◦M = H.

Let us trivialize the tangent bundle TM |V ∼= V × H using the frame of the flat vector
fields ∂i := ∂

∂τi
(1 ≤ i ≤ N). Using the Dubrovin’s connection we extend the calibration

to a calibration

S(t, z) = 1 +

∞∑
k=1

Sk(t)z−k, Sk(t) ∈ End(H), t ∈ V,

that is, S(t, z) is the solution to the following Cauchy problem:

z∂iS(t, z) =φi • S(t, z) (1 ≤ i ≤ N)(1.20)

S(t◦, z) =S◦(z).

We need also the following operator series:

(1.21)

∞∑
k,l=0

Wkl(t)z
−kw−l =

S(t, z)TS(t, w)− 1

z−1 + w−1
,

where the RHS is a power series in z−1 and w−1 thanks to the condition S(t,−w)TS(t, w) =
1. Using the basis {φi}Ni=1 and the flat coordinates τi we represent all linear operators
Sk(t) and Wkl(t) (k, l ≥ 0) by matrices whose entries are in C{τ1, . . . , τN}, that is, con-
vergent power series in τ1, . . . , τN . Finally, we have a canonical embedding V ⊂ H,

t 7→
∑N
i=1 τi(t)φi, which is independent of the choice of a basis {φi}Ni=1 of H. In particu-

lar, we have a canonical identification OH,0
∼= OM,t◦ = C{τ1, . . . , τN}.

Lemma 1.21. There exists a unique formal power series f ∈ H[[q0−a, q1 + e, q2, . . . ]],
such that

(1.22) q0 +

∞∑
k=1

Sk(f)qk = 0.

Proof. Since ∂iS1(t)e = φi (1 ≤ i ≤ N), we have S1(τ)e = a + τ , where τ :=∑N
i=1 τi(t)φi ∈ V ⊂ H. Therefore the equation (1.22) can be written as

q0 − a+ S1(f)(q1 + e) +

∞∑
k=2

Sk(f)qk = f.
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The LHS can be viewed as an operator on M := H[[q0− a, q1 + e, q2, . . . ]], so the problem
is to prove that the operator has a fixed point. This however is easy because starting
with any initial approximation, say f (0) := 0, the iterations

f (n+1) := q0 − a+ S1(f (n))(q1 + e) +

∞∑
k=2

Sk(f (n))qk, n ≥ 0,

define a sequence, which is convergent in the formal topology. Clearly, the limit f :=
limn→∞ f (n) is a fixed point.

Let m := (q0 − a, q1 + e, q2, . . . ) be the maximal ideal of C[[q0 − a, q1 + e, q2, . . . ]].
Note that any solution f to our problem belongs to mM . Suppose that f and g are two
different solutions. If f − g ∈ mnM , then Sk(f)− Sk(g) ∈ mnM and since

f − g = (S1(f)− S1(g)) (q1 + e) +

∞∑
k=2

(Sk(f)− Sk(g)) qk

we get that f − g ∈ mn+1M . Arguing by induction, we get that f − g ∈
⋂
n≥1 m

nM =
0. �

Let f(q) ∈ H[[q0−a, q1+e, q2, . . . ]] be a solution to (1.22), then the genus-0 descendant
potential of the Frobenius manifold is defined by

(1.23) F(q) :=
1

2

∞∑
k,l=0

(Wkl(f(q))ql, qk),

where the argument of F and f is the sequence of all formal variables q = (qk,i).
The series F can be written also in terms of the formal variables t = (tk,i). If κ =
((k1, i1), . . . , (ks, is)) is a sequence of pairs, then we denote by |Aut(κ)| the number of
permutations that leave the sequence invariant. The coefficient in front of the monomial

1

|Aut(κ)|
tk1,i1 · · · tks,is

will be denoted by the correlator

〈φi1ψk1 , . . . , φisψks〉0,s.
We refer to such correlators as genus-0 gravitational descendants.

Proposition 1.22. The genus-0 descendant potential F satisfies the following three
relations:

a) String Equation (SE):

1

2
(q0, q0) +

∞∑
k=0

N∑
i=1

qk+1,i
∂F
∂qk,i

= 0.

b) Dilaton Equation (DE):

∞∑
k=0

N∑
i=1

qk,i
∂F
∂qk,i

= 2F .

c) Topological Recursion Relations (TRR):

∂3F
∂qk+1,a∂ql,b∂qm,c

=

N∑
i,j=1

∂2F
∂qk,a∂q0,i

gij
∂3F

∂q0,j∂ql,b∂qm,c
,
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where gij = (φi, φj) is the matrix of the Frobenius pairing with respect to the dual basis.

Proof. Parts a) and b) follow easily from the following formula:

∂F
∂qk,a

=
1

2

∞∑
l=0

(
(Wkl(f)ql, φa) + (Wlk(f)φa, ql)

)
.

For the proof, note that the partial derivative is supposed to have one more term, that is,

(1.24)

∞∑
l,m=0

(∂qk,a(Wlm(f))qm, ql).

Recalling the definition of Wlm, we get

∂iWlm(t) = Sl(t)
T (φi•)Sm(t).

Therefore,

(1.25) ∂qk,a(Wlm(f)) =

N∑
i=1

∂fi
∂qk,a

Sl(f)T (φi•)Sm(f).

Substituting this formula in (1.24), we get a factor that involves
∑∞
l=0 Sl(f)ql = 0. The

rest of the details in the proof of a) and b) are left as an exercise.
Let us prove c). Similar argument proves that

(1.26)
∂2F

∂qk,a∂ql,b
= (Wkl(f)φb, φa).

Let us prove first the following formula:

(1.27)
∂f

∂qm,i
=

∂f

∂q0,1
• Sm(f)φi.

Using formula (1.26), we get

a+ f = S1(f)e =

N∑
j=1

(W00φ1, φj)φ
j =

N∑
j=1

∂2F
∂q0,j∂q0,1

φj ,

where we used that W00 = S1. Differentiating the above formula with respect to qm,i, we
get

∂f

∂qm,i
=

N∑
j=1

∂q0,1

(
(W0mφi, φj)φ

j
)

= ∂q0,1Sm+1(f)φi =
∂f

∂q0,1
• Sm(f)φi,

where we used that W0m = Sm+1 and ∂aSm+1(t) = φa • Sm(t).
The 3-jet derivative becomes

(1.28)
∂3F

∂qk+1,a∂ql,b∂qm,c
=
( ∂f

∂qk+1,a
, Sl(f)φb • Sm(f)φc

)
,

where we used formulas (1.26) and (1.25). Recalling formula (1.27) and the Frobenius
property of the pairing, we get( ∂f

∂q0,1
• Sl(f)φb • Sm(f)φc, Sk+1φa

)
=

N∑
i,j=1

( ∂f

∂q0,1
• Sl(f)φb • Sm(f)φc, φj

)
gij (φi, Sk+1φa).
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Formula (1.27) implies that ∂f
∂q0,1

• φj = ∂f
∂q0,j

, which in combination with (1.28) gives( ∂f

∂q0,1
• Sl(f)φb • Sm(f)φc, φj

)
=

∂3F
∂ql,b∂qm,c∂q0,j

.

Formula (1.26) and W0k = Sk+1 imply that

(φi, Sk+1φa) =
∂2F

∂q0,i∂qk,a
. �

1.4. Givental’s quantization formalism

Recall that a symplectic pairing on a complex vector space H is a complex bi-linear
pairing Ω : H×H→ C, satisfying the following two conditions:

(i) It is perfect: if Ω(v, w) = 0 for all w ∈ H, then v = 0.
(ii) It is skew-symmetric: Ω(v, w) = −Ω(w, v) for all v, w ∈ H.

The pair (H,Ω) of a complex vector space H and a symplectic pairing Ω is called sym-
plectic vector space over C. In this book we will work only with coefficients in C and if
the symplectic pairing Ω is understood from the context, then we will simply say that H
is a symplectic vector space. Furthermore, a subspace L ⊂ H is said to be Lagrangian if
it is maximally isotropic with respect to Ω, that is, Ω(v, w) = 0 for all v, w ∈ L and if
w ∈ H is such that Ω(v, w) = 0 for all v ∈ L, then w ∈ L. Finally, a polarization of a
symplectic vector space H is a direct sum vector spaces decomposition H = H+ ⊕H−,
such that, both subspaces H+ and H− are Lagrangian.

If H is a finite dimensional polarized symplectic vector space, then there is a natural

way to assign to every polynomial function h on H a differential operator ĥ. The cor-

respondence h 7→ ĥ is very similar to the canonical quantization procedure in quantum
mechanics. It defines a projective representation of the Lie algebra of at most quadratic
polynomials h – see Section 1.4.1. Givental discovered that the quantization can be ex-
tended to a certain class of infinite dimensional symplectic vector spaces and that the
resulting tool for constructing differential operators has very important applications to
both Gromov–Witten theory (see [20]) and the theory of integrable systems (see [22]).
The main goal of this section is to recall Givental’s symplectic loop space and the corre-
sponding quantization formalism.

1.4.1. Finite dimensional symplectic vector spaces. We would like to explain
the idea of Givental’s quantization first in the case of a finite dimensional symplectic
vector space. The advantage is that now we can use the notion of holomorphic functions
and holomorphic vector fields, which will help us to understand the formal definitions in
the infinite dimensional case.

1.4.1.1. Holomorphic symplectic manifolds. Symplectic geometry is usually embed-
ded in the category of real smooth manifolds (see [5] for some background). The defi-
nitions however make sense also in the category of complex manifolds. Let us recall the
basic terminology. A complex manifold H is said to be holomorphic symplectic if it is
equipped with a global holomorphic 2-form ω which is closed and non-degenerate, that
is, dω = 0 and if v ∈ TtH satisfies ω(v, w) = 0 for all w ∈ TtH, then v = 0. Let us recall
the operation ιX of contraction a holomorphic form by a holomorphic vector field X. If
ω is a 1-form, then ιXω = 〈ω,X〉 is just the natural pairing between sections of TH and
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its dual T ∗H. For higher-degree forms ιX is extended uniquely in such a way that the
graded Leibnitz rule holds

ιX(ω1 ∧ ω2) = ιX(ω1) ∧ ω2 + (−1)p1ω1 ∧ ιX(ω2),

where ω1 is a holomorphic p1-form. If ω is a p-form and X1, . . . , Xp are holomorphic
vector fields, then we put

ω(X1, . . . , Xp) := ιXp · · · ιX1
ω.

Every holomorphic function h ∈ O(H) determines a holomorphic vector fieldX, such that,
dh = −ιXω. The vector field X is called Hamiltonian and the corresponding holomorphic
function h is called the Hamiltonian of X. Let us denote by Xh the Hamiltonian vector
field corresponding to h. The algebra of holomorphic functions O(H) is equipped with a
Poisson bracket

{f, g} := ω(Xf , Xg) = ιXg ιXfω, f, g ∈ O(H).

In other words, the bracket { , } is a Lie bracket satisfying the Leibniz rule

{f, g1g2} = {f, g1}g2 + g1{f, g2}, f, g1, g2 ∈ O(H).

The standard example of a holomorphic symplectic manifold is C2n with symplectic form

(1.29) ω := dp1 ∧ dq1 + · · ·+ dpn ∧ dqn,
where (q1, . . . , qn, p1, . . . , pn) is the standard coordinates systems on C2n. The Poisson
bracket takes the following form:

(1.30) {f, g} :=

n∑
i=1

( ∂f
∂pi

∂g

∂qi
− ∂f

∂qi

∂g

∂pi

)
, f, g ∈ O(C2n).

The holomorphic version of the Darboux theorem holds – the proof in the real case works
in the holomorphic case too. In other words, every point of a holomorphic symplectic
manifold admits a local holomorphic coordinate system (q1, . . . , qn, p1, . . . , pn), such that,
the symplectic form and the Poisson bracket take the form respectively (1.29) and (1.30).
The coordinates (q1, . . . , qn, p1, . . . , pn) are called Darboux coordinates. Note that the
Poisson bracket of the Darboux coordinates takes the form

{pi, qj} = δi,j , {pi, pj} = {qi, qj} = 0, 1 ≤ i, j ≤ n.
We will refer to these relations as the canonical Poisson bracket relations. Note that a
holomorphic coordinate system consists of Darboux coordinates if and only if the coordi-
nate functions satisfy the canonical Poisson bracket relations.

1.4.1.2. Symplectic vector spaces. Suppose that (H,Ω) is a finite dimensional sym-
plectic vector space H. The tangent bundle TH has a natural trivialization defined via
the linear structure on H

H×H ∼= TH, (v, w) 7→ Xw(v),

where Xw(v) ∈ TvH = Der(OH,v,C) is the directional derivative

Xw(v)f =
d

dε
f(v + εw)

∣∣∣∣
ε=0

, f ∈ OH,v.

Using the trivialization we can extend the symplectic pairing Ω to a symplectic form ω
on H. The form ω is uniquely determined by the following relation:

ω(Xw′ , Xw′′) = Ω(w′, w′′), w′, w′′ ∈ H.
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Given w ∈ H, let us denote by hw ∈ O(H) the linear function defined by hw(v) := Ω(v, w).

Proposition 1.23. a) For every w ∈ H, the vector field Xw is Hamiltonian with
Hamiltonian hw.

b) The Poisson bracket {hw′ , hw′′} = Ω(w′, w′′).

Proof. a) We have to prove that dhw = −ιXwω. Since every holomorphic vector
field on H is a OH-linear combination of vector fields of the form Xw′ , it is sufficient to
check that ιXw′dhw = −ιXw′ ιXwω. The LHS is

Xw′hw(v) =
d

dε
hw(v + εw′)

∣∣∣∣
ε=0

= Ω(w′, w) = ω(Xw′ , Xw)

which is exactly what we have to prove. Part b) follows from a) and the definition of the
Poisson bracket. �

Suppose that A : H → H is a linear transformation. Let XA be the vector field on
H which under the trivialization isomorphism TH ∼= H × H takes the form XA(v) :=
−Av ∈ H ∼= TvH. A linear transformation A is said to be an infinitesimal symplectic
transformation if

Ω(Av,w) + Ω(v,Aw) = 0, ∀v, w ∈ H.

The set of all infinitesimal symplectic transformations is a complex Lie algebra with
bracket the commutator [A,B] := AB − BA. Let us denote by sp(H,Ω) the Lie algebra
of all infinitesimal symplectic transformations. If the symplectic form Ω is understood
from the context we will simply write sp(H) instead of sp(H,Ω). Given A ∈ sp(H), let
us denote by hA ∈ O(H) the quadratic function defined by hA(v) := 1

2Ω(Av, v).

Proposition 1.24. a) The vector field XA is Hamiltonian if and only if A ∈ sp(H).
In addition, if XA is Hamiltonian, then the corresponding Hamiltonian is hA.

b) The following commutation relations hold:

{hA, hB} = h[A,B], A,B ∈ sp(H)

and

{hA, hw} = hAw, A ∈ sp(H), w ∈ H.

Proof. a) Just like in the proof of Proposition 1.23, it is sufficient to prove that if
there exists an h ∈ O(H), such that,

ιXwdh = −ιXw ιXAω = ω(Xw, XA),

then A ∈ sp(H) and h = hA + const . Since the symplectic pairing Ω is non-degenerate,
there exists a pair of bases {φi}2ni=1 and {φi}2ni=1, such that, Ω(φi, φj) = δij for all 1 ≤
i, j ≤ 2n. Note that every w ∈ H can be written in the form w =

∑2n
i=1 Ω(φi, w)φi. In

particular,

Av =

2n∑
i=1

Ω(φi, Av)φi ⇒ XA = −
2n∑
i=1

Ω(φi, Av)Xφi .

Therefore,

ω(Xw, XA)(v) = −
2n∑
i=1

Ω(φi, Av)ω(Xw, Xφi) = −
2n∑
i=1

Ω(φi, Av)Ω(w, φi) = Ω(Av,w).



1.4. GIVENTAL’S QUANTIZATION FORMALISM 25

On the other hand, the function (ιXwdh)(v) = (Xwh)(v) is linear in v for all w ∈ H if
and only if , up to a constant, h is quadratic in v. Note that every quadratic function
on H can be written in the form h(v) = 1

2Ω(Bv, v) for some linear transformation B.

Since Ω is non-degenerate, every linear transformation B has a transpose BT defined by
Ω(BT v, w) := Ω(v,Bw). We have (BT )T = B and B ∈ sp(H) if and only if BT = −B.
Replacing B by 1

2 (B −BT ) if necessary, we may assume that B ∈ sp(H). We have

(ιXwdh)(v) =
d

dε

1

2
Ω(B(v + εw), v + εw)

∣∣∣∣
ε=0

=
1

2

(
Ω(Bw, v) + Ω(Bv,w)

)
= Ω(Bv,w).

Therefore, XA will be Hamiltonian if and only if A = B which completes the proof of a).
Let us prove b). Just like in a) we have

XA = −
2n∑
i=1

Ω(φi, Av)Xφi ,

a similar formula for XB , and ω(Xφi , Xφj ) = Ω(φi, φj). We get

{hA, hB}(v) = ω(XA, XB)(v) =

2n∑
i,j=1

Ω(φi, Av)Ω(φj , Bv)Ω(φi, φj) = Ω(Av,Bv).

On the other hand

h[A,B](v) =
1

2
Ω([A,B]v, v) =

1

2
(Ω(ABv, v)− Ω(BAv, v)) = Ω(Av,Bv),

where we used that A and B are infinitesimal symplectic transformations to transform
Ω(BAv, v) = −Ω(Av,Bv) and

Ω(ABv, v) = −Ω(Bv,Av) = Ω(Av,Bv).

For the 2nd commutation relation we use a similar argument. Namely,

{hA, hw}(v) = −
2n∑
i=1

Ω(φi, Av)Ω(φi, w) = −Ω(Av,w) = Ω(v,Aw) = hAw(v). �

1.4.1.3. Quantization of at most quadratic Hamiltonians. Suppose that (H,Ω) is a
finite dimensional symplectic vector space equipped with a polarization H = H+ ⊕H−.
Note that the subspaces H+ and H− are dual to each other, that is, using the symplectic
form Ω we can identify H− (resp. H+) with the dual of H+ (resp. H−). There is a
natural way to construct Darboux coordinates from the polarization. Let us fix a basis
φi (1 ≤ i ≤ n) of H+. The Lagrangian subspace H− has a uniquely determined basis
φi (1 ≤ i ≤ N), such that, Ω(φi, φj) = δij for all 1 ≤ i, j ≤ n. Let us define the linear
functions

pi(v) := Ω(v, φi), qi(v) := Ω(φi, v), 1 ≤ i ≤ n.
We have an isomorphism of complex vector spaces

ϕ : H→ C2n, v 7→ (q1(v), . . . , qn(v), p1(v), . . . , pn(v)).

In other words, the functions (q1, . . . , qn, p1, . . . , pn) are global holomorphic coordinates
on the complex manifold H. Note that in the notation from the previous section pi = hφi
and qi = −hφi . Recalling Proposition 1.23 we get

{pi, qj} = −Ω(φi, φ
j) = δi,j , 1 ≤ i, j ≤ n.
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Similarly, {pi, pj} = {qi, qj} = 0. Therefore, the coordinate functions (q1, . . . , qn, p1, . . . , pn)
satisfy the canonical Poisson bracket relations, that is, (q1, . . . , qn, p1, . . . , pn) is a Darboux
coordinate system on H.

Let ~ be a positive real number. Given a polynomial function h ∈ C[q1, . . . , qn, p1, . . . , pn],

we denote by ĥ the differential operator obtained from h by the following two operations:

(i) Normal ordering: for every monomial of h, move each p-variable to the right of
all q-variables.

(ii) Substitution:

qi 7→ qi/
√
~, pi 7→

√
~
∂

∂qi
, 1 ≤ i ≤ n.

For example, (p3
1q1q2)̂=

√
~q1q2

∂3

∂q31
. Let us denote by g the vector space of all polyno-

mials h of degree ≤ 2. Note that if h1, h2 ∈ g, then {h1, h2} ∈ g. Therefore, g is a Lie
algebra. Let us define a cocycle C on g. Recall that a 2-cocycle on g with coefficients in
C is a bi-linear form C : g× g→ C satisfying the following two conditions:

(i) Skew-symmetry: C(h1, h2) = −C(h2, h1) for all h1, h2 ∈ g.
(ii) Jacobi identity:

C(h1, {h2, h3}) = C({h1, h2}, h3) + C(h2, {h1, h3}), h1, h2, h3 ∈ g.

Every 2-cocycle with coefficients in C defines a central extension, i.e., the bracket

[(h1, c1), (h2, c2)] := ({h1, h2}, C(h1, h2)), h1, h2 ∈ g, , c1, c2 ∈ C,
is a Lie bracket on g ⊕ C. Let us define a skew-symmetric bilinear pairing C on g, such
that,

(i) If h1 or h2 have degree ≤ 1, then C(h1, h2) = 0.
(ii) If h1 and h2 are quadratic Darboux monomials, then C(h1, h2) is non-zero only

in the following two cases:

C(pipj , qiqj) = 1 (1 ≤ i 6= j ≤ n), C(p2
i , q

2
i ) = 2 (1 ≤ i ≤ n).

Proposition 1.25. If h1, h2 ∈ g, then

[ĥ1, ĥ2] = {h1, h2}̂+ C(h1, h2).

The proof of Proposition 1.25 is straightforward and it will be left as an exercise. In other

words, the map h 7→ ĥ defines a projective representation of g on the space C[q1, . . . , qn]

of polynomial functions on H+. We will say that ĥ is the quantization of h.
Let us finish this subsection by giving a closed formula for the co-cycle C. Note that

according to Propositions 1.23 and 1.24, we have the following isomorphism of vector
spaces:

C×H× sp(H) ∼= g, (c, w,A) 7→ c+ hw + hA,

and the Poisson bracket on g becomes

{(c1, w1, A1), (c2, w2, A2)} = (Ω(w1, w2), A1w2 −A2w1, [A1, A2]).

Let J : H → H be the linear operator defined by the following two conditions: J(v) = v
for all v ∈ H+ and J(v) = −v for all v ∈ H−. Note that J is an infinitesimal symplectic
transformation. We have

(1.31) C((c1, w1, A1), (c2, w2, A2)) =
1

2
Tr (A1JA2).
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1.4.2. The symplectic loop space. Let H be a finite-dimensional complex vector
space of complex dimension N . Suppose that H is equipped with a distinguished vector 1
and a non-degenerate, symmetric bi-linear pairing ( , ). Let H[z, z−1] be the vector space
of Laurent polynomials in z with ceofficients in H. Following Givental, we introduce the
symplectic form

(1.32) Ω(f, g) = Resz=0(f(−z), g(z))dz, f, g ∈ H[z, z−1],

where the residue is understood formally as the coefficient in front of dz/z. The vector
space H[z, z−1] is equipped with a topology in which a basis of open neighborhoods of 0 is
given by the vector subspaces z−nH[z−1] (n = 1, 2, . . . ). The completion of H[z, z−1] with
respect to the above topology is naturally identified with the vector space H := H((z−1))
consisting of formal Laurent series in z−1 with coefficients in H. Moreover, if we equip
C with the discrete topology, then the symplectic pairing Ω defines a continuous map
H[z, z−1] × H[z, z−1] → C. Therefore, Ω extends by continuity to a skew-symmetric
bilinear pairing on H. It is easy to check that (H,Ω) is a symplectic vector space. We
will refer to it as the symplectic loop space. The symplectic vector space H has a standard
polarization H = H+ ⊕H−, where H+ := H[z] and H− := H[[z−1]]z−1 are Lagrangian
subspaces.

Let us fix a pair of bases {φi}Ni=1 and {φi}Ni=1 of H dual with respect to the pairing:
(φi, φ

j) = δi,j . Note that φiz
k (1 ≤ i ≤ N, k ≥ 0) is a basis of H+ and that

Ω(φi(−z)−k−1, φjz
l) = δij δkl, 1 ≤ i, j ≤ N, k, l ≥ 0.

Motivated by our discussion in the finite dimensional case (see Section 1.4.1.3) we intro-
duce the linear functions on H defined by

pk,i(v) := Ω(v, φiz
k), qk,i(v) := Ω(φi(−z)−k−1, v), v ∈ H

and we will refer to them as Darboux coordinates on H. Note that

v =

∞∑
k=0

N∑
i=1

pk,i(v)φi(−z)−k−1 +

∞∑
k=0

N∑
i=1

qk,i(v)φiz
k, v ∈ H,

so the values of pk,i and qk,i on a given vector v ∈ H uniquely determine v.
We will be interested in linear and quadratic Hamiltonians on H. The former are

defined just like in the finite dimensional case, that is,

hf (v) := Ω(v, f), f ∈ H.

In order to define quadratic Hamiltonians however, we have to be a little bit more careful
with the choice of an infinitesimal symplectic transformation. By definition, the vector
space H has a topology in which a basis of open neighborhoods of 0 ∈ H is given by the
subspaces z−nH− (n ∈ Z). Some subset U ⊂ H is open if for every f ∈ U , there exists an
integer n, such that, f + z−nH− ⊂ U . Let us denote by sp(H) the set of all continuous
infinitesimal symplectic transformations, that is, linear transformations A : H→ H, such
that,

Ω(Av,w) + Ω(v,Aw) = 0, ∀v, w ∈ H

and for every n ∈ Z, there exists k0 ∈ Z, such that, A(z−kH−) ⊂ z−nH− for all k ≥ k0.
Let us characterize the matrices of the linear operators in sp(H). Suppose that A : H→ H
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is a linear transformation. Let us define the numbers Aabki,lj (a, b ∈ {+,−}, 1 ≤ i, j ≤ N ,

k, l ≥ 0) by the following decompositions

Aφjz
l =:

∞∑
k=0

N∑
i=1

A++
ki,ljφiz

k +

∞∑
k=0

N∑
i=1

A−+
ki,ljφ

i(−z)−k−1,

Aφj(−z)−l−1 =:

∞∑
k=0

N∑
i=1

A+−
ki,ljφiz

k +

∞∑
k=0

N∑
i=1

A−−ki,ljφ
i(−z)−k−1.

Let us consider matrices whose rows and columns are enumerated by pairs (k, i) where
k ≥ 0 and 1 ≤ i ≤ N are integers. Let Aab be the matrix with entries Aabki,lj . We will refer

to the block matrix

[
A++ A+−

A−+ A−−

]
as the matrix of the linear operator A with respect to

the basis φiz
k, φi(−z)−k−1 (1 ≤ i ≤ N, k ≥ 0).

Proposition 1.26. Suppose that Aab (a, b ∈ {+,−}) are matrices with entries Aabki,lj

given by some complex numbers. The block matrix

[
A++ A+−

A−+ A−−

]
is a matrix of some

operator A ∈ sp(H) if and only if the following conditions are satisfied:

(i) The matrices Aab with (a, b) = (+,−) or (−,+) are symmetric, that is, Aabki,lj =

Aablj,ki for all (k, i) and (l, j).

(ii) (A++)T = −A−−, that is, A++
ki,lj = −A−−lj,ki for all (k, i) and (l, j).

(iii) The matrix A+− has only finitely many non-zero entries.
(iv) Each column (resp. row) of the matrix A++ (resp. A−−) has only finitely many

non-zero entries.

The proof is straightforward and it will be left as an exercise. The quadratic Hamil-
tonian

hA(v) :=
1

2
Ω(Av, v), A ∈ sp(H),

takes the form

(1.33) hA =
1

2

∞∑
k,l=0

N∑
i,j=1

(
−A++

ki,ljpk,iql,j −A
+−
ki,ljpk,ipl,j +A−+

ki,ljqk,iql,j +A−−ki,ljqkiplj

)
,

while the linear Hamiltonian becomes

(1.34) hf =

∞∑
k=0

N∑
i=1

(
pk,iΩ(φi(−z)−k−1, f) + qk,iΩ(φiz

k, f)
)
.

Let g be the vector subspace of C[p][[q]] consisting of at most quadratic elements. More
precisely, here p := (pk,i), q := (qk,i) (1 ≤ i ≤ N, k ≥ 0), and the elements of g are
formal power series in q whose coefficients are polynomials in p and such that the degree
of each Darboux monomial is ≤ 2. Note that hf , hA ∈ g and that just like in the finite
dimensional case we have an isomorphism

(1.35) C×H× sp(H) ∼= g, (c, f, A) 7→ c+ hf + hA.
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Lemma 1.27. The vector space C[p][[q]] is a Poisson algebra with Poisson bracket

{f, g} :=

∞∑
k=0

N∑
i=1

( ∂f

∂pk,i

∂g

∂qk,i
− ∂f

∂qk,i

∂g

∂pk,i

)
Proof. We have to check that the above formula for the Poisson bracket makes sense

and that the value {f, g} ∈ C[p][[q]]. Let us introduce the following notation. Given a
sequence α = (αki) (k ≥ 0, 1 ≤ i ≤ N) of non-negative integers, such that, αk,i 6= 0
for only finitely many (k, i), let us define qα :=

∏
k,i q

αk,i
k,i and similarly pα =

∏
k,i p

αk,i
k,i .

Every element f ∈ C[p][[q]] can be written in the form

f =
∑
α,β

fα,βqαpβ , fα,β ∈ C,

where the sum is over all sequences α = (αk,i) and β = (βk,i) of the above form. Note
that for each α, the coefficients fα,β 6= 0 only for finitely many β. With this notation we
have

(1.36)
∂f

∂pk,i

∂g

∂qk,i
=
∑
α,β

( ∑
α′≤α,β′≤β

(β′ki + 1)(α′′ki + 1)fα′,β′+1kigα′′+1ki,β′′

)
qαpβ ,

where the 1st sum on the RHS is over all sequences α and β, the 2nd sum is over all
sequences α′ and β′, such that, α′lj ≤ αlj and β′lj ≤ βlj for all (l, j), 1ki is the sequence

which has only one non-zero entry which is 1 and it is in position (k, i), and α′′ := α−α′
and β′′ := β − β′. If we fix α, then there are only finitely many possibilities for α′ and
hence the coefficient fα′,β′+1ki is non-zero only for finitely many β′ and finitely many pairs
(k, i). Furthermore, since α′′ ≤ α we have finitely many choices for α′′. Recall that we
have already concluded that there are finitely many choices for (k, i), therefore, the range
of α′′ + 1ki is finite. Therefore, the range for β′′ is also finite. In particular, β = β′ + β′′

will take only finitely many values. We get that the sum over all (k, i) in (1.36) makes
sense and that the resulting formal power series is an element of C[p][[q]]. �

The Poisson bracket {h1, h2} ∈ g for all h1, h2 ∈ g. Therefore, g is a Lie algebra with
Lie bracket { , }. The commutation relations remain the same as in the finite dimensional
case.

Proposition 1.28. The following formulas hold:
a) {hf , hg} = Ω(f, g) for all f, g ∈ H.
b) {hA, hf} = hAf for all A ∈ sp(H) and f ∈ H.
c) {hA, hB} = h[A,B] for all A,B ∈ sp(H).

The proof of Proposition 1.28 is a straightforward computation using the explicit
formulas (1.33) and (1.34). Note that Proposition 1.28 can be stated equivalently as
follows: under the isomorphism (1.35), the Lie bracket on g takes the form

{(c1, f1, A1), (c2, f2, A2)} = (Ω(f1, f2), A1f2 −A2f1, [A1, A2]),

1.4.3. Quantization. Given an element h ∈ g, just like in the finite dimensional

case, we can construct a formal differential operator ĥ. Namely, for each monomial in the
formal power series h, we move each p-variable to the right of all q-variables and then
substitute

qk,i 7→ qk,i/
√
~, pk,i 7→

√
~

∂

∂qk,i
, k ≥ 0, 1 ≤ i ≤ N.
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Recalling formulas (1.34) and (1.33), we get

ĥA =
1

2

∞∑
k,l=0

N∑
i,j=1

(
−A++

ki,ljql,j
∂

∂qk,i
−A+−

ki,lj~
∂2

∂qk,i∂ql,j
+A−+

ki,lj~
−1qk,iql,j +A−−ki,ljqki

∂

∂ql,j

)
and

ĥf =

∞∑
k=0

N∑
i=1

(
Ω(φi(−z)−k−1, f)

√
~

∂

∂qk,i
+ Ω(φiz

k, f)
1√
~
qk,i

)
.

Just like in the finite dimensional case, let us define the 2-cocycle C : g × g → C, such
that, C(h1, h2) = 0 if h1 or h2 is at most linear, while on a pair of quadratic Darboux
monomials, the cocycle is non-zero only in the following cases:

C(pk,ipl,j , qk,iql,j) = 1 if (k, i) 6= (l, j), C(p2
k,i, q

2
k,i) = 2.

Under the isomorphism (1.35), the cocycle takes the form

C((c1, f1, A1), (c2, f2, A2)) =
1

2
Tr(A−+

1 A+−
2 −A+−

1 A−+
2 ),

where Aabi (1 ≤ a, b ≤ 2) are the blocks of the matrix of the operator Ai with respect to
the basis φiz

k, φi(−z)−k−1 (k ≥ 0, 1 ≤ i ≤ N). Note that the above trace exists because
the matrices A+−

i have finitely many non-zero entries.

Remark 1.29. The formula for the 2-cocycle C in the finite dimensional settings (see
(1.31)) can not be applied directly. Namely, one has to rewrite formula (1.31) in terms of
the blocks of the matrices A1 and A2. Indeed, we have

A1JA2 =

[
A++

1 A++
2 −A+−

1 A−+
2 A++

1 A+−
2 −A+−

1 A−−2

A−+
1 A++

2 −A−−1 A−+
2 A−+

1 A+−
2 −A−−1 A−−2

]
Recalling Proposition 1.26, we get A−−1 A−−2 = (A++

2 A++
1 )T . In the finite dimensional

case, we would have Tr(A++
1 A++

2 ) = Tr(A−−1 A−−2 ), so the trace of A1JA2 would coincide
with the trace of A−+

1 A+−
2 − A+−

1 A−+
2 . Note that in the infinite dimensional case, the

trace A++
1 A++

2 might fail to exist. �

Let us denote by d the following Lie algebra of differential operators:

C⊕
⊕
k,i

(
C~−1/2qk,i + C~1/2 ∂

∂qk,i

)
⊕
⊕
k,i

⊕
l,j

(
C~−1qk,iql,j + Cqk,i

∂

∂ql,j
+ C~

∂2

∂qk,i∂ql,j

)
where the Lie bracket is the usual commutator of differential operators. Let us equip the
vector space d with a topology, such that, a basis of neighborhoods of 0 is given by the
vector subspaces Vn(d) (n ∈ Z≥0) spanned by elements of the form

~−1/2qk,i, ~−1qk,iql,j , qk,i
∂

∂ql,j
,

where l, j, i are arbitrary and k ≥ n. The topological space d is Hausdorf and the two
operations (P,Q) 7→ P −Q and (P,Q) 7→ [P,Q] define continuous maps d × d → d .

Remark 1.30. Note that d is not a topological vector space in the sense of functional
analysis, because the scalar multiplication operation C × d → d , (λ, P ) 7→ λP is not
continuous (see [61]). However, if we equip C with the discrete topology, then scalar
multiplication does define a continuous map. �
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The quantized Hamiltonians ĥ for h ∈ g belong to the completion d of d with respect
to the above topology. Moreover, one can check that the commutator in d extends
continuously to the completion d , that is, d is a Lie algebra whose Lie bracket defines a
continuous map d × d → d .

Proposition 1.31. The following formula holds:

[ĥ1, ĥ2] = {h1, h2}̂+ C(h1, h2), ∀h1, h2 ∈ g.

Proof. Let us outline the key steps in the proof leaving the details as an exercise.

The map h 7→ ĥ defines a linear isomorphism g → d , so the topology on d induces a
topology on g, such that, the quantization map becomes a homeomorphism of topological
vector spaces. Now one has to check that the Poisson bracket { , } : g × g → g is a
continuous map. Both sides of the identity that we want to prove are continuous bilinear
maps g × g → d . Therefore, it is sufficient to check the identity when h1 and h2 are
Darboux monomials which is straightforward. �

1.4.4. Completed Fock spaces. Our goal now is to introduce the vector spaces
on which the quantized Hamiltonians will act. Let ~ be a formal variable. Given a
commutative associative C-algebra K, let us denote by K~ := K((~1/2)) the algebra of all
formal Laurent series in ~1/2 with coefficients in K. We will be interested also in the set
C[K~] of all formal finite sums

c1e
a1 + · · ·+ cre

ar , ci ∈ C, ai ∈ K~.

Let us define a multiplication( r∑
i=1

c′ie
a′i

)
·
( r∑
j=1

c′′j e
a′′j

)
:=

r∑
i,j=1

c′ic
′′
j e
a′i+a

′′
j .

Then C[K~] is a commutative associative algebra known as the group algebra of Kh.

Remark 1.32. Our motivation to introduce C[K~] comes from the generating func-

tions in Gromov–Witten theory. They usually have the form e
∑∞
g=0 F(g)(q)~g−1

, where
each F (g)(q) is a formal power series in q. We would like to consider shifts q 7→ q +

√
~f

and think of the resulting series as a formal power series in q with coefficients in C~.
However, sometimes the series F (g) have constant terms and the exponentiation does not
make sense. A natural solution of this complication is to interpret the exponential of the
constant term as an element in the group algebra C[C~]. �

Suppose that a ∈ H+. Let ak =
∑N
i=1 ak,iφi ∈ H be the coefficients in the expansion

a =:
∑∞
k=0 akz

k. In this section we will be interested in sequences m = (mk,i), k ≥ 0,
1 ≤ i ≤ N , such that, mk,i are non-negative integers and only finitely many of them are
non-zero. We will refer to such sequences as sequences of finite energy and the number
||m|| :=

∑
k,i(k + 1)mk,i will be called the energy of m. Let us introduce the following

multi-index notation: (q − a)m :=
∏
k,i(qk,i − ak,i)mk,i . Our main interest is in vector

spaces of the following form:

ÔH+,a := C~[[q0 − a0, q1 − a1, . . . , ]]⊗ C[C~],
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that is, the ring of formal power series in the shifted variables qk,i − ak,i. Elements of

ÔH+,a are infinite sums of the form

f =
∑
φ

∑
m

fm,φ(q− a)meφ, fm,φ =
∑
g≥g0

f
(g)
m,φ~

g−1 ∈ C~,

where the first sum is over a finite set of φ ∈ C~ and the second sum is over all sequences

m = (mk,i) of finite energy. The complex numbers f
(g)
m,φ will be called the coefficients of

the formal series f ∈ ÔH+,0. Let us equip ÔH+,a with a topology, such that, a basis of
neighborhoods of 0 is given by the following subspaces:

Vn(ÔH+,a) :=
{∑

φ

∑
m:||m||≥n

fm,φ(q− a)meφ | fm,φ ∈ C~

}
, n ∈ Z.

Informally, we can think of ÔH+,a as the completion of the local ring of C~-valued func-
tions on H+ holomorphic at a.

Before we continue further, it is convenient to introduce the following notation. Given

f ∈ H and A ∈ sp(H) let us define f̂ := ĥf and Â := ĥA. In other words, we have a map̂ : C×H× sp(H)→ d , (c, f, A) 7→ c+ f̂ + Â,

where d is the completed Lie algebra of differential operators in q of order ≤ 2. Recalling
Propositions 1.28 and 1.31 we get the following commutation relations.

Proposition 1.33. The following identities hold.

a) [f̂ , ĝ] = Ω(f, g) for all f, g ∈ H.

b) [Â, f̂ ] = (Af)̂ for all f ∈ H and A ∈ sp(H).

c) [Â, B̂] = [A,B]̂+ C(A,B), where A,B ∈ sp(H) and C(A,B) := C(hA, hB) is
the 2-cocycle defined above (see Proposition 1.31). �

The vector space ÔH+,a has a natural structure of a d -module. It is straightforward

to check that the action of d extends by continuity to the completion d . In other words,

all vector spaces ÔH+,a are d -modules and the map d × ÔH+,a → ÔH+,a defined by the
action is continuous.

The differential operators in d of order ≤ 1 form a Lie subalgebra, which is a central
extension of an abelian Lie algebra. Such central extensions are usually called Heisenberg
Lie algebras and their irreducible representations are called Fock spaces. Slightly abusing

the terminology we will refer to ÔH+,a as a Fock space, although it is a completion of a
Fock space.

1.4.5. Lower-triangular symplectic transformations. Suppose that

S(z) = 1 + S1z
−1 + S2z

−2 + · · · ∈ End(H)[[z−1]]

is a formal operator series. The series S(z) defines naturally a linear transformation of
H:

S(z)f :=
∑
n∈Z

(
fn +

∞∑
k=1

Sk(fn+k)
)
zn, f =

∑
n∈Z

fnz
n ∈ H,

where note that for each n ∈ Z the sum over k must be finite because fn+k = 0 for
k � 0. Similarly, since for n sufficiently big fn+k = 0 for all k ≥ 0, we get that the above
formula takes values in H, that is, the powers of z are bounded from above. We will
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refer to linear tranformations of the above form as lower-triangular. Suppose now that
S(z) is a lower triangular symplectic transformation. There exists a unique infinitesimal
symplectic tranformation

A(z) = A1z
−1 +A2z

−2 + · · · ∈ End(H)[[z−1]]z−1,

such that, S(z) = eA(z). The exponential of A(z) is convergent in the topology of point-
wise convergence in End(H), that is, for every f ∈ H the series

∑∞
n=0

1
n!A(z)nf converges

in the topology of H introduced above. The linear transformation A(z) is continuous

because A(z)z−nH− ⊂ z−n−1H− ⇒ A(z) ∈ sp(H). Let us denote by Â the quantization
of A(z). It is easy to see from the explicit formula for hA(z) (see formula (1.40) below),

that the operator Â increases the energy of every monomial qm (see Section 1.4.4 for the

definition of energy). Therefore, the action of the operator Â on the Fock space ÔH+,0

can be exponentiated. The operator Ŝ := eÂ will be called the quantization of S(z). It

turns out that there is a simple formula for the action of Ŝ on the Fock space. In order
to state the formula we have to introduce the following quadratic form W on H+:

(1.37) W (f, g) =

∞∑
k,l=0

(fk,Wklgl),

where f =
∑∞
k=0 fkz

k, g =
∑∞
l=0 glz

l ∈ H+, and the linear operators Wkl ∈ End(H) are
defined by the following identity:

(1.38)

∞∑
k,l=0

Wklz
−kw−l :=

S(z)TS(w)− 1

z−1 + w−1
.

Proposition 1.34. The following properties hold:

a) We have: Wkl =
∑k+1
i=1 (−1)i+1STk+1−iSl+i.

b) We have: (Wkl)
T = Wlk, that is, W (f, g) = W (g, f) is a symmetric form.

c) We have: W (f, g) = Ω((Sf)+, Sg). �

The proof of Proposition 1.34 is straightforward and it is left as an exercise.

Lemma 1.35. Suppose that S(z) = 1 +S1z
−1 + · · · is a symplectic transformation in

H and that F ∈ ÔH+,0. Then

(1.39) Ŝ−1F(q) = e
1
2~W (q,q)F([Sq]+),

where f+ means the projection of f ∈ H on H+ along H− and

W (q,q) :=

∞∑
k,l=0

(qk,Wklql) =

∞∑
k,l=0

N∑
i,j=1

(φi,Wklφj)qk,iql,j .

Proof. Put S(z) = eA(z), where A(z) =
∑
k≥1Akz

−k. It is convenient to introduce
the following notation

q(z) =

∞∑
k=0

qkz
k =

∞∑
k=0

N∑
a=1

qk,aφaz
k,

p(z) =

∞∑
k=0

pk(−z)−k−1 =

∞∑
k=0

N∑
a=1

pk,aφ
a(−z)−k−1,
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and to introduce the residue pairing on H:

(f(z),g(z)) := Resz=0(f(z),g(z)).

The quadratic Hamiltonian corresponding to A is − 1
2 (Aq,q(−z))− (Ap,q(−z)), that is,

(1.40) hA =
1

2

∑
m,l

(−1)m+1(Am+l+1ql, qm) +
∑
k,l≥0

(−1)k(Akpl, qk+l).

Put G(t,q) = e−tÂF and let us compute G for all t. The theorem would follow from the

case t = 1. Note that G is a solution to the differential equation ∂tG = −ÂG, which after
the substitution g = log G, turns into:

(1.41)
∂g

∂t
=

1

2~
(Aq,q(−z)) +

∞∑
k=0

N∑
a=1

(Aφa(−z)−k−1,q(−z)) ∂g

∂qk,a
.

This is a 1-st order PDE which we solve by the method of the characteristics.
Step 1. First, we solve the homogeneus equation, that is,

∂g

∂t
=
∑
k,a

(Aφa(−z)−k−1,q(−z)) ∂g

∂qk,a
,

where g(t,q) is a formal power series in ÔH+,0 whose coefficients depend smoothly on
t ∈ C. Let us apply the method of the characteristics as if the solutions g(t,q) were
smooth functions depending on finitely many variables. The auxiliarly system of ODEs
is

∂qk,a
∂t

= −(Aφa(−z)−k−1,q(−z)) ⇔ ∂q

∂t
= −[Aq]+.

Notice that [A[. . . [Aq]+]]+ = [Anq]+, where on the LHS A is repeated n times. Therefore,
the above system of ODEs has the following solution: q(t) = [e−tAc]+, where c = q(0) ∈
H+ = H[z] is an initial condition. The method of the characteristics is based on the fact
that the solutions g(t,q) of the PDE are constant along the curves (t,q(t)) ∈ C ×H+.
From here we find that if (t,q) ∈ C×H+ is any point then the curve (s,q(s)) with initial
condition (0, [etAq]+) will pass through the point (t,q). Therefore, the general solution
of the PDE is given by: g(t,q) = f([etAq]+), where f is an arbitrary function on H+.

The key ingredients of the above argument make sense in our infinite dimensional

settings too. Namely, put f(q) := g(0,q) ∈ ÔH+,0. We claim that g(t,q) = f([etAq]+).

Note that this is an identity between formal power series in ÔH+,0 whose coefficients are
smooth functions in t. Let us fix t ∈ C and consider the following family G(s,q) :=

g(s, [e(t−s)Aq]+) ∈ ÔH+,0, where s ∈ C. Using the chain rule and the partial differential
equations for g, it is easy to check that ∂sG(s,q) = 0, that is, G(s,q) is independent of
s. Therefore, g(t,q) = G(t,q) = G(0,q) = f([etAq]+).

Step 2: a direct computation shows that the function

Wt(q,q) =
1

2~
∑
k,l

(Wkl(t)ql, qk),

defined by the formula:∑
k,l≥0

Wkl(t)z
−kw−l =

eA
T (z)teA(w)t − 1

z−1 + w−1
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is a solution to (1.41).
We get that the general solution to (1.41) is given by g(t,q) = Wt(q,q)+f([etAq]+).

Note that for t = 0 we have G = F , and W0(q,q) = 0, so f = log F . The lemma
follows. �

Suppose now that a ∈ H+. We would like to exponentiate the action of Â on ÔH+,a.

There is a slight complication, because if we expand the quantized Hamiltonian ĥA in
the powers of q0 − a0, q1 − a1, . . . , where ak ∈ H are the coefficients in the expansion
a =

∑∞
k=0 akz

k, then we will have a translation term of the form
∑
k,l(φ

i, Akak+l)
∂

∂ql,i
.

Therefore, in order to exponentiate the action we have to interpret the resulting operator
as an operator between two different Fock spaces. Let us give the formal definition.
Suppose that S(z) = eA(z) is a lower-triangular symplectic transformation. The operator

(1.42) Ŝ−1
a : ÔH+,a → ÔH+,[S−1a]+

is defined as follows. Given F ∈ ÔH+,a, we can write uniquely F in the form G(q + a),
where G ∈ OH+,0. In other words, F is obtained from G via the substitutions qk 7→ qk+ak
(k ≥ 0). Then we define

(1.43) Ŝ−1
a F := e

1
2~W (q,q)G([Sq]+ + a).

The above definition is motivated by the formula in Lemma 1.35. The exponential
e

1
2~W (q,q) is interpreted in the following way: we write W (q,q) = W (b, b) + (W (q,q) −
W (b, b)), where b := [S−1a]+. Since b ∈ H[z], the quadratic form W can be evaluated at
b, while the term W (q,q)−W (b, b) is a formal power series in q0 − b0, q1 − b1, . . . which

can be exponentiated in ÔH+,b. We define

e
1
2~W (q,q) := e

1
2~W (b,b) e

1
2~ (W (q,q)−W (b,b)),

where the first exponential is interpreted formally as an element of C[C~], while the second

one takes value in the topological ring ÔH+,b. Note that

[S(q + b)]+ = [Sq + S[S−1a]+]+ = [Sq]+ + [S[S−1a]+]+ = [Sq]+ + a,

where in the third equality we used that S(H−) ⊆ H−. In other words, the function

G([Sq]+ + a) is obtained from G([Sq]+) ∈ ÔH+,0 via the substitution qk 7→ qk + bk
(k ≥ 0), where bk ∈ H are the coefficients of b in the expansion b =

∑∞
k=0 bkz

k.

1.4.6. Heisenberg group. The Fock space ÔH+,0 is isomorphic to all other Fock

spaces ÔH+,a via the natural isomorphism G(q) 7→ G(q + a). We would like to interpret
these isomorphisms in terms of the quantized action of linear Hamiltonians. If the function
G(q) is a polynomial in q, then by using Taylor’s formula we get

G(q + a) = e
∑∞
k=0

∑N
i=1 ak,i

∂
∂qk,i G(q),

where a =
∑∞
k=0 akz

k and ak =
∑n
i=1 ak,iφi. Note that the differential operator in

the exponent coincides with the quantized linear Hamiltonian 1√
~ â. On the other hand,

recalling the Baker–Campbell–Hausdorff formula and the commutation relations from
Proposition 1.33, a), we get

e
1√
~
f̂
e

1√
~
ĝ

= e
1
2~ Ω(f,g) e

1√
~

(f+g)̂
, f, g ∈ H.
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Let us introduce the set of formal symbols

Heis(H) := {ec/~ef | c ∈ C, f ∈ H} ∼= C×H

and define multiplication

ec1/~ef1 · ec2/~ef2 := e
1
~ (c1+c2+ 1

2 Ω(f1,f2))ef1+f2 , eci/~efi ∈ Heis(H).

It is straightforward to check that Heis(H) is a group. We will refer to it as the Heisenberg
group of the symplectic vector space H. Every element of the Heisenberg group can be
written uniquely in the form ec/~ef+ef− , where f+ ∈ H+ and f− ∈ H−. Let us quantize
the elements of the Heisenberg group by the following formula:

(1.44)
(
ec/~ef+ef−

)̂
:= ec/~e

1√
~
f̂+e

1√
~
f̂− ,

where for every a ∈ H+, the above expression is interpreted as an operator ÔH+,a →
ÔH+,a+f+ as follows. We have

1√
~
f̂− =

1

~
Ω(q, f−) = −1

~
Ω(a, f−) +

1

~
Ω(q + a, f−)

and we define

e
1√
~
f̂− = e−

1
~ Ω(a,f−)e

1
~ Ω(q+a,f−),

where the first exponential on the RHS is interpreted as an element of C[C~] and the

second one takes values in ÔH+,a. The operator e
1√
~
f̂+ , as we discussed above, is defined

to be the translation q 7→ q + f+. In particular, it is a map ÔH+,a → ÔH+,a+f+ . The

remaining expression ec/~ is interpreted as an element in the ring C[C~].

Put ÔH+
:=
⊔
a∈H+

ÔH+,a. Using Lemma 1.35 and the commutation relations from

Proposition 1.33, we get the following proposition.

Proposition 1.36. a) Formula (1.43) defines an action of the group of lower-triangular

symplectic transformations on ÔH+
.

b) The operators (1.44) define a representation of the Heisenberg group on ÔH+ .
c) Suppose that S is a lower-triangular symplectic transformation and f ∈ H, then

the following formula holds:

Ŝ ◦
(
ef
)̂◦ Ŝ−1 =

(
eSf
)
,̂

where the identity should be viewed as an identity between operators acting on ÔH+
.

Let us apply the formula from Proposition 1.36, c) to f = −S−1a for a ∈ H+ and

act with both sides of the identity on some F ∈ ÔH+,a. We get

Ŝ0 ◦
(
e−S

−1a
)̂◦ Ŝ−1

a F =
(
e−a
)̂F .

Solving for Ŝ−1
a F , we get the following formula:

Ŝ−1
a =

(
eS
−1a
)̂
Ŝ−1

0

(
e−a
)
.̂

Remark 1.37. It is possible to invert the logic here. Namely, we could have used

the above formula to define the operators Ŝ−1
a , prove Proposition 1.36, and finally use

Lemma 1.35 to prove that (1.43) holds. �
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1.4.7. Upper-triangular symplectic transformations. Let H((z)) be the vector
space of formal Laurent series in z with coefficients in H. Note that H((z)) is the comple-
tion of H[z, z−1] with respect to the topology in which the sets znH[z] (n = 1, 2, . . . ) form
a basis of neighborhood of 0. The symplectic form Ω (see (1.32)) on H[z, z−1] extends
by continuity to H((z)). Note that pk,i(v) = Ω(v, φiz

k) and qk,i(v) = Ω(φi(−z)−k−1, v)
are linear functions in v ∈ H((z)). Just like before (see Section 1.4.2) we introduce the
Poisson Lie algebra of at most quadratic Hamiltonians:

hf (v) := Ω(v, f), hA(v) =
1

2
Ω(Av, v), v, f ∈ H((z))

where A is an infinitesimal symplectic transformation of H((z)). The only difference
now is that both hf and hA take values in C[q][[p]]. An upper-triangular symplectic
transformation R(z) is a symplectic transformation of H((z)) of the form R(z) = 1+R1z+
R2z

2 + · · · ∈ End(H)[[z]]. There exists a unique infinitesimal symplectic transformation
A(z) =

∑∞
k=1Akz

k ∈ End(H)[[z]], such that, R(z) = eA(z). Note that the corresponding
quadratic Hamiltonian takes the form

(1.45) hA = −
∞∑

k,l=0

(Ak+1ql, pk+l+1) +
1

2

∞∑
k,l=0

(−1)l(Ak+l+1pl, pk),

where qk =
∑N
i=1 qk,iφi and pl =

∑N
i=1 pl,iφ

i. We would like to quantize R(z), that is,

define Â := ĥA and R̂ := eÂ, where quadratic Hamiltonians are quantized by the same
rules as before: for each Darboux monomial in hA put the p-variables on the right of all
q-variables and substitute qk,i 7→ ~−1/2qk,i and pk,i 7→ ~1/2∂/∂qk,i. Although the action

of Â on the entire Fock space ÔH+,a does not make sense, there is a certain subspace

Ôtame
H+,a

⊂ ÔH+,a on which the actions of both Â and R̂ are defined. For our purposes it

is sufficient to consider only the Fock spaces for which a = −1 z ∈ H+, where 1 ∈ H is
a non-zero vector. Let us assume that φ1 := 1. To avoid cumbersome notation we will

write ÔH+,−z for ÔH+,−1 z.

Remark 1.38. In the case of a Frobenius manifold, the above formalism is applied
to H := the space of flat vector fields and 1 := the unit vector field. �

Let us introduce first another sequence of formal vector variables t = (t0, t1, t2, . . . ),
so that tk = qk + δk,11. Recall that if m = (mk,i), k ≥ 0, 1 ≤ i ≤ N , is a sequence of
finite energy (i.e., finitely many non-zero elements), then we denoted by tm =

∏
k,i t

mk,i
k,i .

An element in the Fock space ÔH+,−z written in the form

(1.46) F =
∑
g∈ 1

2 Z

∑
m=(mk,i)

c(g)m ~g−1 tm

m!
,

where m! :=
∏
k,imk,i!, is said to be tame if c

(g)
m = 0 for all (g,m), such that,

∑
k,i kmk,i >

3g − 3 +
∑
k,imk,i. Here the coefficients c

(g)
m take value in the group ring C[C~]. It is

convenient to introduce the following terminology. Given a monomial ~g−1tm we define
its codimension by

codim(~g−1tm) := codim(g,m) := 3g − 3 +
∑
k,i

(1− k)mk,i.
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Note that the tame elements of the Fock space are arbitrary, possibly infinite, linear
combinations of monomials with non-negative codimension. Clearly, the product of tame

elements is again tame, so the set of all tame elements is a subalgebra Ôtame
H+,−z of ÔH+,−z.

If F ∈ ÔH+,−z, then we denote by supp(F ) the set of all pairs (g,m), such that, the

coefficient c
(g)
m in the expansion (1.46) is not 0.

Proposition 1.39. Suppose that A(z) =
∑∞
k=1Akz

k is an infinitesimal symplectic

transformation and that F ∈ Ôtame
H+,−z is tame.

a) If F is a tame monomial, then Â(F ) is a tame polynomial consisting of monomials
of codimension ≥ codim(F ) + 1.

b) The action of Â on the space of tame polynomials extends to an action on Ôtame
H+,−z.

c) The infinite series
∑∞
n=0

Ân

n! F is convergent in the formal topology of ÔH+,−z and

it defines an element in Ôtame
H+,−z.

Proof. a) We have to prove that if ~g−1tm is an arbitrary monomial, then Â(~g−1tm)
is a finite linear combination of monomials whose codimensions are strictly larger. Re-
calling formula 1.45 we get

Â =

∞∑
k=0

N∑
b=1

(Ak+1φ1, φ
b)

∂

∂tk+2,b
−
∞∑

k,l=0

N∑
a,b=1

(Ak+1φa, φ
bpk+l+1)tl,a

∂

∂tk+l+1,b
+(1.47)

+
~
2

∞∑
k,l=0

N∑
a,b=1

(−1)l(Ak+l+1φ
apl, φ

bpk)
∂2

∂tk,b∂tl,a
,

where we changed the Darboux variables via the dilaton shift. Note that multiplication
by tl,a changes the codimension by 1− l, the differentiation ∂

∂tk,a
changes the codimension

by k − 1, and multiplication by ~ increses the codimension by 3. This implies that Â
increses the codimension at least by 1.

Note that c) is an easy consequence from a) and b). Indeed, every monomial in the

support of Ân(F ) has codimension at least n, so the exponential series
∑∞
n=0

Ân

n! F is
convergent in the formal topology.

Let us prove b). Suppose that F =
∑
g,m c

(g)
m ~g−1tm/m! is a tame series. We have

to prove that the infinite series

(1.48) Â(F ) =
∑
g,m

c(g)m Â(~g−1 tm

m!
)

is convergent in the formal topology. A monomial ~g−1tm is uniquely determined by its
genus g and its finite energy sequence m = (mk,i). Let us call such a monomial a (g,m)-

monomial and let us define a(m) :=
∑N
i=1m0,i and b(m) :=

∑N
i=1m1,i. Let us fix a tame

monomial ~G−1tλ, where λ = (λk,i) is a finite energy sequence. We have to prove that
there are finitely many tame (g,m)-monomials, such that, (G,λ) is in the support of the

series Â(~g−1tm). Let us fix a tame (g,m)-monomial and analyze the action of Â on it.
There are 3 cases corresponding to the 3 double sums in (1.47). Put α := a(λ), β := b(λ),
and γ := codim(G,λ). If the action of the operator ∂

∂tk+2,b
gives the (G,λ)-monomial,

then we have g = G, a(m) = α, b(m) = β, and codim(g,m) = γ−k−1. The last relation
implies that k ≤ γ − 1, that is, only finitely many summands in the first double sum in
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(1.47) could produce a (G,λ)-monomial from a tame (g,m)-monomial. Furthermore, we
have

0 ≤ codim(g,m) = 3g − 3 +
∑
k,i

(1− k)mk,i ≤

≤ 3g − 3 + a(m)−
∞∑
k=2

N∑
i=1

mk,i =

= 3G− 3 + 2α+ β −
∞∑
k=0

N∑
i=1

mk,i.

Therefore,
∑
k,imk,i ≤ 3G− 3 + 2α+ β and∑

k,i

kmk,i ≤ 3G− 3 +
∑
k,i

mk,i ≤ 6G− 6 + 2α+ β

are bounded by constants that depend only on (G,λ). The conclusion is that the set of
tame (g,m)-monomials for which the action of the first double sum in (1.47) produces
a (G,λ)-monomial is finite. For the 2nd case, suppose that the operator tl,a

∂
∂tk+l+1,b

produces a (G,λ)-monomial, then g = G, a(m) ∈ {α − 1, α}, b(m) ∈ {β − 1, β, β + 1},
and codim(g,m) = γ − k − 1. Note that since λl,a = ml,a + 1 > 0, there are only finitely
many possibilities for l, while by tameness codim(g,m) ≥ 0⇒ k ≤ γ−1. Therefore, there
are only finitely many summands in the 2nd double sum in (1.47) that could produce a
(G,λ)-monomial from a tame (g,m)-monomial. Furthermore, we have

0 ≤ codim(g,m) = 3g − 3 +
∑
k,i

(1− k)mk,i ≤

≤ 3g − 3 + 2a(m) + b(m)−
∑
k,i

mk,i ≤

≤ 3G− 3 + 2α+ β + 1−
∑
k,i

mk,i.

Therefore,
∑
k,imk,i ≤ 3G− 2 + 2α+ β and

∑
k,i kmk,i ≤ 6G− 5 + 2α+ β are bounded,

so there are only finitely many tame (g, κ)-monomials from which the 2nd double sum
in (1.47) could produce a (G,λ)-monomial. Finally, in the 3rd case, if the operator

~ ∂2

∂tk,b∂tl,a
produces a (G,λ)-monomial from a (g,m)-monomial, then g = G− 1, a(m) ∈

{α, α + 1, α + 2}, b(m) ∈ {β, β + 1, β + 2}, and codim(g,m) = γ − k − l − 1. Again the
tameness of the (g,m) monomial implies k + l ≤ γ − 1, so only finitely many summands
in the 3rd double sum in (1.47) could produce a (G,λ)-monomial. Furthermore, we have

0 ≤ codim(g,m) = 3(G− 1)− 3 +
∑
k,i

(1− k)mk,i ≤

≤ 3G− 6 + 2a(m) + b(m)−
∑
k,i

mk,i ≤

≤ 3G− 6 + 2(α+ 2) + β + 2−
∑
k,i

mk,i.
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Therefore,
∑
k,imk,i ≤ 3G+ 2α+ β and

∑
k,i kmk,i ≤ 6G− 6 + 2α+ β are bounded, so

there are only finitely many tame (g,m)-monomials from which the 3rd double sum in
(1.47) could produce a (G,λ)-monomial. �

Similarly to Lemma 1.35, there is a simple formula for the action of R̂ on the tame

Fock space ÔH+,−z. In order to state the formula, we have to introduce first the following
quadratic form on H[z−1]z−1:

(1.49) V (f, g) =

∞∑
k,l=0

(−1)k+l(f−1−k, Vklg−1−l),

where f =
∑∞
k=0 f−1−kz

−1−k, g =
∑∞
l=0 g−1−lz

−1−l, and the linear operators Vkl ∈
End(H) are defined by

(1.50)

∞∑
k,l=0

Vklz
kwl :=

1−R(z)RT (w)

z + w
.

Proposition 1.40. The following properties hold.

a) We have: Vkl =
∑l
i=0(−1)i+1Rk+1+iR

T
l−i.

b) We have: (Vkl)
T = Vlk, that is, V (f, g) = V (g, f) is a symmetric form.

c) We have: V (f, g) = Ω((R−1f)+, (R
−1g)−). �

The proof of Proposition 1.40 is straightforward and it is left as an exercise.

Lemma 1.41. Suppose that R(z) = 1 + R1z + R2z
2 + · · · , Rk ∈ End(H) is an

operator series satisfying the symplectic condition R(z)R(−z)T = 1 and that F(q) is a

tame element of ÔH+,−z. Then

(1.51) (R̂F)(q) =
(
e

~
2 V (∂q,∂q)F

)
(R−1q),

where

(1.52) V (∂q, ∂q) =

∞∑
k,l=0

N∑
a,b=1

(φa, Vklφ
b)

∂2

∂qk,a∂ql,b
.

Proof. The idea is to use a certain formal Fourier transform and to obtain the
formula from the formula in Lemma 1.35. If L(p, ∂p) is a differential operator in p =
(pk,a), then we define the vacuum expectation value〈

L(p, ∂p)e
1
~Ω(p,q)

〉
:= L(p, ∂p)e

1
~Ω(p,q)

∣∣∣∣
p=0

,

where just like in the proof of Lemma 1.35 we put

p = p(z) =
∑
k,a

pk,aφ
a(−z)−k−1 and q = q(z) =

∑
k,a

qk,aφaz
k.

Since the formula that we want to prove is linear in F , we may assume that F is a
polynomial in q. Note that we can write F(q) as a vacuum expectation value

(1.53) F(q) =
〈

F(~∂p)e
1
~Ω(p,q)

〉
,
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where F(~∂p) is the differential operator obtained from F(q) by the substitution qk,a 7→
~ ∂
∂pk,a

. The following two properties hold

~∂qk,aF(q) =
〈

F(~∂p) pk,a e
1
~Ω(p,q)

〉
,

qk,aF(q) =
〈

F(~∂p) ~∂pk,a e
1
~Ω(p,q)

〉
.

Put A(z) := logR(z) =
∑∞
m=1Amz

m. This is an infinitesimal sympletcic transformation
and the corresponding Hamiltonian is

hA(p,q) =
1

2
Ω(Af , f) =

∞∑
k,l=0

( (−1)k

2
(Ak+l+1pk, pl)− (Akql, pk+l)

)
,

where as usual pk =
∑
a pk,aφ

a and ql =
∑
a ql,aφa. Using formula (1.53) we get

R̂F(q) =
〈

F(~∂p)e:hA(p/
√
~,
√
~∂p):e

1
~Ω(p,q)

〉
.

The operator

(1.54) : hA(p/
√
~,
√
~∂p) :=

∞∑
k,l=0

( (−1)k

2~
(Ak+l+1pk, pl)− (Akφa, pk+l)

∂

∂pl,a

)
can be interpreted as a quantization of a quadratic Hamiltonian in the following way.
Let H∨ = H((w−1)) be another copy of Givental’s symplectic loop space in which we
choose Darboux coordinates P = (Pk,a) and Q = (Qk,a), such that, the vector in H∨
with coordinates (P,Q) is given by

∞∑
k=0

N∑
a=1

(
Qk,aφ

awk + Pk,aφa(−w)−k−1
)
.

Let B(w) := A(−w−1), then (see formula (1.40)) we have

ĥB =

∞∑
k,l=0

( (−1)l+1

2~
(Bk+l+1Qk, Ql) + (−1)k(Bkφa, Qk+l)

∂

∂Ql,a

)
.

Since Bk = (−1)kAk, we get that −ĥB coincides with (1.54) under the substitution
pk = iQk. Therefore,

R̂F(q) =
〈

F(−i~∂Q)e−ĥBe
i
~Ω(−w−1q(−w−1),Q(w))

〉
,

where we used that

1

~
Ω(p,q) =

1

~
∑
k,a

pk,aqk,a =
i

~
∑
k,a

Qk,aqk,a =
i

~
Ω(−w−1q(−w−1), Q(w)).

Recalling Lemma 1.35, since e−ĥB is the quantization of R(−w−1)−1, we get

e−ĥBe
i
~Ω(−w−1q(−w−1),Q(w)) = e

1
2~W (Q,Q)e

i
~Ω(−w−1q(−w−1),[R(−w−1)Q(w)]+),

where the quadratic form W (Q,Q) =
∑
k,l(Qk,WklQl) is defined by

R(−w−1
1 )TR(−w−1

2 )− 1

w−1
1 + w−1

2

=
∞∑

k,l=0

Wklw
−k
1 w−l2 .
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Comparing with (1.50) we get Wkl = −Vkl, so

(1.55) W (Q,Q) = −
∞∑

k,l=0

N∑
a,b=1

(φa, Vklφ
b)Qk,aQl,b.

Furthermore, we have

Ω(−w−1q(−w−1), [R(−w−1)Q(w)]+) = Ω(−w−1R(−w−1)−1q(−w−1), Q(w)) =

=

∞∑
k=0

N∑
a=1

[R(z)−1q(z)]k,aQk,a,

where [ ]k,a denotes the coefficient in front of φaz
k. Combining our observations we get

R̂F(q) =
〈

F(−i~∂Q) e
1
2~W (Q,Q) e

i
~
∑
k,a[R(z)−1q(z)]k,aQk,a

〉
.

Commuting the exponential of the linear terms in Qk,a through the differential operator
F(−i~∂Q) we get

(1.56)
〈

F(−i~∂Q +R(z)−1q(z)) e
1
2~W (Q,Q)

〉
,

where the substitution in F is given by qk,a 7→ −i~ ∂
∂Qk,a

+ [R(z)−1q(z)]k,a. Let us first

examine the vacuum expectation value in the case of one variable, i.e., let us compute

〈f(−i~∂x + c)xa〉,

where c is a constant independent of x and the brackets 〈 〉 mean that we apply the
differential operator to xa and then we substitute x = 0. Note that since we set x = 0
at the end, we can replace multiplication by x operator by commutator, i.e., the above
expectation value is

〈[. . . [f(−i~∂x + c), x] . . . x]〉.

Since only the commutation relations matter here, we can replace −i~∂x 7→ y and x 7→
i~∂y ⇒ the above expectation value becomes

〈(−i~∂y)af(y + c)〉 =
(

(−i~∂y)af(y)
)∣∣∣
y=c

.

so we get the following formula:

〈f(−i~∂x + c)xa〉 =
(

(−i~∂y)af(y)
)∣∣∣
y=c

.

The generalization of the above formula to many variables is straightforward. Namely, in
order to compute (1.56), we need to switch Qk,a with −i~ ∂

∂Qk,a
, that is, (1.56) coincides

with (
e−

~
2W (∂Q,∂Q)F(Q)

)∣∣∣∣
Qk,a=[R(z)−1q(z)]k,a

.

Using (1.55) we get that −W (∂Q, ∂Q) coincides with the differential operator (1.52). We
get the formula stated in the lemma. �
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1.5. Vertex operators

Let K be a commutative associative C-algebra with a unit. Given an infinite series
f =

∑
n∈Z I

(n)(−z)n with coefficients I(n) ∈ K ⊗H, the formal expression

ef̂−ef̂+ := exp
(
−
∞∑
k=0

N∑
a=1

(I(−k−1), φa)
qk,a√
~

)
exp

( ∞∑
k=0

N∑
a=1

(I(k), φa)(−1)k
√
~

∂

∂qk,a

)
is called a vertex operator with coefficients in K. Here we denoted by f+ (resp. f−) the
series obtained from f by truncating all negative (resp. non-negative) powers of z. The
differential operators in the exponents on the RHS are obtained by quantizing each term
I(n)(−z)n ∈ K ⊗H, where the quantization rules are extended K-linearly to K ⊗H:

(I ⊗ f)̂:= I ⊗ f̂ , I ∈ K, f ∈ H.

Let us give an example of K which includes all coefficients rings that will be considered
in this book.

1.5.1. Example. Suppose that U, T ∈ End(H) are given linear operators. We will
assume that U is diagonalizable and T arbitrary. Let us consider the following family of
Fuchsian ODEs

(1.57) (λ− U)∂λI
(m)(λ) = (T −m)I(m)(λ),

where m ∈ Z is an integer parameter and I(m)(λ) is an H-valued function in λ. The
singularities of this system are at the eigenvalues of U and λ =∞.

The differential equation (1.57) has the following symmetry: if I(m)(λ) is a solution,
then ∂λI

(m) is a solution to (1.57) with m replaced by m+1. Let us organize the solutions
to (1.57) in such a way that I(m+1)(λ) = ∂λI

(m)(λ) for all m ∈ Z. This can be achieved
as follows. Suppose that m < 0 is smaller than all eigenvalues of T . Then we can define
I(m−1) := (T − m + 1)−1(λ − U)I(m) and check that ∂λI

(m−1) = I(m). Similarly, we
can define I(m−2) in terms of I(m−1) etc., so I(m−k) is uniquely determined from I(m) for
all k ≥ 0. For the remaining solutions we must have I(m+k) = ∂kλI

(m), so they are also

uniquely determined from I(m).
Let us fix a basis φi (1 ≤ i ≤ N) of H and a base point λ◦ ∈ C which is not

an eigenvalue of U . Let I
(m)
a (λ) be the solution I(m)(λ) of (1.57) satisfying the initial

condition I(m)(λ◦) = φa. Let I
(m)
ai (λ) be the coordinates of I

(m)
a (λ) with respect to the

basis φi. We define K to be the subring of OC,λ◦ generated by the set of all I
(m)
ai (λ) with

m ∈ Z, 1 ≤ a, i ≤ N .
We will be interested also in the completions of K defined in the following way. Let

u be a singular point of (1.57), that is, u = ∞ or u is an eigenvalue of U . Let us
fix a reference path from λ◦ to u avoiding the singularities of (1.57). Using analytic
continuation along the reference path and taking the Laurent series expansion at λ = u
gives an embedding of K into the ring C{{(λ−u)1/h}}[log(λ−u)], where h > 0 is an integer
number depending on the local monodromy of (1.57) near the singular point λ = u. More
precisely, near the singular point, the elements f of K can be expanded into infinite series
of the following form:

(1.58) f(λ) = f0(λ) + f1(λ) log λ+ · · ·+ fr(λ)(log λ)r,

where fj(λ) is a convergent Laurent series in (λ − u)1/h. Let m be the subalgebra of K
consisting of those f(λ) ∈ K for which limλ→u f(λ) = 0, where the limit is taken along
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the reference path. The elements in the m-adic completion K of K (see Section 1.5.3)
can be identified with series of the form (1.58) for which fj(λ) is a formal Laurent series
in λ− u.

1.5.2. Fock space with coefficients in K. Slightly abusing the notation we define

K ⊗ ÔH+,a := K~[[q0 − a0, q1 − a1, . . . ]]⊗ C[K~],

where a ∈ H+ and C[K~] is the group algebra of K~ (see Section 1.4.4). Since C ⊂ K, we

can view K⊗ÔH+,a as an extension of ÔH+,a. Every element of the Fock space K⊗ÔH+,a

can be written as an infinite sum

(1.59)
∑
g∈ 1

2Z

∑
m

c(g)m ~g−1 (q− a)m

m!
,

where the second sum is over all sequences m = (mk,i) of finite energy and there are

finitely many bi ∈ K~ (1 ≤ i ≤ r), such that, all coefficients c
(g)
m can be written in the

form c
(g)
m =

∑r
i=1 c

(g)
m,ie

bi for some c
(g)
m,i ∈ K. Every vertex operator with coefficients in K

determines a map

ef̂−ef̂+ : Ôtame
H+,a → K ⊗ ÔH+,a

defined by

(1.60) ef̂−ef̂+F := e
1√
~

Ω(q,f−)F(q +
√
~f+(z)),

where the translation by
√
~f+(z) is defined formally by applying the Taylor’s formula

and the exponential factor, just like before, should be splited into product of two

e
1√
~

Ω(q,f−)
= e

1√
~

Ω(a,f−)
e

1√
~

Ω(q−a,f−)
.

The first factor is interpreted as an element of C[K~], while the second one can be expo-
nentiated in the usual way yielding a formal power series in K~[[q0− a0, q1− a1, . . . ]]. Let

us check that F(q +
√
~f+(z)) makes sense. We have

F(q +
√
~f+(z)) =

∑
g,m,n

c
(g)
m+n~g+

|n|
2 −1 (q− a)m

m!

(f+(z))n

n!
,

where the notation is as follows. The sum is over all g ∈ 1
2Z and all sequences m and n of

finite energy. We put |n| :=
∑
k,i nk,i. Finally, let us write f+(z) =

∑∞
k=0

∑N
a=1 I

(k)
a φaz

k,

where I
(k)
a = (−1)k (I(k), φa), then (f+(z))n :=

∏
k,a(I

(k)
a )nk,a . Let us fix G := g + |n|

2

and m. We need to check that the sum

(1.61)
∑

n=(nk,a)

c
(G−|n|/2)
m+n

∞∏
k=0

N∏
a=1

(I
(k)
a )nk,a

nk,a!

has only finitely many non-zero terms. Since F is tame, the coefficients c
(g)
n are non-zero

only if 3g − 3 +
∑
k,i(1− k)nk,i ≥ 0. Therefore, for the non-zero terms in (1.61) we have

3(G− |n|/2)− 3 +
∑
k,a

(1− k)(mk,a + nk,a) ≥ 0.

We get that
∑
k,a(k+ 1

2 )nk,a ≤ 3G− 3 +
∑
k,a(1− k)mk,a which implies that for fixed G

and m there are only finitely many choices for n.
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1.5.3. m-adic Completion. Let m ⊂ K be a C-subalgebra. The set mn consisting
of all finite sums of elements of m of the form a1 · · · an with ai ∈ m, is also a C-subalgebra
and we have mn+1 ⊂ mn. We will require that the pair (K,m) satisfies the following two
conditions:

(i) Hausdorff condition: ∩∞n=1m
n = {0}.

(ii) Continuity condition: for every a ∈ K there exists k ∈ Z>0, such that, amk ⊆ m.

The ring K has a unique structure of a topological ring, such that, the subsets mn

(n = 1, 2, . . . ) form a basis for the neighborhoods of 0 of K. We will refer to this
topology as the m-adic topology of K. Condition (i) implies that K is a Hausdorff
topological space and condition (ii) is necessary in order for the multiplication operation
K × K → K, (a, b) 7→ ab to be continuous. The continuity of the additive operation
K ×K → K, (a, b) 7→ a− b follows from the requirement that m and hence mn for all n
are subalgebras. Let K be the completion of K, that is, elements of K are infinite sums∑∞
i=1 ai with ai ∈ K, such that, for every n ∈ Z≥0 there are only finitely many i, such

that, ai /∈ mn. Let m ⊂ K be the closure of m in K.

The K-module K⊗ ÔH+,a has a natural topology with respect to which it becomes a
topological K-module. This topology can be described conveniently in terms of the order
function ord : K → Z ∪ {∞} defined by

ord(a) :=


0 if a /∈ m,

n if a ∈ mn and a /∈ mn+1,

∞ if a = 0.

Let us define ord(c
(g)
m ) := mini ord(c

(g)
m,i). By definition for each fixed m, the coefficients

c
(g)
m = 0 for all sufficiently negative g. We equip K ⊗ ÔH+,a with a topology, such that, a

basis for the neighborhoods of 0 is given by the subsets Vn(K⊗ÔH+,a) (n ≥ 0) consisting
of all elements of the form (1.59), such that,

ord(c(g)m ) +
∑
k,i

(k + 1)mk,i ≥ n, ∀g,m.

Similarly, let us introduce also the Fock space

K ⊗ ÔH+,a := K~[[q0 − a0, q1 − a1, . . . ]]⊗ C[K~].

Suppose that S(z) = 1+S1z
−1+S2z

−2+· · · , Sk ∈ End(H) is a lower-triangular symplectic

transformation of H. The quantization Ŝ−1 defines a continuous linear operator ÔH+,a →
ÔH+,[S−1a]+ . Elements of the form I ⊗ F with I ∈ K and F ∈ ÔH+,a are dense in K ⊗
ÔH+,a. Therefore, we can extend uniquely Ŝ−1 to a continuous K-linear transformation

Ŝ−1 : K ⊗ ÔH+,a → K ⊗ ÔH+,[S−1a]+ .

For the same reason, the quantization extends also to the completions

Ŝ−1 : K ⊗ ÔH+,a → K ⊗ ÔH+,[S−1a]+ .

The formula for the action of the quantization remains the same – see (1.43). Similarly,

we can extend the action of the Heisenberg group Heis(H) to K ⊗ ÔH+,a and K ⊗ ÔH+,a

and the statements of Proposition 1.36 remain the same.
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Definition 1.42. A vertex operator

ef̂−ef̂+ , f =
∑
n∈Z

I(n)(−z)n, I(n) ∈ K ⊗H

is said to be regular if for every l ∈ Z>0 there exists k0 ∈ Z, such that, I(k) ∈ ml for all
k ≥ k0.

If a vertex operator ef̂−ef̂+ is regular, then the coefficient of the series

S(z)f =
∑
n∈Z

( ∞∑
k=0

(−1)kSkI
(n+k)

)
(−z)n

in front of (−z)n (∀n ∈ Z) is convergent in K. Therefore, eŜf−eŜf+ is a vertex operator

with coefficients in K. In particular, it defines a linear map Ôtame
H+,a

→ K ⊗ ÔH+,a. Note

that in general the quantized operator Ŝ−1 does not preserve the tameness property.
Nevertheless, we have the following lemma.

Lemma 1.43. Suppose that F = Ŝ−1G, G ∈ Ôtame
H+,a

, and that ef̂−ef̂+ is a regular

vertex operator with coefficients in K. Then

ef̂−ef̂+F := e
1√
~

Ω(q,f−)F(q +
√
~f+(z))

is an element of K ⊗ ÔH+,b, where b := [S−1a]+.

Proof. For the exponential term we have

e
1√
~

Ω(q,f−)
= e

1√
~

Ω(b,f−)
e

1√
~

Ω(q−b,f−)
.

The first exponential on the RHS is interpreted as an element of the group algebra C[K~]

while the second one can be exponentiated in K⊗ÔH+,b ⊂ K⊗ÔH+,b. We are given that

F(q) = e
1
2~W (q,q)G([Sq]+). The exponential term e

1
2~W (q+

√
~f+,q+

√
~f+) is interpreted

as an element of K ⊗ ÔH+,b. Finally, let us examine

G([S(q +
√
~f+)]+) = G([Sq]+ +

√
~[Sf ]+).

We have

[Sf ]+ =

∞∑
n=0

∞∑
k=0

(−1)kSkI
(k+n)(−z)n,

where the coefficients in front of the powers of −z are convergent in K thanks to the

regularity of the vertex operator. Since G ∈ Ôtame
H+,a

is tame, as we already argued in

Section 1.5.2, the translation G(q +
√
~[Sf ]+) is still a formal power series in q− a with

coefficients in K. Since S is invertible, the substitution q = [Sq]+ will transform the
formal power series into a formal power series in q− b, where b = [S−1a]+. �

Proposition 1.44. Let S be a lower-triangular symplectic transformation of H and

ef̂−ef̂+ a regular vertex operator. Then the following formula holds:

(1.62) ef̂−ef̂+ Ŝ−1 = e
1
2W (f+,f+) Ŝ−1 e(Sf )̂−e(Sf )̂+ ,

where e
1
2W (f+,f+) is interpreted as an element of C[K~] and the identity is viewed as an

equality between linear operators Ôtame
H+,a

→ K ⊗ ÔH+,b where b := [S−1a]+.
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The proof is straightforward, using the definition of the action of the vertex operator
(see (1.60)) and the symplectic transformation (see (1.43)), and the properties of the
quadratic form W (see Proposition 1.34).

1.5.4. Tame vertex operators. Suppose that the pair (K,m) is the same as in the

previous subsection. Let us introduce the tame subspace (K ⊗ ÔH+,a)tame of K ⊗ ÔH+,a

consisting of all series of the form (1.59), such that,

ord(c(g)m ) + 3g − 3 +
∑
k,i

(1− k)mk,i ≥ 0

for all g and m for which c
(g)
m 6= 0. Similarly, we can define the tame subspace (K ⊗

ÔH+,a)tame.

Definition 1.45. A vertex operator with coefficients in K is said to be
a) tame if I(−k−1) ∈ mk+1 ⊗H for all k ≥ 0.
b) tame composable if mI(k) ∈ m⊗H for all k ≥ 0. �

Let us point out that in the applications that we have in mind, tame vertex operators
are never regular. The name tame composable is justified by part c) of the following
proposition.

Proposition 1.46. Let ef̂−ef̂+ be a vertex operator with coefficients in K.

a) If ef̂−ef̂+ is a tame composable vertex operator, then formula (1.60) defines a map

ef̂−ef̂+ : (K ⊗ ÔH+,a)tame → K ⊗ ÔH+,a.

b) If ef̂−ef̂+ is a tame vertex operator, then formula (1.60) defines a map

ef̂−ef̂+ : Ôtame
H+,a → (K ⊗ ÔH+,a)tame.

c) If the vertex operators ef̂−ef̂+ and eĝ−eĝ+ are respectively tame composable and
tame, then (

ef̂−ef̂+
)
◦
(
eĝ−eĝ+

)
= eΩ(f+,g−)

(
e(f+g)̂−e(f+g)̂+

)
,

where both sides are viewed as operators Ôtame
H+,a

→ K ⊗ ÔH+,a.

Proof. Part c) follows immediately from the defintion (1.60). The arguments for
a) and b) are very similar, so let us just prove b). First of all note that the assumption

that the vertex operator is tame implies that multiplication by the exponential e
1√
~

Ω(q,f−)

leaves the tame Fock space (K ⊗ ÔH+,a)tame invariant. We have to check that if F ∈
Ôtame

H+,a
, then the sum (1.61) is finite and that ~G−1(q− a)m is a tame monomial. By the

tameness of F , if c
(G−|n|/2)
m+n 6= 0, then we must have

3(G− |n|/2)− 3 +
∑
k,i

(1− k)(mk,i + nk,i) ≥ 0.

We get
∑
k,i(k + 1/2)nk,i ≤ 3G − 3 +

∑
k,i(1 − k)mk,i. Since G and m are fixed, this

inequality proves that there are only finitely many possible choices for the sequence n.
Clearly, 3G− 3 +

∑
k,i(1− k)mk,i ≥ 0, so the monomial ~G−1(q− a)m is tame. �
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Proposition 1.47. Let R(z) = 1 + R1z + R2z
2 + · · · , Rk ∈ End(H) be an upper-

triangular symplectic tranformation. Then

a) The quantization R̂ extends to a linear operator (K⊗ÔH+,a)tame → (K⊗ÔH+,a)tame.

b) If ef̂−ef̂+ is a tame vertex operator, then the following formula holds:

(1.63) R̂−1 ef̂−ef̂+ R̂ = e
1
2V (f−,f−)e(R−1f )̂−e(R−1f )̂+ .

Proof. The proof of part a) is a straightforward generalization of the proof of Propo-

sition 1.39. Let us prove b). Since both operators ef̂− and R̂ = eÂ are defined by

exponentiating respectively the operators f̂− and Â we have

R̂−1ef̂−R̂ = exp
(
e−Âf̂−e

Â
)

= exp
(
e− adÂ(f̂−)

)
= e(R−1f− )̂ ,

where for the last equality we used Proposition 1.33, b). Note that

e(R−1f− )̂−e(R−1f− )̂+ = e
1
2 [(R−1f− )̂−,(R

−1f− )̂+]e(R−1f− )̂ = e
1
2 Ω((R−1f−)−,(R

−1f−)+)e(R−1f− )̂

where in the last equality we used Proposition 1.33, a). Recall that Ω((R−1f−)−, (R
−1f−)+) =

−V (f−, f−) (see Proposition 1.40, c). We get

R̂−1ef̂−R̂ = e
1
2V (f−,f−)e(R−1f− )̂−e(R−1f− )̂+ .

Similarly,

R̂−1ef̂+R̂ = e(R−1f+ )̂ .

Therefore,

R̂−1ef̂−ef̂+R̂ = e
1
2V (f−,f−)e(R−1f− )̂−e(R−1f− )̂+e(R−1f+ )̂ = e

1
2V (f−,f−)e(R−1f )̂−e(R−1f )̂+

which is what we had to prove. �

1.6. Higher genus reconstruction

The goal of this section is to define the total descendant and ancestor potentials of
a semi-simple Frobenius manifold. The main motivation for this definition comes from
quantum cohomology. Namely, it was conjectured by Givental [19] and proved by Teleman
[60] that if the quantum cohomology of a smooth projective variety X is semi-simple, then
the total descendant (resp. ancestor) potential coincides with the generating function of
descendant (resp. ancestor) Gromov–Witten invariants of X.

1.6.1. The Witten–Kontsevich tau-function. Recall that a nodal Riemann sur-
face is a connected projective variety Σ of dimension 1 with at most nodal singularities,
that is, if x0 ∈ Σ is a singular point, then there is an open neighborhood of x0 biholo-
morphic to {(x, y) ∈ C2 | xy = 0}. The genus of a nodal Riemann surface is defined
to be the genus of its normalization. A marked nodal Riemann surface (Σ, x1, . . . , xn)
is a nodal Riemann surface Σ together with a sequence of non-singular pairwise distinct
points x1, . . . , xn, called marked points. Two marked nodal Riemann surfaces are called
equivalent if there is a biholomorphism between them that induces a bijection between
the marked points. The group of automorphisms of (Σ, x1, . . . , xn) is known to be finite
if and only if 2g−2+n > 0, where g is the genus of Σ. Let Mg,n be the set of equivalence
classes of marked nodal Riemann surfaces with fixed genus g and fixed number of marked
points n. If 2g − 2 + n > 0, then the set Mg,n is known to have a structure of a pro-

jective variety of dimension 3g − 3 + n. Moreover, the singularities of Mg,n are at most
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of quotient type, i.e., there exists an orbifold groupoid Mg,n, whose coarse moduli space

is Mg,n. The set Li :=
⋃
T ∗xiΣ/Aut(Σ, x1, . . . , xn), where the union is over all points

(Σ, x1, . . . , xn) ∈Mg,n has a structure of an orbifold line bundle. The constructions and
the proofs of the above facts are quite involved. We refer to [4] for further details.

Let us define the following intersection numbers:

(1.64) 〈ψk11 , . . . , ψknn 〉g,n :=

∫
[Mg,n]

ψk11 ∪ · · · ∪ ψknn , k1, . . . , kn ≥ 0

where ψi = c1(Li) ∈ H2(Mg,n;Q) and the intersection number is defined to be 0 if
2g − 2 + n ≤ 0. The intersection numbers are assembled into the following generating
function:

(1.65) Dpt(~, t) := exp

 ∑
g,n≥0

~g−1

n!
〈t(ψ1), . . . , t(ψn)〉g,n

 ,

where t = (t0, t1, . . . ) is an infinite sequence of formal variables, t(ψ) :=
∑∞
k=0 tkψ

k, and
each correlator is expanded multilinearly into a formal series in t whose coefficients are
the intersection numbers (1.64).

It was conjectured by Witten [64] and proved by Kontsevich [41] that under the

substitutions tk =
√
~(2k + 1)!!T2k+1 (k ≥ 0), the generating function Dpt(~, t) is a

tau-function of the KdV hierarchy. That is why Dpt(~, t) is also known as the Witten–
Kontsevich tau-function. The KdV hierarchy will be defined later on. Let us postpone the
precise formulations for now and outline instead how to obtain a combinatorial recursion
that alows us to compute all intersection numbers. To begin with, Witten’s conjecture
can be reformulated equivalently in terms of Virasoror constraints (see [11, 18, 39]). The
latter, according to Givental [20], can be stated in terms of the quantization formalism
from the previous section as follows. Let H = C and ( , ) be the standard pairing
(1, 1) = 1. Put D = z ∂

∂z . Then `m = z−1/2Dm+1z−1/2 (m ≥ −1) are infinitesimal

symplectic transformations of H = C((z−1)). Recalling the quantization formalism, we

define the operators Lm := ̂̀
m + 1

16δm,0. The first few operators take the form

L−1 =
1

2~
q2
0 +

∞∑
m=0

qm+1∂m,

L0 =
1

16
+

∞∑
m=0

(
m+ 1

2

)
qm∂m,

L1 =
~
8
∂2

0 +

∞∑
m=0

(
m+ 1

2

) (
m+ 3

2

)
qm∂m+1,

where ∂m := ∂
∂qm

. It is straightforward to check that the above operators satisfy the

commutation relation [Lm, Ln] = (m−n)Lm+n and hence they determine a representation
of the Lie algebra of vector fields on the circle. It turns out that in order to obtain a
representation relevant for the intersection numbers, we have to introduce the following
Fock space:

(1.66) C~[[q0, q1 + 1, q2, . . . ]], C~ := C((~)).
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The Witten–Kontsevich tau-function is identified with an element in the Fock space via
the so-called dilaton shift: tk = qk+δk,1. Givental’s reformulation of Virasoro constraints
can be stated as follows: LmDpt = 0 for allm ≥ −1. The Virasoro constraints L−1Dpt = 0
and L0Dpt = 0 are known respectively as the string equation and the dilaton equation.
They can be proved geometrically (see [64]).

The Virasoro constraints are equivalent to a recursion for the intersection numbers
which was discovered in the settings of matrix models. The abstract formulation of
the recursion and its general properties were studied by Eynard and Orantin [14]. For
the case at hands, the recursion produces a set of symmetric meromorphic differentials
ωg,n(x1, . . . , xn) on C× · · · ×C with finite order poles at the divisors xi = 0 (1 ≤ i ≤ n),
except for the case (g, n) = (0, 2). All forms ωg,n with 2g − 2 + n ≤ 0 are 0, except for

ω0,2(x1, x2) :=
dx1dx2

(x1 − x2)2
,

and

ωg,n+1(x0, x1, . . . , xn) =

Resy=0K(x0, y)
(
ωg−1,n+2(y,−y, x1, . . . , xn) +∑

g′+g′′=g

∑
i′1,...,i

′
n′

ωg′,n′+1(y, xi′1 , . . . , xi′n′ )ωg
′′,n′′+1(−y, xi′′1 , . . . , xi′′n′′ )

)
,

where the first sum is over all pairs (g′, g′′) of non-negative integers, such that, g′+g′′ = g,
the second sum is over all subsets {i′1, . . . , i′n′} ⊆ {1, 2, . . . , n} and

{i′′1 , . . . , i′′n′′} := {1, 2, . . . , n} \ {i′1, . . . , i′n′},
and

K(x0, y) =
1

2y(y − x0)(y + x0)

dx0

dy

is the recursion kernel. It is proved in [13], formula (5.11), that the solution of the above
recursion is given by

ωg,n(y1, . . . , yn) = (−1)n
∑

d1,...,dn≥0

〈ψd11 , . . . , ψdnn 〉g,n
n∏
i=1

(2di + 1)!!y−2di−2
i dyi,

where the formsWK
g,n(t1, . . . , tn) in [13], formula (5.11), coincide with 1

22g−2+n ωg,n(y1, . . . , yn)

under the substitution yi = − 2
ti

. Note that ωg,n are polynomials in y−1
i , because the in-

tersection number in the above sum is non-zero only if d1 + · · · + dn = 3g − 3 + n.
In particular, we can take the inverse Laplace transform. We get the following answer.
Suppose that z1, . . . , zn are negative real numbers, then the correlator〈

1

ψ1 − z1
, . . . ,

1

ψn − zn

〉
g,n

,

where the ith slot is expanded into a gemetric series near zi = ∞, coincides with the
oscillatory integral

n∏
i=1

(−2πzi)
−1/2

∫
x1∈Γ

· · ·
∫
xn∈Γ

e
f(x1)
z1

+···+ f(xn)
zn ωg,n(x1, . . . , xn),

where f(x) = x2

2 and the integration contour is Γ =
√
−1 ε+ R.
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1.6.2. The asymptotic operator series. Let us fix a semi-simple point s ∈M \K.
By definition, there exists a coordinate system {ui}Ni=1 defined locally on some open
neighborhood of s in which both the Frobenius multiplication and the flat metric are
diagonal, that is,

∂ui • ∂uj = δi,j∂uj , (∂ui , ∂uj ) =
δi,j
∆j

,

where ∂ui := ∂
∂ui

and {∆j}Nj=1 are analytic functions with no zeros, defined in a neigh-

borhood of s. Furthermore, let us fix a flat coordinate systems t = (t1, . . . , tN ), defined
in a neighborhood of s. For brevity put ∂a := ∂

∂ta
(1 ≤ a ≤ N) for the corresponding flat

vector fields. Given an endomorphism A ∈ End(TM), then we denote by Aft the matrix

with entries Aft
ab ∈ OM (1 ≤ a, b ≤ N) defined by A∂b =

∑N
a=1A

ft
ab∂a. Finally, let us

define the N ×N matrix Ψ with entries

(1.67) Ψai =
√

∆i
∂ta
∂ui

∈ OM,s, 1 ≤ a, i ≤ N.

Some basic properties of Ψ are summarized in the following proposition, whose proof is
left as an exercise.

Proposition 1.48. Let U be the diagonal matrix of size N×N whose diagonal entries
are Uii = ui (1 ≤ i ≤ N). The matrix Ψ has the following properties:

(1) If g = (gab), gab = (∂a, ∂b), is the matrix of the Frobenius pairing, then

Ψ ΨT = g−1,

where T is the usual transposition of matrices.

(2) Let A =
∑N
a=1Aadta be the connection 1-form on M where Aa is the endomor-

phism of TM defined by the Frobenius multiplication by ∂a. Then

Ψ−1Aft Ψ = dU.

(3) The Euler vector field has the form E =
∑N
i=1 ui∂ui . In particular,

Ψ−1 (E•)ft Ψ = U,

where E• is the endomorphism of TM defined by Frobenius multiplication by
E. �

The Dubrovin’s connection ∇ in flat coordinates takes the form

∇ = d−Aftz−1 +
(
− θftz−1 + (E•)ftz−2

)
dz,

where A is the same as in Proposition 1.48, (2).

Lemma 1.49. The Euler vector field in flat coordinates has the following form

E =

N∑
a=1

(
ra +

N∑
b=1

(
θft
ab + (1−D/2)δa,b

)
tb

)
∂a,

where ra are some constants.

Proof. The formula follows immediately from the definition of the grading operator
θ, that is, we have

[∂b, E] = θ(∂b) + (1−D/2)∂b. �
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Proposition 1.50. The connection ∇ has a unique formal asymptotical solution of
the form

(1.68) Ψ(1 +Rcan
1 z +Rcan

2 z2 + · · · )eU/z,

where Rcan
k are N ×N matrices whose entries are functions holomorphic in a neigbhbor-

hood of s.

Proof. Using Proposition 1.48 we get

Ψ−1∇Ψ = d+ Ψ−1dΨ− dUz−1 + (V z−1 + Uz−2)dz,

where V := −Ψ−1θftΨ. The asymptotical series (1.68) is a solution to the Dubrovin’s
connection if and only if {Rcan

k }∞k=0 (we set Rcan
0 = 1) satisfies the following system of

differential equations:

(1.69) dRcan
k + (Ψ−1dΨ)Rcan

k = [dU,Rcan
k+1], ∀k ≥ 0

and

(1.70) kRcan
k + [U,Rcan

k+1] = −V Rcan
k , ∀k ≥ 0.

We have to prove that the above system has a unique solution. In order to avoid cum-
bersome notation, let us drop the superscript and simply write Ri := Rcan

i . Arguing by
induction on ` we will prove that there is a unique sequence R1, . . . , R` satisfying (1.69)
and (1.70) for all k ≤ `− 1, the diagonal part of (1.70) for k = `, and E(Rk) = −kRk for
all k ≤ `.

Let us first prove the statement for ` = 1. Using (1.69) with k = 0 and comparing
the (i, j)-th entries of the matrices with i 6= j we get

(Ψ−1dΨ)ij = (dui − duj)(R1)ij .

The flatness of∇ implies that [dU,Ψ−1dΨ] = 0. In particular, (dui−duj)∧(Ψ−1dΨ)ij = 0,
which by the de Rham lemma implies that (Ψ−1dΨ)ij = αij(dui−duj) for some function
αij analytic in a neighborhood of s. Hence (R1)ij = αij , that is,

(R1)ij = (Ψ−1∂uiΨ)ij = −(Ψ−1∂ujΨ)ij .

As a byproduct, our argument here also yields

(Ψ−1∂upΨ)ij = 0, p 6= i, j.

Comparing the diagonal entries in (1.70) for k = 1 we get

(R1)ii = −
∑
p 6=i

Vip(R1)pi,

so R1 is uniquely determined. Let us check that R1 satisfies (1.70) with k = 0. We need
only to compare the off-diagonal entries. Fix i 6= j, then

[U,R1]ij = (ui − uj)(R1)ij = (Ψ−1E(Ψ))ij ,

where E =
∑N
i=1 ui∂ui is the Euler vector field. Since by definition LieE( , ) = (2−D)( , )

we get that E(∆i) = D∆i ⇒ [E,
√

∆i∂ui ] =
(
D
2 − 1

)√
∆i∂ui . Therefore,

E(Ψai) =
(D

2
− 1
)

Ψai +
√

∆i∂ui(E(ta)) =

N∑
b=1

θabΨbi,
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where in the second equality we used Lemma 1.49. In other words Ψ−1E(Ψ) = Ψ−1θftΨ =
−V. Finally, note that E(U) = U and E(V ) = 0, so the identity [U,R1] = −V implies
that E(R1) = −R1.

Assume that we have constructed R1, . . . , R`. We would like to construct R`+1 so
that the inductive assumption holds. Note that since ∇ is flat we have(

d+ Ψ−1dΨ
)2

= Ψ−1d2Ψ = 0, [dU, d+ Ψ−1dΨ] = 0,

so

[dU, dR` + Ψ−1dΨR`] = (d+ Ψ−1dΨ)[dU,R`] = (d+ Ψ−1dΨ)2R`−1 = 0.

Now the same argument that we used to construct R1 can be used to construct R`+1.
The details are straightforward and will be left as an exercise. �

1.6.3. The total ancestor potential. Suppose that s ∈ M \ K is a semi-simple
point. Let us fix both a flat coordinate system t = (t1, . . . , tN ) and a canonical coordinate
system u = (u1, . . . , uN ) on a sufficiently small contractible open neighborhood U of s.
We are going to use Givental’s quantization formalism with H = TsM and ( , ) – the
Frobenius pairing. Using parallel transport with respect to the Levi–Civita connection
we identify H with the space of flat vector fields on U , that is, H = C ∂

∂t1
⊕ · · · ⊕ C ∂

∂tN
.

Note that φa := ∂
∂ta

(1 ≤ a ≤ N) and φa := dta (1 ≤ a ≤ N) are dual bases of H, where

we identified T ∗M ∼= TM via the Frobenius pairing. Let us assume that φ1 = ∂
∂t1

= e is
the unit vector field.

Let us introduce the vector fields ei :=
√

∆i
∂
∂ui

(1 ≤ i ≤ N). They form a frame for

TU . Therefore, every endomorphism A ∈ End(TU) can be represented by a matrix Acan

with entries Acan
ij ∈ OM (U) defined by Aej =

∑N
i=1A

can
ij ei. Recalling the definition of

the matrix Ψ, we get Aft = ΨAcan Ψ−1, where Aft is the matrix of the endomorphism A
with respect to the flat frame ∂a (1 ≤ a ≤ N) of TU . Finally, let us define the following
evaluation maps. Using the flat Levi–Civita connection ∇L.C. we identify all tangent
spaces TtU ∼= H ∀t ∈ U . Given an endomorphism A ∈ End(TU), (resp. a vector field
v ∈ TU ) and a point t ∈ U , we denote by A(t) ∈ End(H) (resp. v(t) ∈ H) the restriction
A|t ∈ End(TtU) ∼= End(H) (resp. v|t ∈ TtU ∼= H). Note that both values A(t) and
v(t) depend on the Levi–Civita connection, but not on the choice of the flat frame ∂a
(1 ≤ a ≤ N).

Let us recall the asymptotic series solution from Proposition 1.50. Let Rk ∈ End(TU)
be the endomorphism whose matrix with respect to the frame ei (1 ≤ i ≤ N) is the
coefficient Rcan

k of the asymptotic solution. Put

R(t, z) :=

∞∑
k=0

Rk(t) zk ∈ End(H)[[z]],

where the evaluation map t 7→ Rk(t) is defined as explained above.

Lemma 1.51. The operator series R(t, z) is a symplectic transformation of H((z)).

Proof. We have to check that R(t, z)R(t,−z)T = 1, where T is transposition with
respect to the Frobenius pairing. Let us denote by g the matrix of the Frobenius pairing
gab = (∂a, ∂b) and by tr the usual transposition of matrices. Let us identify End(H)
with the space of N × N -matrices via the flat basis φa (1 ≤ a ≤ N), that is, via the
map A 7→ Aft. To avoid cumbersome notation we drop the superscript ft. Note that
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since AT = g−1Atrg, it is sufficient to prove that R(t, z)g−1R(t,−z)trg = 1. Recalling
that by definition R(t, z) = ΨtR

can(t, z)Ψ−1
t , where Ψt := Ψ(t) and Rcan(t, z) := 1 +∑

k≥1R
can(t)zk, we get

ΨtR
can(t, z)Ψ−1

t g−1(Ψ−1
t )trRcan(t,−z)trΨtr

t g = 1.

Recalling Proposition 1.48, (1), we get that the above identity is equivalent to

Rcan(t, z)Rcan(t,−z)tr = 1.

Let us consider the formal expression

C := e−U/zRcan(t,−z)trΨtr g ΨRcan(t, z)eU/z.

Using that ΨRcan(t, z)eU/z is a solution to ∇, it is straightforward to check that C is
independent of t and z. Recalling again Proposition 1.48, since ΨtrgΨ = 1, we get that
A := Rcan(t,−z)trRcan(t, z) satisfies the same differential equations in u1, . . . , uN , and z
as eU/zCe−U/z. In other words,

∂uiA =z−1[Eii, A]

z∂zA =− z−1[U,A]

where Eii is the matrix with only one non-zero entry in position (i, i) and that entry is
1. The series A = 1 +

∑∞
k=1Akz

k, where Ak are holomorphic functions on U with values
N ×N matrices. Suppose k is the minimal index > 1 for which Ak 6= 0. The differential
equation in z implies that [U,Ak] = 0 ⇒ Ak is a diagonal matrix. Again the differential
equation in z implies that kAk = −[U,Ak+1] ⇒ the diagonal entries of Ak must be 0 ⇒
Ak = 0 – contradiction. This proves that A = 1. �

Let us denote by R̂t the quantization of the upper-triangular symplectic transforma-
tion R(t, z). Let us recall the Witten–Kontsevich tau-function Dpt(~; t) and let us identify
t = (t0, t1, t2, . . . ) with t(z) := t0 + t1z + t2z

2 + · · · . Similarly, the sequence of formal
vector variables q = (qk,a)1≤a≤N,k≥0 is identified with the serries q(z) :=

∑
k,i qk,a∂az

k.

Note that the following product is an element of Ôtame
H+,−z:

(1.71)

N∏
i=1

Dpt(~∆i,q(ui) + z),

where q(ui) :=
∑∞
k=0

∑N
a=1 qk,a

∂ui
∂ta

zk, that is, the ith term in the above product is
obtained from the Witten–Kontsevich tau-function via the substitutions ~ 7→ ~∆i and
tk 7→ qk(ui)+δk,1. Proposition 1.39 implies that the quantized symplectic transformation

R̂t acts on the tame Fock space Ôtame
H+,−z. The tame formal function

(1.72) At(~,q) := R̂t

N∏
i=1

Dpt(~∆i,q(ui) + z)

is called the total ancestor potential of the Frobenius manifold M . Let us give a coordinate
independent interpretation of the coefficients of the total ancestor potential. In order to do
this, let us fix the formal variables qk,a once and for all and think of C~[[q0, q1+1, q2,+ . . . ]]
as an universal ring in which all ancestor potentials of all semi-simple Frobenius manifolds
of dimension N take values. Recalling the definition of At(~; q), we get that, apriori the
total ancestor potential depends on the choice of canonical coordinates and the choice
of a flat basis ∂ := (∂1, . . . , ∂N ), such that, ∂1 = e is the unit vector field. In fact, it
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looks that we have also a dependence on the choice of a sign for
√

∆i. However, as we
will argue below, the total ancestor potential depends only on the choice of the flat basis
∂ = (∂1, . . . , ∂N ) satisfying ∂1 = e.

Proposition 1.52. Suppose that

At(~; q) :=
∑
g∈Z

∑
κ={(k1,a1),...,(kr,ar)}

c(g)κ (t)~g−1tk1,a1 · · · tkr,ar ,

where the variables q and t are related via the dilaton shift. Then

a) The coefficients c
(g)
κ (t) can be extended analytically in t along any path in M \K.

b) For every fixed sequence of integers k1, . . . , kr ≥ 0, the tensor

(1.73)

N∑
a1,...,ar=1

c
(g)
(k1,a1),...,(kr,ar)(t)dta1 ⊗ · · · ⊗ dtar

is a symmetric r-form on M \ K, that is, the above tensor is a section of Symr(T ∗M)
on M \ K. Moreover, the form (1.73) is independent of the choice of flat basis in the
definition of At(~; q).

Proof. a) In order to prove that the coefficients c
(g)
κ extend analytically along any

path in M \K, it is enough to prove that the canonical coordinates ui have this property.
Let L ⊂ T ∗M be the analytic spectrum (see Section 1.2). If s is a semi-simple point, then
we can choose canonical coordinates (u1, . . . , uN ) around s and fiberwise linear coordi-
nates x1, . . . , xN on T ∗M corresponding to the basis {dui}Ni=1. In the local coordinates
(u1, . . . , uN , x1, . . . , xN ) the analytic spectrum L is given by the equations

xixj − δi,jxj = 0, 1 ≤ i, j ≤ N.

It follows that over a neighborhood of s the subvariety L is a N -sheet covering and the N
sections of T ∗M that define L are precisely the 1-forms dui (1 ≤ i ≤ N). Recall that the
projection T ∗M →M induces a map π : L→M which is a branched covering of degree
N and moreover the set K of non-semi-simple points coincides with the branching locus.
Since L induces a regular covering on M \K the differential forms dui extend along any
path in M \K, which proves that ui also extends.

b) We have to check that the form (1.73) is invariant under the analytic continuation
along a closed loop around the caustic K. Let us look more carefully at the definition of
the total ancestor potential. Let Rft(t, z) :=

∑
k≥0R

ft
k (t)zk, where Rft

k (t) is the matrix

of Rk(t) with respect to the flat basis. Since Rft(t, z) = ΨtR
can(t, z)Ψ−1

t , the system
(1.69)–(1.70) is equivalent to the following system of differential equations:

(1.74) dRft = −Rft(dΨ Ψ−1) + [z−1Aft, Rft] +
(
θftRft − [z−2(E•)ft, Rft]

)
dz,

where A =
∑N
a=1 dta ∂a•. Therefore, Rft(t, z) is uniquely determined from the matrices

dΨ Ψ−1, A, θ, and E•, where the last three matrices are the matrices of the corresponding
operators with respect to the flat basis ∂ := (∂1, . . . , ∂N ). In fact, dΨ Ψ−1 has also an
intrinsic interpretation, i.e., it is the matrix of the linear operator:

Γ : TM |M\K → TM ⊗ Ω1
M |M\K,
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defined by

(1.75) Γ(v) =
1

2

( N∑
i=1

d∆i

∆i

)
v +

N∑
i=1

v(ui)∇L.C.(∂ui).

Suppose that under the analytic continuation along a closed loop around the caustic,

the flat basis ∂ is transformed into the flat basis ∂′ = ∂ C, that is, ∂′b =
∑N
a=1 Cab∂a,

where C is some constant matrix satisfying the symplectic condition CCT = 1. The
matrix Rft(t, z) is transformed into C−1Rft(t, z)C. It is an easy exercise to check that if
CCT = 1, then (

C−1Rft(t, z)C
)̂

= R̂t|qk 7→Cqk ,

where qk should be viewed as a vector column with entries (qk,1, . . . , qk,N ), that is, in

components the substitution takes the form qk,a 7→
∑N
b=1 Cabqk,b. The argument in the

ith factor in (1.71) is transformed into

qk(ui) =

N∑
a=1

qk,a∂
′
a(ui) =

N∑
a,b=1

qk,aCba∂b.

Therefore, the operation of analytic continuation of the product (1.71) is equivalent to
the substitution qk 7→ Cqk. The conclusion is that under the analytic continuation the
ancestor potential At(~; q) is transformed into At(~;Cq). Equivalently the coefficient

c
(g)
(k1,b1),...,(kr,br)(t) is transformed into

N∑
a1,...,ar=1

c
(g)
(k1,a1),...,(kr,ar)(t)Ca1b1 · · ·Carbr

Note that the dual bases are related by dta =
∑N
b=1 Cabdt

′
b, so the form (1.73) is invariant.

It remains only to prove that (1.73) is independent of the choice of the flat basis.
Note that if we have two flat bases ∂ = (∂1, . . . , ∂N ) and ∂′ = ∂C, where C is a constant
matrix (possibly non-symplectic), then the quadratic Hamiltonian hA with respect to
∂′ is obtained from the quadratic Hamiltonian with respect to ∂ via the substitutions
qk 7→ Cqk and pk 7→ pkC

−1, where qk is a vector column (just like above) and pk is a
vector row with entries (pk,1, . . . , pk,N ). We get that the change of the flat basis changes

the quantized Hamiltonian ĥA via the substitution qk 7→ Cqk. The conclusion is that

At,∂C(~; q) = At,∂(~;Cq),

where ∂ = (∂1, . . . , ∂N ) is a flat basis, C is any invertible constant matrix, and we added
∂ to the notation in order to keep track of the dependence of At(~; q) on the choice of
the flat basis. Just like above, this relation implies that the form (1.73) is independent of
the choice of flat basis. �

Finally, we would like to prove that the total ancestor potential satisfies the following
differential equations:

(1.76) ∂aAt(~; q) =
(

(z−1Aa)̂− ∂aF (1)(t)
)

At(~; q),
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where Aa = ∂a• is the operator of Frobenius multiplication by ∂a and

(1.77) F (1)(t) =

∫ t (1

2
Tr(R1(t)dU) +

1

48

N∑
i=1

d∆i

∆i

)
is the so-called primary genus-1 potential of the Frobenius structure.

To begin with, let us recall the differential equations for R(t, z) with respect to t (see
formula (1.74))

∂aR(t, z) = −R(t, z)(∂aΨ)Ψ−1 + [z−1Aa, R(t, z)].

In order to avoid cumbersome notation, let us denote by α := z−1Aa, β := logR(t, z), and
γ := (∂aΨ)Ψ−1. Note that these 3 operators are infinitesimal symplectic transformations.
We have

R(t+ ε∂a, z) = eβ+ε[α,β]+O(ε2)e−εγ+O(ε2),

where t+ ε∂a = (t1, . . . , ta + ε, . . . , tN ). Recalling Proposition 1.31, we get

ĥ[α,β] = {hα, hβ}̂= [ĥα, ĥβ ]− C(α, β),

where C(α, β) := C(hα, hβ). Note that the Hamiltonian corresponding to γ is

(1.78) hγ = −
∞∑
k=0

N∑
i,j=1

γijqk,jpk,i.

The Hamiltonian hβ is given by formula (1.45). Clearly, the cocycle C(hβ , hγ) = 0. We
get

R̂t+ε∂a = e−εC(α,β)eβ̂+ε[α̂,β̂]+O(ε2)e−εγ̂+O(ε2).

Differentiating with respect to ε and setting ε = 0 we get

(1.79) ∂aR̂t = −C(α, β) R̂t − R̂t γ̂ + [α̂, R̂t].

Let us compute the cocycle pairing C(α, β). After a straightforward computation we get

hα = −1

2

N∑
i,j=1

(Aaφi, φj)q0,iq0,j −
∞∑
k=0

N∑
i,j=1

(Aaφi, φ
j)qk+1,ipk,j .

Comparing with the formula (1.45), we get that only the first term in hα contributes to
the cocycle and hence

C(α, β) =
1

2

N∑
i,j=1

(φi, Aaφj)(β1φ
i, φj) =

1

2
Tr(β1Aa),

where β =:
∑∞
k=1 βkz

k, we used that C(q0,iq0,j , p0,ip0,j) = −1 (resp. = −2) for i 6= j
(resp. i = j). Note that R(t, z) = eβ ⇒ βcan

1 = Rcan
1 and Acan = dU ⇒ Acan

a = ι∂aA
can =

∂a(U). Therefore, we can write the cocycle as

(1.80) C(α, β) =
1

2
Tr(Rcan

1 ∂a(U)) =
1

2

N∑
i=1

Rcan
1ii ∂a(ui),
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where Rcan
1ii is the (i, i)-entry of the matrix Rcan

1 . Let us compute the derivative ∂a of
the product of Witten–Kontsevich tau functions (1.71). We will have to use the dilaton
equation (see [64]), i.e., if 2g − 2 + n > 0, then

〈ψk11 , . . . , ψknn , ψn+1〉g,n+1 = (2g − 2 + n)〈ψk11 , . . . , ψknn 〉g,n
and 〈ψ1〉1,1 = 1

24 . In terms of the generating function, the dilaton equation becomes(
2~∂~ +

∞∑
k=0

(tk − δk,1)
∂

∂tk

)
Dpt(~, t) = − 1

24
Dpt(~, t),

where slightly abusing the notation, here and until the end of this section, we will denote
by t = (t0, t1, . . . ) the variables of the Witten–Kontsevich tau-function, not the variables
related to q via the dilaton shift. Using the chain rule we compute

∂aDpt(~∆i; q(ui) + z) =
∂a∆i

∆i
(∆i~∂~Dpt) +

∞∑
k=0

qk(∂a(ui))∂tkDpt,

where on the RHS we first differentiate Dpt with respect to ~ and tk and then substitute
~ 7→ ~∆i, t 7→ q(ui) + z. Using the dilaton equation to compute the ~-derivative, we get

(1.81) ∂aDpt(~∆i; q(ui)+z) = − 1

48

∂a∆i

∆i
Dpt +

∞∑
k=0

(
qk(∂a(ui))−

1

2

∂a∆i

∆i
qk(ui)

)
∂tkDpt.

On the other hand, let us compute also the action of

−γ̂ =

∞∑
k=0

N∑
l,b=1

γlbqk,b
∂

∂qk,l

on the ith factor of (1.71). Using the chain rule we get

−γ̂ Dpt(~∆i; q(ui) + z) =

∞∑
k=0

N∑
l,b=1

γlbqk,b∂l(ui)∂tkDpt.

Recalling the definition of γ = (∂aΨ)Ψ−1 and Ψ, we get

γlb =

N∑
j=1

(1

2

∂a∆j

∆j

∂tl
∂uj

∂uj
∂tb
− ∂tl
∂uj

∂2uj
∂ta∂tb

)
,

where we used that
∑N
j=1 ∂a(∂uj (tl))∂b(uj) = −

∑N
j=1 ∂uj (tl)∂a(∂b(uj)). Therefore,

N∑
l,b=1

γlbqk,b∂l(ui) =
1

2

∂a∆i

∆i
qk(ui)− qk(∂a(ui)).

Comparing with formula (1.81) we get

∂aDpt(~∆i; q(ui) + z) =
(
− 1

48

∂a∆i

∆i
+ γ̂
)

Dpt.

Combining the above formula with (1.79) and (1.80) we get that in order to prove formula
(1.76) we need only to prove that

α̂

N∏
i=1

Dpt(~∆i; q(ui) + z) = 0.
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The above constraint is a consequence of the string equation for Dpt(~; t), that is, the
Virasoro constraint (see [64])( t20

2~
+

∞∑
k=0

(tk+1 − δk,0)
∂

∂tk

)
Dpt(~; t) = 0.

We have

α̂ = − 1

2~
(Aaq0, q0)−

∞∑
k=0

N∑
b,l=1

(Aaφb, φ
l)qk+1,b

∂

∂qk,l
.

Using the chain rule we get

N∑
b,l=1

(Aaφb, φ
l)qk+1,b

∂

∂qk,l
Dpt(~∆i; q(ui) + z) = (∂a • qk+1, dui)∂tkDpt = ∂a(ui)qk+1(ui)∂tkDpt.

Summing the above formula over all k ≥ 0 and recalling the string equation we get

∞∑
k=0

N∑
b,l=1

(Aaφb, φ
l)qk+1,b

∂

∂qk,l
Dpt(~∆i; q(ui) + z) = −∂a(ui)

2~∆i
(q0(ui))

2Dpt(~∆i; q(ui) + z).

It remain only to prove that

(Aaq0, q0) = (∂a • q0, q0) =

N∑
i=1

∂a(ui)q0(ui)
2

∆i
.

This however is obvious because v =
∑N
i=1 v(ui)∂ui for any vector field v and ui are

canonical coordinates, that is, ∂ui • ∂uj = δi,j∂uj and (∂ui , ∂uj ) = δi,j/∆j .

1.6.4. The total descendant potential. Suppose that M is a semi-simple Frobe-
nius manifold. The total descendant potential depends on the choice of a calibration.
As we had already discussed calibrations are sections of a certain principal G-bundle on
M , where G is the unipotent group (1.15). Let us define the total descendant potential
locally on a coordinate chart of M . Suppose that t◦ ∈ M is an arbitrary point and that
S◦(z) is a calibration at the point t◦. Let U be an open chart of M and H be the space
of flat vector fields on U . Let us fix a basis {φa}Na=1 of H such that φ1 = e is the unit
vector field. For a fixed calibration at a point and a basis of flat vector fields, there is a
canonical way to construct a flat coordinate system τ = (τ1, . . . , τN ) on U . Namely, let
us extend the calibration at t◦ to a calibration S(t, z) = 1 + S1(t)z−1 + · · · for all t ∈ U
by using parallel transport with respect to Dubrovin’s connection

∂aS(t, z) = φa •t S(t, z), 1 ≤ a ≤ N,
S(t◦, z) = S◦(z),

where ∂a is the derivation corresponding to the flat vector field φa. If we decompose

S1(t)e =:
∑N
a=1 τa(t)φa, then the coefficients τa(t) (1 ≤ a ≤ N) form a flat coordinate

system. Indeed, the derivative ∂aS1(t)e = φa, so ∂aτb(t) = δa,b ⇒ ∂a = ∂
∂τa

.

Suppose now that t ∈ U is a semi-simple point. Note that the calibration S(t, z)
is a symplectic transformation of H = H((z−1)), because by definition it satisfies the
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symplectic condition S(t, z)S(t,−z)T = 1. Let us denote by Ŝt the quantization of S(t, z).
The total descendant potentia is defined by the following formula:

(1.82) D(~; q) := eF
(1)(t) Ŝ−1

t At(~; q),

where At(~; q) is the total ancestor potential. Since the total ancestor potential is an

element of the Fock space ÔH+,−z and [S−1(−z)]+ = S1e = τ(t), recalling the definition
for the quantization of a lower-triangular symplectic transformation, we get that the total
descendant potential is an element of the Fock space

ÔH+,τ−z = C~[[q0 − τ, q1 + 1, q2, . . . ]]⊗ C[C~].

Let us determine the component of the total descendant potential that belongs to the
group algebra C[C~].

Lemma 1.53. Let S(t, z) be a calibration of the Frobenius manifold and W be the
corresponding quadratic form on H+ – see (1.38). Then

W (τ(t)− ze, τ(t)− ze) = ((S2(t)S1(t)− S3(t))e, e),

where τ(t) := S1(t)e.

Proof. Recalling Proposition 1.34 we get

W (τ(t)− ze, τ(t)− ze) = Ω([S(t, z)(τ(t)− ze)]+, S(t, z)(τ(t)− ze)) =

= Ω(−ze, S(t, z)(τ(t)− ze)),

where for the 2nd equality we used that [S(t, z)(τ(t)− ze)]+ = τ(t)− ze− S1(t)e = −ze.
Recalling the definition of the symplectic pairing we get

Ω(−ze, S(t, z)(τ(t)− ze)) = Resz=0(ze, S(t, z)(τ(t)− ze)) = (e, S2(t)τ(t)− S3(t)e)

which coincides with the RHS of the formula that we had to prove. �
In the case when the Frobenius structure comes from the quantum cohomology of a

smooth projective variety X, the function

F (0)(t) :=
1

2
((S2(t)S1(t)− S3(t))e, e)

coincides with the generating function of genus-0 Gromov–Witten invariants with no
descendants (i.e. ψ-classes) involved. The generating function is also known as the
genus-0 primary potential of X. Therefore, we will refer to F (0)(t) as the primary genus-
0 potential of the Frobenius manifold. Using the differential equations for the calibration
(see formula (1.20))

∂aSk(t) = ∂a • Sk−1, ∀k ≥ 1, 1 ≤ a ≤ N

and (see formula (1.9))

E(Sk) = kSk + [θ, Sk]−
k∑
l=1

Sk−lνl

we get that F (0)(t) satisfies the following equations (see Proposition 1.2, b):

∂3F (0)

∂ta∂tb∂tc
= (∂a • ∂b, ∂c)
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and

E(F (0)) = (3−D)F (0) − 1

2
(ν1τ, τ)− (ν2τ, e) +

1

2
(ν3e, e),

where D is the conformal dimension of the Frobenius manifold. Note that the total
ancestor potential belongs to C~[[q0, q1 + 1, q2, . . . ]]. Recalling the formula for the action

of Ŝt (see (1.39)) we get that

D(~; q) ∈ C~[[q0 − τ(t), q1 + 1, q2, . . . ]]⊗ eF
(0)(t)/~+F (1)(t).

Our notation for the total descendant potential seems to be a bit misleading because we
did not include the semi-simple point t in it. This can be justified to some extend by the
following lemma.

Lemma 1.54. The derivatives ∂aD(~; q) = 0 for all 1 ≤ a ≤ N .

Proof. By definition ∂aS(t, z) = z−1φa • S(t, z). Note that z−1φa• is an infinitesi-
mal symplectic transformation and that the corresponding Hamiltonian does not involve
p2-terms. The Hamiltonian for the infinitesimal symplectic transformation logS(t, z) also
does not involve p2-terms. Therefore, using an argument similar to the proof of (1.76)
we get that

∂a(S(t, z))̂= (z−1φa•) (̂S(t, z)) .̂

Therefore,

∂a(S(t, z)−1)̂= −(S(t, z)) (̂z−1φa•) .̂

The lemma follows easily from (1.76). �

Using Lemma 1.54 we can give a slightly different interpretation of the total descen-
dant potential. Namely, it makes sense to substitute τ = q0 in the RHS of (1.82) and
think of q0 = (q0,1, . . . , q0,N ) as the coordinates of a point in U .Then we get that the total
descendant potential is identified with an element in the space

(1.83) O~(U \K)[[q1 + 1, q2, q3, . . . ]]⊗ C[O~(U \K)],

where K is the caustic of the Frobenius manifold and for a sheaf F on M , we define the
sheaf F~(V ) := F(V )((~)), where V ⊂M is an open subset. In other words, the coefficient
in front of a given monomial in ~, q1 + 1, q2, . . . in D(~; q) is a holomorphic function in

q0 ∈ U \K. Therefore, in order to obtain an element in the Fock space ÔH+,τ−z we simply
have to expand each coefficient into a Taylor series about the point q0 = τ .

1.6.5. Genus expansion. We would like to prove that the total descendant and
ancestor potentials have the following form:

(1.84) D(~; q) = exp
( ∞∑
g=0

~g−1F (g)(q)
)

and

(1.85) At(~; q) =
( ∞∑
g=0

~g−1F
(g)

t (q)
)
,
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where F (g) and F
(g)

t are called respectively the genus-g descendant potential and the
genus-g ancestor potential. To begin with, note that the expansion (1.84) can be obtained
from the expansion (1.85) by using Lemma 1.35. More precisely, we get

(1.86) F (0)(q) =
1

2
Wt(q,q) + F

(0)

t ([S(t, z)q(z)]+),

where Wt is the quadratic form corresponding to the calibration S(t, z) (see also (1.21)),

F (1)(q) = F (1)(t) + F
(1)

t ([S(t, z)q(z)]+),

where F (1) is the primary genus-1 potential (1.77) of the Frobenius structure, and

F (g)(q) = F
(g)

t ([S(t, z)q(z)]+), for g > 1.

Therefore, we need only to prove that the total ancestor potential has an expansion of the
form (1.85). However, let us make one more remark before we go into the details of the
proof. Namely, let us point out that our earlier definition (1.23) of genus-0 descendant
potential agrees with F (0)(q). Indeed, due to tameness, the genus-0 ancestor potential

F t(q) vanishes under the substitution q0 = 0. Using the flat coordinates τ(t) = S1(t)e
and letting a = (a1, . . . , aN ) := τ(t◦), we get that the local ring of holomorphic functions
OM,t◦ = C{τ1 − a1, . . . , τN − aN}. According to Lemma 1.21 there exists a formal power
series f ∈ H[[q0 − a, q1 + 1, q2, . . . ]], such that, under the substitution τ = a + f(q0 −
a, q1 + 1, q2, . . . ) we have q0 +

∑∞
k=1 Sk(τ)qk = 0. Therefore, under the substitution

τ = a+ f(q0 − a, q1 + 1, q2, . . . ) formula (1.86) takes the form

F (0)(q) =
1

2
Wτ (q,q),

which is exactly the formula that we used before to define the genus-0 descendant poten-
tial.

Remark 1.55. Note that the flat coordinates used here are such that the coordinates
of the reference point t◦ of our coordinate neighborhood are a = (a1, . . . , aN ), while in
Section 1.3.2 the flat coordinates were chosen to be 0 at t◦.

Remark 1.56. Since the genus-0 descendant potential F (0)(q) can be reconstructed
from the calibration S(t, z) and the latter depends holomorphically on t, we get that
F (0)(q) extends holomorphically through the caustic, that is, it is an element in O(U)[[q1+
1, q2, . . . ]]. The higher-genus descendant potentials F (g)(q) (g > 0) however, do not
extend across the caustic in general. Their definition depends on the asymptotic operator
Rt(z), which has singularities with respect to t along the caustic. Nevertheless, for many
important classes of semi-simple Frobenius manifolds, that have applications to geometry,
F (g)(q) does extend holomorphically across the caustic.

Let us proceed with the proof of the expansion (1.85). According to Lemma 1.41, in
order to prove that the total ancestor potential has an expansion of the type (1.85), it is
sufficient to solve the following problem. Suppose that V = {Vkl}, k, l ≥ 0 is an infinite
symmetric matrix and that F(q) =

∑∞
g=0 ~g−1F (g)(q) is an arbitrary tame formal series

in q = (qk)∞k=0, where qk are formal scalar variables. Then

e
~
2
∑∞
k,l=0 Vkl

∂2

∂qk∂ql eF(q) = exp
( ∞∑
g=0

~g−1F (g)
V (q)

)
,
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where F (g)
V (q) are some tame formal power series in q. Such identities are well known to

physicists. Namely, the series FV (q) :=
∑∞
g=0 ~g−1F (g)

V (q) can be written explicitly in
terms of V and the partial derivatives of F as an infinite sum over graphs that resembles
the summation over Faynman diagrams in Quantum Field Theory. Let us give a precise
statement. To begin with, let us clarify the notion of a graph that we need. Secretely, we
think of a graph as a 1-dimensional finite CW-complex. The 0-cells are called vertices and
the 1-cells are called edges. In order to obtain a more formal/combinatorial definition, let
us cut each edge in the middle and denote by F the set of all half-edges. Note that there
is an involution ι : F → F which to each half-edge f ∈ F associates the remaining half
of the edge to which f belongs. Note that ι has no fixed points. Also, if V is the set of
all vertices, then there is a natural map of sets π : F → V that to each half-edge f ∈ F
associates the vertex that belongs to f .

Definition 1.57. A graph is a quadruple (V, F, π, ι) consisting of finite sets V and
F , called respectively vertices and flags (or half-edges), a set-theoretic map π : F → V ,
and a set-theoretic involution ι : F → F , which has no fixed points, that is, ι2(f) := f
and ι(f) 6= f for all f ∈ F .

Note that our definition of a graph alows multipple edges between two vertices and
loops. Given a graph (V, F, π, ι), an edge is defined as an ι-orbit {f, ι(f)} for some
f ∈ F . Furthermore, we will be interested in decorated graphs Γ = (V, F, π, ι, κ), where
in addition we have a function κ : F → Z≥0, that is, each flag is assigned a non-negative
integer. An automorphism of Γ is a pair σ = (σV , σF ) of bijections σV : V → V and
σF : F → F , such that,

(i) Compatibility with π : σV ◦ π = π ◦ σF .
(ii) Compatibility with ι: σF ◦ ι = ι ◦ σF .

(iii) Compatibility with κ: κ ◦ σF = κ.

The group of all automorphisms is denoted by Aut(Γ). It is a finite group and the number
of its elements will be denoted by |Aut(Γ)|.

Suppose now that Γ = (V, F, π, ι, κ) is a decorated graph and let E(Γ) denotes the set
of all edges of Γ. For each edge e = {f, ι(f)} (f ∈ F ) of Γ put Ve = ~Vij , where i = κ(f)
and j = κ(ι(f)). Note that there is no ambiguity in the definition of Ve, because the
matrix (Vij) is required to be symmetric. Also, for each vertex v ∈ V (Γ) we define the
differential operator ∂v = ∂qi1 . . . ∂qir where i1, . . . , ir are the labels of the flags incident
with v. In the degenerate case r = 0, that is, if there are no flags incident with v, we set
∂v to be the identity operator.

Lemma 1.58. a) The following formula holds:

(1.87) e
~
2

∑
i,j≥0 Vij

∂2

∂qi∂qj eF =
∑

Γ

1

|Aut(Γ)|
∏

e∈E(Γ)

Ve
∏

v∈V (Γ)

∂vF ,

where the sum is taken over all, possibly disconnected, isomorphism classes of graphs.
b) The logarithm of the RHS is given by the same formula except that the summation

is over all connected graphs.

Proof. Part b) is a standard easy to prove fact, so we leave it as an exercise. Let
us prove a). Let us denote the infinite graph sum on the RHS of (1.87) by A(~; q). It is
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sufficient to prove that A(~; q) satisfies the following differential equation

(1.88)
∂

∂~
A(~; q) =

1

2

( ∞∑
i,j=0

Vij
∂2

∂qi∂qj

)
A(~; q).

Indeed, the LHS clearly satisfies the above differential equation and for ~ = 0 formula
(1.87) holds. Both sides of formula (1.87) are formal power seires in ~ with coefficients
in C[[q0, q1, . . . ]]. The differential equation (1.88) is equivalent to a recursion about the
coefficients in front of the powers of ~, which uniquely determines a solution from its
initial value at ~ = 0, i.e., the coefficient in front of ~0. Therefore, the LHS and the RHS
must coincide.

It remains to prove (1.88). If Γ = (V, F, π, ι, κ) is a decorated graph and i, j ∈
Z≥0, then we denote by Eij(Γ) the set of all edges e = {f, ι(f)} of Γ, such that,
{κ(f), κ(ι(f))} = {i, j}. The derivative with respect to ~ is given by

(1.89)
∑

0≤i≤j

∑
Γ

∑
e∈Eij(Γ)

Vij
|Aut(Γ)|

∏
e′∈E(Γ)\{e}

Ve′
∏

v∈V (Γ)

∂vF ,

where the first sum is over all sequences (i, j), i, j ∈ Z, satisfying 0 ≤ i ≤ j. Note that
E(Γ) \ {e} coincides with the set of edges of the graph Γ′ := Γ \ e obtained from Γ by
removing the edge e. Let us fix a pair of graphs Γ′ and Γ and denote by nij(Γ,Γ

′) the
number of edges e ∈ Eij(Γ), such that, Γ \ e ∼= Γ′. In other words if we list all graphs
Γ \ e (e ∈ Eij(Γ)), then nij(Γ,Γ

′) is the number of times Γ′ will appear in our list. The
sum (1.89) takes the form

(1.90)
∑

0≤i≤j

∑
Γ′,Γ

nij(Γ,Γ
′)

|Aut(Γ)|
Vij

∏
e′∈E(Γ′)

Ve′
∏

v∈V (Γ)

∂vF .

In order to compute the derivative with respect to qi and qj , note that

∂2

∂qi∂qj

∏
v∈V (Γ)

∂vF =
∑

v,w∈V (Γ)

∏
v′∈V (Γ∪{(v,i),(w,j)})

∂v′F ,

where Γ ∪ {(v, i), (w, j)} denotes the graph obtained from Γ by adding an edge between
the vertices v and w, that is, adding two flags f1 and f2 to Γ and extending the structure
maps π, ι, κ of Γ by

π(f1) := v, π(f2) = w, ι(f1) = f2, ι(f2) = f1, κ(f1) = i, κ(f2) = j.

The RHS of (1.88) takes the form

(1.91)
1

2

∞∑
i,j=0

∑
Γ′

∑
v′,w′∈V (Γ′)

1

|Aut(Γ′)|
Vij

∏
e′∈E(Γ′)

Ve′
∏

v∈V (Γ′∪{(v,i),(w,j)})

∂vF .

For a given pair (Γ,Γ′) of decorated graphs, let us denote ny mij(Γ,Γ
′) the number of

elements in the set

(1.92) Mij(Γ,Γ
′) := {(v′, w′) ∈ V (Γ′)× V (Γ′) | Γ′ ∪ {(v, i), (w, j)} ∼= Γ}.

Note also that the summand in (1.91) is symmetric with respect to i and j. Formula
(1.91) takes the form

(1.93)
∑

0≤i≤j

∑
Γ′,Γ

mij(Γ,Γ
′)

|Aut(Γ′)|
Vij

|Aut(i, j)|
∏

e′∈E(Γ′)

Ve′
∏

v∈V (Γ)

∂vF ,
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where |Aut(i, j)| is the number of permutations leaving the sequence (i, j) invariant, that
is,

|Aut(i, j)| =

{
1, if i 6= j,

2, otherwise.

Comparing formulas (1.93) and (1.90) we get that in order to prove that they agree we
need to prove that

(1.94) mij(Γ,Γ
′) |Aut(Γ)| = nij(Γ,Γ

′) |Aut(Γ′)| |Aut(i, j)|,

for all i, j ∈ Z≥0 and for all pairs of decorated graphs Γ′ and Γ. Let us define the set

Nij(Γ,Γ
′) := {(e, φ) | e ∈ Eij(Γ), φ : Γ \ e

∼= // Γ′ },

where φ is an isomorphism between graphs, and let

Π : Nij(Γ,Γ
′)→Mij(Γ,Γ

′)

be the map defined as follows: if e = {f1, f2} with the flags f1 and f2 such that κ(f1) = i
and κ(f2) = j, then

Π(e, φ) := (φ ◦ π(f1), φ ◦ π(f2)).

Note that the number of elements in Nij(Γ,Γ
′) is nij(Γ,Γ

′) |Aut(Γ′)|, because if we choose
e ∈ Eij(Γ), such that, Γ \ e ∼= Γ′ then the ambiguity in choosing a graph isomorphism
φ : Γ \ e→ Γ′ is given by an automorphism in Aut(Γ′).

Let us consider first the case when i 6= j. Let (v′, w′) ∈ Mij(Γ,Γ
′) be an arbi-

trary element. We claim that the group Aut(Γ) acts faithfully and transitively on the
fiber Π−1(v′, w′). This fact would imply that the number of elements in |Π−1(v′, w′)| is
|Aut(Γ)| ⇒ the number of elements in Nij(Γ,Γ

′) is mij(Γ,Γ
′) |Aut(Γ)|. On the other

hand, since we already know that the number of elements inNij(Γ,Γ
′) is nij(Γ,Γ

′) |Aut(Γ′)|,
formula (1.94) follows. Let us prove our claim. If ψ ∈ Aut(Γ) and (e, φ) ∈ Nij(Γ,Γ′),
then we define ψ(e, φ) := (ψ(e), φ ◦ ψ−1). Note that φ ◦ ψ−1 induces an isomorphism
Γ \ ψ(e) → Γ′, that is, we have an action of Aut(Γ) on Nij(Γ,Γ

′). Clearly, Π(ψ(e, φ)) =
Π(e, φ) ⇒ the action preserves the fibers of Π. If (e1, φ1) and (e2, φ2) are two elements
in the fiber Π−1(v′, w′), then φ−1

2 ◦ φ1 : Γ \ e1 → Γ \ e2 is an isomorphism of graphs.
Moreover, ei is an edge between the vertices φ−1

i (v′) and φ−1
i (w′) and the κ-labels of e1

and e2 agree. Therefore, we can extend φ−1
2 ◦ φ1 to an automorphism ψ ∈ Aut(Γ) such

that ψ(e1) = e2 ⇒ ψ(e1, φ1) = (e2, φ2). This proves that the action is transitive. Suppose
now that ψ(e, φ) = (e, φ), that is, ψ(e) = e and φ ◦ ψ−1 = φ on Γ \ e. Let e = {f1, f2}
where f1 is the flag with label i and f2 – the flag with label j. Since ψ(e) = e and ψ
should be compatible with the κ-labels, we must have ψ(f1) = f1 and ψ(f2) = f2. Note
that this is the place where we used that i 6= j and that in the case i = j we have also the
option ψ(f1) = f2 and ψ(f2) = f1. However, on Γ \ e we have φ ◦ ψ−1 = φ and since φ is
an isomophism, we must have that the restriction of ψ to Γ \ e is the identity. Therefore,
ψ must be the identity. This proves that the action is faithful.

In the case when i = j, the argument is absolutely the same. Namely, we can prove
that the action of Aut(Γ) on Π−1(v′, w′) is transitive and that if ψ ∈ Aut(Γ) is in the
stabilizer of a point (e, φ), then ψ|Γ\e is the identity. However, the identity ψ(e) = e,
as we already explained above, has two solutions, that is, Aut(Γ) acts transitively on
Π−1(v′, w′) with a stabilizer of order 2. Therefore, in this case the number of elements
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in Nii(Γ,Γ
′) is mii(Γ,Γ

′) |Aut(Γ)|/2. Just like before, this number must coincide with
nii(Γ,Γ

′) |Aut(Γ′)|, which yields formula (1.94) for i = j. �

Cobining Lemma 1.41 and Lemma 1.58 we get that in order to prove that the total
ancestor potential has genus expansion of the form (1.85) we have to check the following
fact. Let us substitute in the RHS of formula (1.87) F =

∑∞
g=0 ~g−1F (g) and suppose

that we sum over connected graphs Γ only, then the power of ~ must be ≥ −1. Indeed,
the smallest possible power of ~ in the summand corresponding to a fixed graph Γ is
|E(Γ)| − |V (Γ)|. On the other hand, let XΓ be the CW-complex corresponding to the
graph Γ. In other words, XΓ is a 1-dimensional complex with one 0-cell for each vertex
in V (Γ) and one 1-cell for each edge in E(Γ). The attaching maps of XΓ are determined
by the flags, i.e., the 1-cell corresponding to the edge e = {f1, f2} is attached to the
0-cells corresponding to π(f1) and π(f2). The Euler characteristic of a CW-complex is
an alternating sum of the number of cells in each dimension. In the case of XΓ, we get

χ(XΓ) = dim H0(XΓ;C)− dim H1(XΓ;C) = |V (Γ)| − |E(Γ)|.
By definition, the graph Γ is connected if XΓ is a connected topological space. Therefore,
dim H0(XΓ;C) = 1. Since dim H1(XΓ;C) ≥ 0, the above identity implies that |E(Γ)| −
|V (Γ)| ≥ −1. Moreover, equality is achieved if and only if the graph Γ has no loops, i.e.,
it is a tree.



CHAPTER 2

Analytic continuation

2.1. Levelt’s theory for Fuchsian connections

The main goal in this section is to prove the existsence of weak Levelt solutions for
Fuchsian systems. We follow closely [10].

2.1.1. Fuchsian systems. Let D = {λ : |λ| < R} be the open disk of radius R
and B0(λ) ∈ gl(Cp) be a p × p-matrix whose entries depend holomorphically on λ ∈ D.
We will be interested in the system of ODEs defined by

∂y

∂λ
(λ) = B(λ)y(λ), B(λ) := B0(λ)/λ.

Systems of this type are said to be Fuchsian in a neighborhood of 0.
Let us fix a small sector S in D containing the open interval (0, R), e.g.,

S = {λ ∈ D − {0} : −ε < Arg(λ) < ε}

where 0 < ε < 2π is fixed arbitrary. Furthermore, let us fix a reference point λ0 ∈ (0, R) ⊂
S and denote by X the space of holomorphic functions y : S → Cp that solve the above
system. The general theory of ODEs implies that X is a finite dimensional vector space
of dimension p. More precisely

X ∼= Cp, y 7→ y(λ0).

Since the coefficients of the linear system are holomorphic in D − {0}, every solution
y ∈ X can be extended analytically along any path in D − {0}. In particular, we have a
linear map

σ : X → X

corresponding to analytic continuation along a loop based at λ0 that goes once around
λ = 0 in counter-closckwise direction.

2.1.2. Fuchsian singularities are regular. The following result is well known
in the theory of ODEs. Nevertheless, we give our own proof as well. For a different
argument, which is shorter but yields a slightly weaker result, see [10], Theorem 4.1 and
Lemma 4.1.

Proposition 2.1. Every solution y ∈ X has the form

y(λ) =
∑
ρ

p−1∑
k=0

yρ,k(λ)λρ(log λ)k,

where the first sum is over all eigenvalues ρ of B0(0) and yρ,k(λ) are Cp-valued functions
analytic for all λ ∈ D.

67
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Proof. We will prove that the system has a fundamental matrix whose columns have
the above form. Using a constant gauge transformation y(λ) 7→ Cy(λ) we can reduce the
general case to the case when B0(0) is in Jordan normal form. Moreover, we may assume
that the Jordan blocks are ordered in such a way that B0(0) = D + N (0), where D and
N (0) have the following properties. Both

D = diag(D1, . . . , Ds) and N (0) = diag(N
(0)
1 , . . . , N (0)

s )

are block-diagonal. The block Di = ρi Ii, where Ii is an identity matrix of size the
multiplicity of ρi as an eigenvalue of B0(0) and

Re(ρ1) > · · · > Re(ρs).

The block N
(0)
i (1 ≤ i ≤ s) is an upper-triangular nilpotent matrix whose size is the same

as the the size of Ii. Note that the commutator [D,N (0)] = 0.

Lemma 2.2. There exists a formal solution

Y (λ) = U(λ)λDλN ,

where

U(λ) = 1 + U1λ+ U2λ
2 + · · · , Uk ∈ gl(Cp)

and N is upper-triangular nilpotent matrix of the form

N = N (0) +N (1) + · · · , [D,N (k)] = kN (k).

Proof. Put B0(λ) = B0,0 +B0,1λ+ · · · , substitute Y (λ) in the differential equation,

and compare the coefficients in front of the powers of λk. For k = 0 we get D + N (0) =
B0(0) = B0,0, which is true by definition. For k > 0 we get

kUk + [Uk, D +N (0)] +N (k) = B0,k +

k−1∑
i=1

(
B0,k−iUi − UiN (k−i)

)
.

The linear operator

adD : gl(Cp)→ gl(Cp), x 7→ [D,x]

is diagonalizable, i.e., we have a decomposition

gl(Cp) =
⊕

a∈spec(D)

gla(Cp),

where spec(D) denotes the set of eigenvalues of adD and for a ∈ spec(D)

gla(Cp) = {x : [D,x] = ax}

is the corresponding eigen-subspace. Let us denote by

πa : gl(Cp)→ gla(Cp)

the projection map defined via the above decomposition. Let us assume that we have de-
termined U1, . . . , Uk−1 and N (1), . . . , N (k−1). Then Uk =

∑
a∈spec(D) πa(Uk) and N (k) ∈

glk(Cp) are defined by projecting via πa the above recursion relation and solving for
πa(Uk) and πa(N (k)). There are two cases. First, if a = k, then we set πk(Uk) = 0.
Note that since N (0) commutes with D, we have πk([Uk, N

(0)]) = [πk(Uk), N (0)] = 0 and



2.1. LEVELT’S THEORY FOR FUCHSIAN CONNECTIONS 69

πk(N (k)) = N (k). Therefore, we can uniquely solve for N (k). The second case is if a 6= k,
then πa(N (k)) = 0 and

πa(kUk + [Uk, D +N (0)]) = (k − a− adN(0))πa(Uk).

Since N (0) is nilpotent, the linear operator adN(0) is also nilpotent. Therefore the linear
operator k − a− adN(0) is invertible, so we can uniquely solve for πa(Uk). �

It remains to prove that the formal series U(λ) is convergent. Note that U(λ) satisfies
the following differential equation

(2.1) (λ∂λ − adD+N(0))U = (α(λ)U + Uβ(λ)),

where

α(λ) = −
∞∑
i=1

N (i)λi β(λ) =

∞∑
i=1

B0,iλ
i.

Let us fix an integer k > 0, such that the set spec(D) does not contain any integers ` > k.
Note that N (`) = 0 for all ` > k, so α(λ) is polynomial in λ. Let us write the formal
series in the form

U(λ) = U≤k(λ) + λkV (λ), U≤k(λ) = 1 +

k∑
i=1

Uiλ
i,

where V (λ) =
∑∞
j=1 Uj+kλ

j . Then V (λ) satisfies the following differential equation

(2.2) (λ∂λ + k − adD+N(0))V = α(λ)V + V β(λ) + γ(λ),

where

γ(λ) = λ−k
(
α(λ)U≤k(λ) + U≤k(λ)β(λ)− (λ∂λ − adD+N(0))U≤k(λ)

)
By definition U≤k(λ) satisfies the differential equation (2.1) up to terms of order O(λk+1).
Therefore, γ(λ) is analytic at λ = 0 and γ(0) = 0. It is enough to prove that the
differential equation (2.2) has a solution Vhol(λ) analytic at λ = 0. Indeed, the linear
operator k − adD+N(0) is invertible, so after substituting the Taylor series of Vhol(λ) in
the differential equation we get that the Taylor series must coincide with the formal series
V (λ).

In order to construct a holomorphic solution, we use the standard idea to identify
Vhol with the fixed point of a certain integral operator. Let us fix a closed disk Dρ =
{λ : |λ| ≤ ρ} with radius ρ < R. Let us define a sequence of holomorphic gl(Cp)-valued
functions

Vn : Dρ → gl(Cp), n = 0, 1, 2, . . .

as follows. Put V0(λ) = 0 and let Vn+1(λ) be such that

(λ∂λ + k − adD+N(0))Vn+1 = Vnα(λ) + β(λ)Vn + γ(λ).

Note that

Vn+1(λ) =

∫ 1

0

t
k−ad

D+N(0)

(
Vn(tλ)α(tλ) + β(tλ)Vn(tλ) + γ(tλ)

)dt
t
.

The convergence of the integral follows from the fact that if we choose k sufficiently large
the real part of the eigenvalues of k − adD+N(0) will be positive. Therfore Vn+1(λ) is an
analytic function for all λ ∈ Dρ.



70 2. ANALYTIC CONTINUATION

In order to prove that the sequence Vn is convergent we introduce the following norm.
Let | | : gl(Cp)→ R≥0 be the standard matrix norm

|A| = supv 6=0

|Av|
|v|

,

where |v| =
√
|v1|2 + · · ·+ |vp|2 is the standard Euclidean norm of v ∈ Cp. If A : Dρ →

gl(Cp) is holomorphic, then we define

||A||ρ =

∞∑
i=0

|Ai|ρi,

where A(λ) =
∑∞
i=0Aiλ

i is the Taylor series expansion. Let Bρ be the space of those
holomorphic maps A for which ||A||ρ < ∞. It is known (see [25]) that Bρ is a Banach
algebra. Using the Cauchy inequality it is easy to prove that if A(λ) is holomorphic for
all λ ∈ D then A ∈ Bρ.

Lemma 2.3. Suppose k > | adD+N(0) |. Then the map

F : Bρ → Bρ, F (A)(λ) :=

∫ 1

0

t
k−ad

D+N(0)A(tλ)
dt

t

is a bounded linear operator of norm less or equal to 1, i.e., ||F (A)||ρ ≤ ||A||ρ.

Proof. Put A(λ) =
∑∞
i=0Aiλ

i. Then the coefficient in front of λi in F (A) is

F (A)i =

∫ 1

0

t
k+i−1−ad

D+N(0)Aidt.

Using that

|tk+i−1−ad
D+N(0) | = tk+i−1|t−ad

D+N(0) | ≤ tk+i−1t
−|ad

D+N(0) |, 0 ≤ t ≤ 1

we get

|F (A)i| ≤
|Ai|

k + i− |adD+N(0) |
≤ |Ai|. �

Note that Vn+1 = F (Vnα+ βVn + γ). Therefore

||Vn+1 − Vn||ρ ≤ (||α||ρ + ||β||ρ) ||Vn − Vn−1||ρ.

Since α(0) = β(0) = 0 we can always choose ρ so small that ||α||ρ + ||β||ρ < 1. Then
the above inequality shows that {Vn} is a Cauchy sequence in Bρ, so the limit Vhol =
limn→∞ Vn exists and it gives a solution to the differential equation (2.2).

Finally, note that the series U(λ) must be analytic for all λ ∈ D, because the funda-
mental matrix Y (λ) = U(λ)λDλN extends analytically along any path inside D−{0}. �

Corollary 2.4. If B0(0) is nilpotent, then the matrix of the monodromy of the
Fuchsian system with respect to a basis of X given by the columns of the fundamental

matrix Y (λ) satisfying the initial condition Y (λ0) = 1 is e2π
√
−1B0(0).
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2.1.3. The Levelt evaluation. Let us denote by O[S] the space of holomorphic
maps y : S → Cp, such that

lim
λ→0
λ∈S

y(λ)

|λ|m
= 0

for some integer m. Such functions are also sometimes said to be of moderate growth at
λ = 0. The key to Levelt’s theory is the map

ϕ : O[S]→ Z ∪ {∞}
defined by

ϕ(y) := max
{
m ∈ Z | lim

λ→0
λ∈S

y(λ)

|λ|`
= 0 for all ` < m

}
for all y ∈ O[S] \ {0} and ϕ(0) =∞. Note that according to Proposition 2.1 the space of
solutions X ⊂ O[S].

Lemma 2.5. The map ϕ satisfies the following properties.

a) If y1, y2 ∈ O[S], then ϕ(y1 + y2) ≥ min(ϕ(y1), ϕ(y2). If ϕ(y1) 6= ϕ(y2), then the
equality in the above inequality holds.

b) If c ∈ C \ {0}, then ϕ(cy) = ϕ(y) for all y ∈ O[S].

The proof is an elementary consequence from the definitions, so it will be omitted.

Lemma 2.6. Let θi, 1 ≤ i ≤ n be real numbers such that θi 6= θj for all i 6= j. Suppose
that

f(x) =

n∑
i=1

ai(x)e
√
−1θix, ai ∈ C[x]

and that there is a real number ε > 0, such that

lim
x→+∞

f(x)e`x = 0, ∀` < ε.

Then ai = 0 for all i.

Proof. It is enough to prove the lemma in the case when the polynomials are con-
stants. Indeed, let m be the maximal degree among the degrees of ai, i.e., ai(x) =∑m
µ=0 ai,µx

µ and ai,m 6= 0 for at least one i. There exists a constant C, s.t.,∣∣∣ n∑
i=1

ai,me
√
−1θix

∣∣∣xmeλx ≤ C∣∣∣ n∑
i=1

ai(x)e
√
−1θix

∣∣∣eλx, ∀x ≥ 0.

Therefore we must have

lim
x→+∞

( n∑
i=1

ai,me
√
−1θix

)
eλx = 0 ∀λ < ε.

Therefore, if we knew that the lemma holds for constant polynomials, then we would get
ai,m = 0 for all i – contradiction with the definition of m.

Let us assume that ai ∈ C are constants. Using induction on m it is easy to prove
that if λm < · · · < λ1 < λ0 := ε is any sequence of real numbers, then

lim
x→+∞

( n∑
i=1

aie
√
−1 θix

(
√
−1θi + λ1) · · · (

√
−1θi + λm)

)
eλx = 0, ∀λ < λm.
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Indeed, the starting point of the induction is m = 0 and the statement is true by definition.
Suppose the statement is true for m and that λm+1 < λm. Let us pick λ′ in the open
interval (λm+1, λm). Using the inductive assumption we get∣∣∣ n∑

i=1

aie
(
√
−1θi+λm+1)y

(
√
−1θi + λ1) · · · (

√
−1θi + λm)

∣∣∣ ≤ C ′ e(λm+1−λ′)y, ∀y ≥ 0

for some constant C ′ depending on the choice of λ′. Integrating the function inside the
absolute value on the LHS for y from 0 to x and using the above inequality to estimate
the absolute value of the integral, we get the following inequality∣∣∣ n∑

i=1

ai(e
(
√
−1θi+λm+1)x − 1)

(
√
−1θi + λ1) · · · (

√
−1θi + λm)(

√
−1θi + λm+1)

∣∣∣ ≤ C ′ e(λm+1−λ′)x − 1

λm+1 − λ′
.

If λ < λm+1 is any given numbet, then we multiply the above inequality by e(λ−λm+1)x,
and let x→ +∞.

To complete the proof of the lemma we proceed as follows. Let us choose a sequence
of n numbers 0 < λn < · · · < λ1 < ε and define the matrix C with entries

Cim :=
1

(
√
−1θi + λ1) · · · (

√
−1θi + λm)

, 1 ≤ i,m ≤ n.

Note that for λ1 = · · · = λn the determinant of C turns into a Wandermond determinant,
which is not 0 according to the assumption θi 6= θj for i 6= j. Therefore choosing λ1

sufficiently close to λn we may guarantee that C is invertible. On the other hand if we
define

gm(x) =

n∑
i=1

aie
√
−1θixCim, 1 ≤ m ≤ n,

then according to the above fact limx→+∞ gm(x) = 0. However, since C is invertible,

we can solve the above equations and express each aie
√
−1θix as a linear combination of

gm(x) with constant coefficients. Therefore limx→+∞ aie
√
−1θix = 0. This however is

possible only if ai = 0. �

Proposition 2.7. If y ∈ X, then ϕ(σy) = ϕ(y).

Proof. Recalling Proposition 2.1 we write the solution as

y(λ) =

n∑
i=1

yi(λ)λρi , yi(λ) =

p−1∑
k=0

yi,k(λ) (log λ)k

where yi,k(λ) are analytic at λ = 0. We may further assume that Re(ρ1) ≤ · · · ≤ Re(ρn).
Let us write the solution as

y(λ) = λρ1
(
f(λ) +

∑
j

yj(λ)λρj−ρ1
)
,

where the sum is over all j, s.t., that Re(ρj) > Re(ρ1) and

f(λ) =
∑
i

yi(λ)λρi−ρ1 ,

where the sum is over all i, s.t., Re(ρi) = Re(ρ1). Let us assume that y1,k(0) 6= 0 for at
least one k. Otherwise, we can replace ρ1 with an exponent with a larger real part. Note
that ϕ(y) = bRe(ρ1)c, where bxc is the largest integer that does not exceed x. Indeed,
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by definition we have that if ` < bRe(ρ1)c, then lim y(λ)/|λ|` = 0, so ϕ(y) ≥ bRe(ρ1)c. If
the inequality is strict then we can find ε > 0, such that

bRe(ρ1)c ≤ Re(ρ1) < Re(ρ1) + 2ε < ϕ(y)

and ε < Re(ρj)− Re(ρ1) for all j for which Re(ρj) 6= Re(ρ1). We have

y(λ)

|λ|Re(ρ1)+ε+`
=

λρ1

|λ|Re(ρ1)+ε

(f(λ)

|λ|`
+
∑
j

yj(λ)
λρj−ρ1

|λ|`
)
.

If ` < ε, then the LHS has limit 0 as λ→ 0, while the limit of the first factor on the RHS
is ∞ and the limit of the sum over j is 0. Therefore, we must have

lim
λ→0

f(λ)

|λ|`
= 0, ∀` < ε.

If we put λ = e−x, x ∈ R>0 and let x→ +∞ we get that∑
i

p−1∑
k=0

yi,k(0)xke
√
−1θix,

√
−1θi = ρi − ρ1

satisfies the condition of Lemma 2.6, so it must be 0, which contradicts the choice of ρ1.
Note also that we have

σy(λ) =

n∑
i=1

p−1∑
k=0

yi,k(λ)e2π
√
−1ρiλρi(log λ+ 2π

√
−1)k.

Therefore, choosing k to be the largest integer such that y1,k(0) 6= 0 we get

ϕ(y) = ϕ(y1,k(λ)λρ1(log λ)k) = ϕ(y1,k(λ)e2π
√
−1ρ1λρ1(log λ+ 2π

√
−1)k) ≤ ϕ(σy),

where in the last equality we used Lemma 2.5, Part a). Similarly ϕ(y) ≤ ϕ(σ−1y) for all
y ∈ X. Finally we get

ϕ(y) ≤ ϕ(σy) ≤ ϕ(σ−1(σy)) = ϕ(y). �

2.1.4. Weak Levelt solutions. The eigenvalues of σ can be written uniquely as

e2π
√
−1ρi , 0 ≤ Re(ρi) < 1, 1 ≤ i ≤ s.

Let

X = X1 ⊕ · · · ⊕Xs, Xi := {y ∈ X : (σ − e2π
√
−1ρi)ny = 0 for all n� 0}

be the decomposition of X into generalized eigensubspaces.
Using Lemma 2.5 we get that ϕ(X) is a finite set. Let us define the set

{∞, ψ1
i , . . . , ψ

mi
i } := ϕ(Xi), 1 ≤ i ≤ s,

where in addition we assume that ψ1
i > · · · > ψmii . Put

X`
i = {y ∈ X | ϕ(y) ≥ ψ`i}, 1 ≤ i ≤ s, 1 ≤ ` ≤ mi.

According to Lemma 2.5 the sets X`
i are vector subspaces of Xi, so we have a strictly

increasing filtration (in particular we see that ϕ could take only finitely many values on
Xi)

X1
i ⊂ X2

i ⊂ · · · ⊂ X
mi
i = Xi

Using Proposition 2.7 we get that the above filtration is σ-invariant.
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A weak Levelt solution Y (λ) is by definition a fundamental matrix whose columns are
splitted into s groups

Y (λ) = [Y1(λ) · · · Ys(λ)],

where the columns in Yi(λ) represent a basis of Xi with the following property. We can
split Yi(λ) into mi groups

Yi(λ) = [Yi,1(λ) · · · Yi,mi(λ)]

such that

(i) The columns in Yi,`(λ) represnt a basis of the quotient subspace X`
i /X

`−1
i .

(ii) The matrix of the linear operator in X`
i /X

`−1
i induced by σ in the basis repre-

sented by the columns of Yi,`(λ) is upper-triangular.

Let G be the matrix of σ with respect to the basis of X given by the columns of a weak
Levelt solution Y (λ). Note that the matrix G is block-diagonal

G = diag(G1, . . . , Gs)

where each block is a square matrix of size dimC(Xi). Each block Gi has a natural
block-matrix form corresponding to the filtration X1

i ⊂ · · · ⊂ X
mi
i

Gi =


G11
i G12

i · · · G1mi
i

0 G22
i · · · G2mi

i
...

...
. . .

...
0 0 · · · Gmimii

 ,
where the size of the block Gabi is dimC(Xa

i /X
a−1
i )× dimC(Xb

i /X
b−1
i ). The definition of

a weak Levelt solution implies that Gabi = 0 for a > b (∵ the filtration is σ-invariant) and
that the block G``i has the form of an upper-triangular matrix with all diagonal entries

being equal to e2π
√
−1ρi (∵ the matrix of the linear map in X`

i /X
`−1
i induced by σ is

upper-triangular).

2.1.5. Levelt’s theorem. Let Y (λ) be a weak Levelt solution. Let us write the

monodromy matrix G = e2π
√
−1E , where E has the same block-matrix structure as G.

Namely,

E = diag(E1, . . . , Es)

is block-diagonal and each block Ei has the form

Ei =


E11
i E12

i · · · E1mi
i

0 E22
i · · · E2mi

i
...

...
. . .

...
0 0 · · · Emimii

 ,
where E``i = ρiI

`
i + N ``

i is upper-triangular matrix whose diagonal entries are all equal

to ρi. We have denoted by I`i the identity matrix of size dimC(X`
i /X

`−1
i ) while by N ``

i

we have denoted the strictly upper-triangular part of E``i .
Let us define also the matrix A with the same block-diagonal structure as G and E,

i.e.,

A = diag(A1, . . . , As)
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where the block Ai is given by the diagonal matrix

Ai = diag(ψ1
i I

1
i , . . . , ψ

mi
i Imii ).

Theorem 2.8 (Levelt). Suppose that Y (λ) is a weak Levelt solution and that A and
E are the matrices defined as above. Then

Y (λ) = U(λ)λAλE ,

where U(λ) is holomorphic and invertible at λ = 0.

Proof. Our argument follows [10]. Note that the analytic continuation of Y (λ) and
λE around λ = 0 are respectively Y (λ)G and λEG. Therefore, the holomorphic branch
of

U(λ) := Y (λ)λ−Eλ−A

defined in the sector S ⊂ D−{0} extends analytically to the entire punctured disc D−{0}.
Using Proposition 2.1 we get that U(λ) has at most a finite order pole at λ = 0.

Let us prove that U(λ) is holomorphic at λ = 0. Let us denote by r = max1≤j≤s Re(ρj).
Since r < 1 we can find a real number ε > 0, such that r + 2ε < 1. We claim that
limλ→0 U(λ)λr+2ε = 0. This clearly implies that U(λ) does not have a pole at λ = 0. To
prove that the limit is 0 we write

U(λ)λr+2ε = Y (λ)λ−A+ε exp
(

(r − λAEλ−A) log λ
)
λε.

Note that the first two factors on the RHS give a matrix obtained from Y (λ) by mul-

tiplying each column in Yi,` by λ−ψ
`
i+ε. Since the Levelt evaluation of every column in

Yi,` is at least ψ`i we get that the limit of Y (λ)λ−A+ε is 0. Since A and E have the same
block-diagonal structure we get that the 3rd and the 4th factor give a matrix which is
also block-diagonal and the i-th block is

(2.3) λε+r−ρieλ
AiNiλ

−Ai log λ,

where Ni is strictly upper triangular. Since Ai is diagonal with decreasing diagonal entries
the matrix λAiNiλ

−Ai is holomorphic at λ = 0. Therefore the limit of (2.3) is 0.

It remains only to prove that U(0) is invertible. Substituting Y (λ) = U(λ)λAλE in
the differential equation we get

λU ′(λ) + U(λ)L(λ) = B0(λ)U(λ),

where L(λ) = A+ λAEλ−A. As we discussed above the matrix λAEλ−A is holomorphic
at λ = 0. Note that L(0) is block-diagonal and that the ith block is

(ψ1
i + ρi)I

1
i +N11

i 0 · · · 0
0 (ψ2

i + ρi)I
2
i +N22

i · · · 0
...

...
. . . 0

0 0 · · · (ψmii + ρi)I
mi
i +Nmimi

i

 .
Since U(0)L(0) = B0(0)U(0), we get that L(0) is a linear operator in Ker(U(0)). If we
assume that U(0) is not invertible, then L(0) has a non-zero eigenvector c ∈ Ker(U(0)).
Let us denote by yc(λ) = Y (λ)c.
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Let us split the vector-column c in the following way

c =

c1...
cs

 , ci =

 ci,1...
ci,mi

 ,
where the length of the subcolumn ci,` is the same as the dimension of X`

i /X
`−1
i . Since

L(0) is block-diagonal and upper triangular, we get that there exists a unique pair (i, `)
for which ci,` 6= 0 and that the eigenvalue of c is ρi + ψ`i . Note that

yc(λ) = Yi,`ci,`

is a liear combination of elements in X`
i that project to a basis in X`

i /X
`−1
i . Therefore

ϕ(yc) = ψ`i .
On the other hand, let us denote by R the diagonal part of E and write E = R+N .

Note that [R,N ] = 0. Therefore

yc(λ) = U(λ)λAλNλ−Ac λρi+ψ
`
i ,

where we used thatA+R is the diagonal part of L(0). Furthermore, using that λANλ−A =
L(λ)−A−R is a holomorphic nilpotent matrix we get

U(λ)λAλNλ−A = U(λ)e(L(λ)−A−R) log λ.

Expanding near λ = 0 we get

U(0) +

m∑
k=1

1

k!
(L(0)−A−R)k(log λ)k +O(λ(log λ)m),

where m is an integer such that Nm = 0. However (L(0)− A− R)c = U(0)c = 0, so we
get that ϕ(yc) ≥ 1 + ψ`i – contradiction. �

2.2. Vector bundles on P1

Suppose that E → P1 × Π̃ is a holomorphic vector bundle of rank p, where

Π̃ = {u = (u1, . . . , uN ) ∈ CN | |ui − u◦i | < δ̃i, 1 ≤ i ≤ N},

is the polydisc with center u◦ := (u◦1, . . . , u
◦
N ) and polyradius δ̃ = (δ̃1, . . . , δ̃N ). The

first goal in this section is to prove the existence of Birkhoff factorization for the transi-
tion matrix of E. This result is also known as the Birkhoff–Grothendieck theorem with
parameters. Our second goal is to prove the following theorem due to Malgrange:

Theorem 2.9 ([43]). Suppose that T is a connected complex manifold and that E is
a holomorphic vector bundle on P1 × T , such that, EP1×{t0} and E|{b0}×T are trivial for

some (b0, t0) ∈ P1 × T . Then
a) The subset

Θ = {t ∈ T : EP1×{t} is not trivial }

is either empty or it is an analytic hypersurface of T .
b) E|P1×(T−Θ) is trivial and meromorphic along P1 ×Θ.
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Let us clarify the meaning of being meromorphic in Theorem 2.9. It means that we
can find a trivializing frame {ei}pi=1 for E|P1×(T−Θ), such that, if {eUi }

p
i=1 is a local frame

for E in a neigborhood U of some point on P1 ×Θ, then the transition function between
the two frames is a p×p matrix whose entries are meromorphic functions on U with poles
along U ∩ (P1 ×Θ).

The arguments presented here are due to Bolibruch [10].

2.2.1. Transition function. We will be interested in transition functions of E of
the following type. Let us fix a point b ∈ C ⊂ P1, real numbers 0 < r < R, and a polydisc

Π = {u ∈ CN | |ui − u◦i | < δi, 1 ≤ i ≤ N},

where 0 < δi < δ̃i for all i. The discs

Db = {λ ∈ C | |λ− b| < R}, D∞ = {λ ∈ P1| |λ− b| > r}
give an open cover of P1. The open subsets Dν ×Π, ν = b,∞, are Stein and contractible,
so according to the Grauert–Oka principle E|Dν×Π is trivial. Let us define row vectors

eν = (eν,1, . . . , eν,p), eν,i ∈ Γ(Dν ×Π, E),

such that, {eν,i}pi=1 is a trivializing frame for E|Dν×Π. On the intersection the two frames
are related by a holomorphic invertible matrix

e∞(λ, u) = eb(λ, u)M(λ, u), (λ, u) ∈ Db∞ ×Π,

where Db∞ = Db ∩D∞ and

M : Db∞ ×Π→ GL(Cp)
is a holomorphic map. Choosing different trivialization frames ẽb = ebU and ẽ∞ = e∞W ,
where

U : Db → GL(Cp) and W : D∞ → GL(Cp)

are holomorphic maps, yields a new transition matrix ẽ∞ = ẽbM̃ , where

M̃(λ, u) = U(λ, u)−1M(λ, u)W (λ, u), (λ, u) ∈ Db∞ ×Π.

Our main goal can be stated as follows. We would like to prove that after decreasing Π
if necessary and removing an analytic hypersurface from Π we can always arrange that

M̃ = diag((λ− b)k1 , . . . , (λ− b)kp),

where k1 ≥ · · · ≥ kp is a decreasing sequence of integers.

2.2.2. GAGA reduction.

Definition 2.10. We say that a map M : Db∞ × Π → gl(Cp) is Π-rational if the
entries of M(λ, u) are quotients of polynomials in O(Π)[λ], where O(Π) is the ring of
holomorphic functions on Π.

We would like to reduce the general analytic problem to an algebraic one. More
precisely we would like to prove the following proposition

Proposition 2.11. Decreasing the size of Π if necessary, we can find a transition
matrix

M : Db∞ ×Π→ GL(Cp),
such that,
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(i) M is Π-rational.
(ii) The zeroes of det(M(λ, u)) and the poles of M(λ, u) for (λ, u) ∈ P1 × Π are

independent of u.

Let us introduce the following notation. If Π is an open polydisc, then we denote by
Π the corresponding closed polydisc. If X ⊂ P1 ×Π is an open subset, then we define

H(X) := {φ : X → gl(Cp) | φ is continuous in X and holomorphic in X},
and

H0(X) := {φ ∈ H(X) | φ(x) is invertible for all x ∈ X}.
Recall that H(X) is a Banach algebra with norm

||A|| = sup(λ,u)∈X |A(λ, u)|,

where | | : gl(Cp)→ R≥0 is the matrix norm

|A| := supv∈Cp−{0} |Av|/|v|,

where for w ∈ Cp we denote by |w| = (|w1|2 + · · ·+ |wp|2)1/2 the Euclidean norm of w.

Lemma 2.12. There exists an ε > 0, depending on r, and R, such that, if ||B|| < ε,
B ∈ H(Db∞ ×Π), then 1 +B ∈ H0(Db∞ ×Π) and we have a factorization

1 +B = UW, U ∈ H0(Db ×Π), W ∈ H0(D∞ ×Π).

Proof. The Laurent series expansion gives a decomposition

H(Db∞ ×Π) = H(Db ×Π)
⊕

H(D∞ ×Π)(λ− b)−1, B = B+ +B−.

Let pr± be the corresponding projection maps B 7→ B±. We have

pr+(B)(λ, u) =
1

2π
√
−1

∫
|ζ−b|=R

B(ζ, u)dζ

ζ − λ
and

pr−(B)(λ, u) = − 1

2π
√
−1

∫
|ζ−b|=r

B(ζ, u)dζ

ζ − λ
.

It is easy to check that || pr±(B)|| ≤ C ||B|| for some constant C that depends on r and R.
Using these estimates and choosing ε sufficiently small we can prove that the series

w =

∞∑
n=1

(−pr− ◦B)n1 = −B− + (BB−)− − (B(BB−)−)− + · · ·

is convergent. Note that (Bw)− + w + B− = 0 therefore, (1 + B)(1 + w) = 1 + u, with
u = B+ + (Bw)+. Decreasing ε if necessary we can arrange that 1 + u and 1 + w are
invertible, so the lemma follows with U = 1 + u and W = (1 + w)−1. �

Proof of Proposition 2.11. Let us fix positive numbers 0 < r′ < r′′ < r < R < R′′ <

R′ and polydiscs Π ⊂ Π′′ ⊂ Π′ ⊂ Π̃ with center at u◦. Here Π′ is chosen arbitrary, while
the sizes of Π′′ and Π will be specified later on.

Let us pick an arbitrary transition matrix

M ′ : D′b∞ ×Π′ → GL(Cp), D′b∞ := {r′ < |λ− b| < R′}.
Note that M ′ ∈ H0(D′′b∞ × Π′′) where D′′b∞ = {r′′ < |λ − b| < R′′}. The Laurent series
expansion of M ′(λ, u0)−1 at λ = b is uniformly convergent for r′′ ≤ |λ − b| ≤ R′′, while
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M ′(λ, u)−1 is uniformly continuous for (λ, u) ∈ D′′b∞ × Π
′′
. Therefore by truncating the

Laurent series expansion of M ′(λ, u0)−1 appropriately and choosing Π′′ sufficiently small,
we can find a Laurent polynomial P ∈ gl(Cp)[(λ−b)±1], such that, ||M ′P−1||r′′,R′′,Π′′ < ε,
where the norm is in the space H(D′′b∞ × Π′′). Recalling Lemma 2.12, we find U1 ∈
H0(D′′b ×Π) and W1 ∈ H0(D′′∞ ×Π), such that, M ′P = U1W1, that is,

M ′ = U1W1P
−1.

Similarly, we can find Q ∈ gl(Cp)[(λ− b)±1], such that, QW1P
−1 = U2W2. Therefore,

M ′ = U1Q
−1U2W2.

We claim that the matrix M := Q−1U2 has the required properties. Condition (ii) is
easy to verify. Let us prove that U2 is Π-rational. We have

U2 = QW1P
−1W−1

2 .

Let g(λ) ∈ C[λ] be a common denominator for the entries of Q and P−1. The matrix
g2U2 = (gQ)W1(gP−1)W−1

2 is holomorphic for all λ ∈ C, because U2 is holomorphic in
Db × Π while W1 and W2 are holomorphic in D∞ × Π. Moreover, since W1 and W2 are
holomorphic at λ = ∞, the matrix g2U2 has at most a finite order pole at λ = ∞, so it
must be polynomial in λ. �

2.2.3. Birkhoff factorization with parameters. Let Π be a polydisc with center
u◦ and Θ0 ⊂ Π be an analytic hypersurface with finitely many irreducible components.
Since Π is Stein and contractible, there exists a holomorphic function f0 ∈ O(Π) such
that Θ0 is the zero locus of f0. Suppose that we have a transition matrix

M : Db∞ × (Π−Θ0)→ GL(Cp),
such that,

(i) M is Π-rational.
(ii) The zeroes of det(M(λ, u)) and the poles of M(λ, u) for (λ, u) ∈ Db × (Π−Θ0)

are independent of u.

According to the previous section such a transition matrix exists provided we choose Π
sufficiently small and Θ0 = ∅.

Note that condition (i) implies that the points (λ, u) ∈ Db × Π for which M(λ, u) is
not holomorphic form an analytic hypersurface Z∞(M). More precisely Z∞(M) is the
union of all irreducible hypersurfaces V ⊂ Db×Π such that there exists an entry m = g/f
(g, f ∈ O(Db ×Π)) of M for which ordV (f) > ordV (g), where ordV (h) denotes the order
of vanishing of the holomorphic function h ∈ O(Db ×Π) along V .

Lemma 2.13. Every irreducible component of Z∞(M) has either the form {b′} × Π
for some b′ ∈ Db −Db∞ or Db ×Θ′0, where Θ′0 is an irreducible component of Θ0.

Proof. Let V be an irreducible component. Condition (ii) implies that

V ∩Db × (Π−Θ0) =

s⋃
i=1

{bi} × (Π−Θ0),

for some bi ∈ Db. Since M(λ, u) is holomorphic and invertible for (λ, u) ∈ Db∞×(Π−Θ0)
we have bi ∈ Db −Db∞ and

V ⊂
( s⋃
i=1

{bi} ×Π
)⋃

Db ×Θ0.



80 2. ANALYTIC CONTINUATION

The RHS of the above inclusion relation is an analytic hypersurface, so V must be one of
its irreducible components. �

Proposition 2.14. a) There exists an analytic hypersurface Θ ⊂ Π that contains Θ0

and has finitely many irreducible components, such that,

M(λ, u) = U(λ, u)(λ− b)KW (λ, u),

where

(i) U and W are Π-rational.
(ii) U(λ, u) (resp. W (λ, u)) is holomorphic and invertible for all (λ, u) ∈ Db× (Π−

Θ) (resp. D∞ × (Π−Θ)).
(iii) K = diag(k1, . . . , kp), where k1 ≥ · · · ≥ kp are integers.

b) Suppose that u ∈ Π is fixed and that

M(λ, u) = Ui(λ, u)(λ− b)K
(i)

Wi(λ, u), i = 1, 2,

are two factorizations, such that, Ui(λ, u) (i = 1, 2) is holomorphic invertible for all λ ∈
Db and Wi(λ, u) (i = 1, 2) is holomorphic invertible for all λ ∈ D∞, then K(1) = K(2).

Proof. a) We split the proof into two cases.
Case 1: If det(M(λ, u)) 6= 0 for all (λ, u) ∈ (Db − {b})× (Π−Θ0). We may assume

that M(λ, u) = L(λ, u) (λ− b)K , where L(λ, u) is holomorphic for (λ, u) ∈ Db× (Π−Θ0)
and K = Diag(k1, . . . , kp), where k1 ≥ k2 ≥ · · · ≥ kp are integers. This can be always
achieved by first multiplying M from the right by matrices of the type (λ−b0)K(λ−b)−K ,
so that we clear all the poles of M(λ, u) from Db × (Π − Θ0), and finally multiply by a
constant permutation matrix to arrange that the entries of K are decreasing. Moreover,
according to Lemma 2.13 there exists an integer n, such that L(λ, u)f0(u)n is holomorphic
for all (λ, u) ∈ Db ×Π.

The Taylor’s series expansion of L has the form

L(λ, u) = L0(u) + L1(u)(λ− b) + L2(u)(λ− b)2 + · · · .

Let us denote by mi(u), 1 ≤ i ≤ p, the columns of the matrix L0(u). We may assume
that m1 6= 0, otherwise we can factor out (λ − b) from the first column of L(λ, u) and
increase k1 by one. We can also assume that det(L0(u)) = 0, otherwise the matrix L(λ, u)
is invertible for all (λ, u) ∈ Db × (Π− Θ), where Θ ⊂ Π is the union of Θ0 and the zero
locus of det(L0(u)), and this is already a Birkhoff factorization, so there is nothing to
prove.

Let us denote by i the maximal index, such that, some i× i minor of L0(u) contained
in the first i-columns is not identically 0 for u ∈ Π−Θ0. If there are several such minors,
then we choose one of them, write it in the form g(u)/f0(u)n for some g ∈ O(Π) and
denote by Θ ⊂ Π the analytic hypersurface defined by the zero locus of g(u)f0(u). There
are functions s1(u), . . . , si(u), holomorphic for u ∈ Π−Θ and meromorphic along Θ, such
that,

mi+1(u) = s1(u)m1(u) + · · ·+ si(u)mi(u).

Let

W (λ, u) = 1−
i∑

a=1

sa(u)(λ− b)−ka+ki+1Ea,i+1,
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where Ea,i+1 is the matrix with only one non-zero entry, which is equal to 1 and it is in
row a and column i + 1. Note that ka ≥ ki+1, so W (λ, u) is holomorphic and invertible
for (λ, u) ∈ D∞ × (Π − Θ) and meromorphic along D∞ × Θ. It is easy to check that

M(λ, u)W (λ, u) = L̃(λ, u)(λ − b)K̃ , where K̃ = Diag(k̃1, . . . , k̃p) satisfies k̃j = kj for

j 6= i+ 1 and k̃i+1 > ki+1. Multiplying if necessary W by a constant permutation matrix

from the right we can arrange that k̃1 ≥ · · · ≥ k̃p. Note that

det(L(λ, u)) = det(L̃(λ, u)) (λ− b)
∑p
i=1(k̃i−ki),

so the order of vanishing of det(L(λ, u)) at λ = b decreases strictly. Repeating the
above procedure finitely many times we will eventually get a metrix L(λ, u), such that,
det(L(λ, u)) 6= 0 at λ = b, which as explained above would give a Birkhoff factorization.

Case 2: general case. Just like in Case 1, multiplying M(λ, u) from the right by
an appropriate holomorphic invertible matrix defined for all (λ, u) ∈ D∞ × Π and by
(λ−b)mId with m� 0, we may reduce the proof to the case when M(λ, u) is holomorphic
for all (λ, u) ∈ Db × (Π − Θ0) and meromorphic along Db × Θ0. We argue by induction
on the number of zeroes of det(M(λ, u)) in Db × (Π − Θ0). If there are no zeroes, then
M(λ, u) is holomorphic and invertible for all (λ, u) ∈ Db × (Π−Θ0) and there is nothing
to prove.

Let b1 ∈ Db be a zero of det(M(λ, u)). Since M(λ, u) is invertible for r ≤ |λ− b| ≤ R
we have |b1− b| < r. Let us choose a disc D1 = {|λ− b1| < R1} with center b1 and radius
R1 so small that D1 ⊂ {λ ∈ C | |λ − b| < r} and D1 does not contain other zeroes of
det(M(λ, u)). Let us recall Case 1 for M and the covering of P1 given by the discs D1

and D∞1 := {|λ− b1| > r1}, where 0 < r1 < R1. We get a Birkhoff factorization

M(λ, u) = M1(λ, u)(λ− b1)K1W1(λ, u),

where

(i) M1 and W1 are Π-rational.
(ii) M1(λ, u) (resp. W1(λ, u)) is holomorphic and invertible for all (λ, u) ∈ D1 ×

(Π−Θ1)) (resp. D∞1 × (Π−Θ1)) for some analytic hypersurface Θ1 ⊂ Π with
Θ0 ⊂ Θ1.

(iii) K1 is a diagonal matrix with decreasing integer entries.

By comparing the domains of analyticity and invertibility of the LHS and the RHS in the
following identity we get that

(2.4) M1(λ, u) = M(λ, u)W1(λ, u)−1(λ− b1)−K1

is holomorphic for (λ, u) ∈ Db× (Π−Θ1) and invertible for (λ, u) ∈ Db∞× (Π−Θ1). The
zeroes of det(M1(λ, u)) for (λ, u) ∈ Db× (Π−Θ1) are first of all in (Db−D1)× (Π−Θ1)
and then by expecting the RHS of (2.4), we get that the they are contained in the
set of zeroes of det(M(λ, u)). Note that if λ = b1 is the only zero of det(M(λ, u)) for
(λ, u) ∈ Db × (Π − Θ1), then we are done, because M1(λ, u) will be holomorphic and
invertible for (λ, u) ∈ Db × (Π−Θ1) and we have the following Birkhoff factorization:

M(λ, u) = M1(λ, u) (λ− b)K1

(λ− b1
λ− b

)K1

W1(λ, u),

where note that λ−b1
λ−b is holomorphic invertible for all λ ∈ D∞ because b1 /∈ D∞. Other-

wise, let b2 ∈ Db be a 2nd zero of det(M(λ, u)) and let m > 0 be an integer, such that,
the diagonal entries of K1 are greater than −m. We get that the number of zeroes of
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det
(
M1(λ, u)(λ− b2)K1+m

)
in Db× (Π−Θ1) is at least 1 less than the number of zeroes

of det(M(λ, u)). Using the inductive assumption we get a Birkhoff factorization

M1(λ, u)(λ− b2)K1+m = U(λ, u)(λ− b)KW ′(λ, u),

where

(i) U and W ′ are Π-rational.
(ii) U(λ, u) (resp. W ′(λ, u)) is holomorphic and invertible for all (λ, u) ∈ Db× (Π−

Θ)) (resp. D∞ × (Π−Θ)) for some analytic hypersurface Θ ⊂ Π with Θ1 ⊂ Θ.
(iii) K is a diagonal matrix with decreasing integer entries.

Therefore,

M(λ, u) = U(λ, u)(λ− b)K−mW ′(λ, u)
(λ− b1
λ− b2

)K1
( λ− b
λ− b2

)m
W1(λ, u)

which provides a Birkhoff factorization for all u ∈ Π−Θ.

b) Put K(i) = Diag(k
(i)
1 , . . . , k

(i)
p ). We argue by induction on i that k

(1)
i = k

(2)
i for

all i. Assume that k
(1)
a = k

(2)
a for a = 1, 2, . . . , i− 1 and k

(1)
i > k

(2)
i . Comparing the two

Birkhoff factorization, we get

(U−1
2 U1)a` = (λ− b)k

(2)
a −k

(1)
` (W2W

−1
1 )a`,

where Aa` denotes the (a, `)-entry of the matrix A. The LHS is analytic for λ ∈ Db. If

k
(2)
a < k

(1)
` , then the RHS is analytic in D∞ and vanishes for λ = ∞, so by Louiville’s

theorem both sides must vanish. We get that (U−1
2 U1)a` = 0 for 1 ≤ ` ≤ i and a ≥ i,

because according to our assumptions

k(2)
a ≤ k(2)

i < k
(1)
i ≤ k(1)

` .

The first i-columns of U−1
2 U1 have non-zero entries only in the first (i−1) places, therefore

they must be linearly dependent. This however contradicts the fact that U−1
2 U1 is invert-

ible for λ ∈ Db. Similarly, the assumption k
(1)
i < k

(2)
i would contradict the invertibility

of W2W
−1
1 , so k

(1)
i = k

(2)
i . �

2.2.4. Proof of Theorem 2.9. a) We argue by induction on the dimension of T .
If T is 0-dimensional, then there is nothing to prove. Let us define the set

N = {t ∈ T : E|P1×{t} is trivial}.

Lemma 2.15. If t′ ∈ N , then there exists an open neighborhood V of t′ in T such that
E|P1×V is trivial.

Proof. Let V be an open polydisc neighborhood of t′. We can find trivializations
of E|Dν×V , such that, the transition function M(λ, t′) = 1. Indeed, using that EP1×{t′}
is trivial we get that M(λ, t′) = U ′(λ)W ′(λ), where U ′(λ) (resp. W ′(λ)) is holomor-
phic and invertible for λ ∈ Db (resp. D∞). Changing the trivialization frames of
E|Db×V and E|D∞×V via U ′ and W ′ we can transform the the transition matrix into
U ′(λ)−1M(λ, t)W ′(λ)−1, which turns into 1 at t = t′.

Let us assume now that the transition matrix is such that M(λ, t′) = 1. Decreasing
V if necessary, we can make M(λ, t) sufficiently close to M(λ, t′). Recalling Lemma 2.12,
we get a Birkhof factorization M(λ, t) = U(λ, t)W (λ, t), which implies that E|P1×V is
trivial. �

The above lemma shows that N is an open subset.
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Lemma 2.16. The vector bundle E|P1×N is trivial.

Proof. Let Σ be the set of open subsets V ⊂ T such that E|P1×V is trivial. By
definition t0 ∈ N , so according to Lemma 2.15 the set Σ is non-empty. Using the inclusion
of open subset we can define a partial ordering on Σ. Clearly every increasing chain
V1 ⊂ V2 ⊂ · · · in Σ is bounded by ∪iVi ∈ Σ. Therefore, recalling the Zorn’s lemma
the set Σ has a maximal element, say V . If V 6= N , then let t′ ∈ N be a boundary
point of V . According to Lemma 2.15 we can find an open neighborhood V ′ ∈ Σ that
contains t′. Let e′ and e be row vectors whose entries give trivializations of respectively
E|P1×V ′ and E|P1×V . Then e′ = eU , where U : P1 × (V ′ ∩ V ) → GL(Cp) is a transition
matrix. Since the entries of U(λ, u) are holomorphic for all λ ∈ P1, by Louiville’s theorem
they must be constants independent of λ, i.e., U(λ, u) = U(b0, u). On the other hand
by definition E|{b0}×T is a trivial bundle, so we can factorize U(b0, u) = A(u)A′(u)−1.
Therefore eA(u) = e′A′(u) for u ∈ V ∩ V ′, so we get that E|P1×(V ∪V ′) is trivial. Since V
is maximal we get V ′ ⊆ V , which however contradicts the fact that t′ ∈ V ′ is a boundary
point of V . �

If N = T , then we are done. Let us assume that N 6= T . We have to show that T −N
is an analytic subvariety of codimension 1. Let u0 ∈ T be a boundary point of N and Π
be a polydisc with center u0. Let M(λ, u) be the transition matrix for some trivializations
E|Dν×Π, ν = b,∞. According to Proposition 2.11 we may assume that M is Π-rational.
Decreasing Π if necessary, we get a Birkhoff factorization (see Proposition 2.14, part a))
M(λ, u) = U(λ, u)(λ − b)KW (λ, u), where U(λ, u) (resp. W (λ, u)) is holomorphic and
invertible for (λ, u) ∈ Db × (Π − Θ) (resp. D∞ × (Π − Θ)). On the other hand, if
V ⊂ (Π−Θ)∩N ⊂ N is an open subset, then EP1×V is trivial. Therefore, the transition
function M(λ, u) = U ′(λ, u)W ′(λ, u). Comparing the two Birkhoff factorizations of M
and recalling Propositon 2.14, part b) we get that K = 0, which imples that E|P1×(Π−Θ)

is trivial, that is, Π−Θ ⊂ N .
Let Θ = Θ1 ∪ · · · ∪ Θs be the decomposition of Θ into irreducible components. By

decreasing Π if necessary we may assume that u◦ ∈ Θi for all i = 1, . . . , s and that
Θi (1 ≤ i ≤ s) represent the germs of the irreducible components of the germ of Θ
at u◦. Let Θ′ be the union of the irreducible components Θi that are disjoint from
N and Θ′′ is the union of the remaining irreducible components of Θ. We claim that
Θ′ = Π − N . Equivalently, since Θ′ ∩ N = ∅ we have to prove that Π − Θ′ ⊂ N . Let
us split Θ′′ = Θ′′sing ∪ Θ′′reg into singular and regular points. Θ′′sing is at least complex

codimension 2 in Π. Since N ∩ Θ′′reg 6= ∅, recalling the inductive assumption we get
that there exists an analytic hypersurface Θ′′0 ⊂ Θ′′reg, such that, N ∩ Θ′′reg = Θ′′reg − Θ′′0 .
Therefore,

Π− (Θ′ ∪Θ′′sing ∪Θ′′0) = (Π−Θ) ∪N ∩Θ′′reg ⊂ N.

We get that the restriction of the vector bundle E to P1×(Π−(Θ′∪Θ′′sing∪Θ′′0)) is trivial.

Therefore, the transition matrix has a factorization M(λ, u) = U(λ, u)W (λ, u), where
U(λ, u) (resp. W (λ, u)) is holomorphic and invertible in Db × ((Π−Θ′)− (Θ′′sing ∪Θ′′0))

(resp. D∞ × ((Π−Θ′)− (Θ′′sing ∪Θ′′0))). On the other hand, since Θ′′sing ∪Θ′′0 is located

in complex codimension at least 2 in Π − Θ′, the Hartogues extension theorem implies
that U(λ, u) (resp. W (λ, u)) extends analytically for all (λ, u) ∈ Db × (Π − Θ′) (resp.
D∞×(Π−Θ′)). Furthermore, the zero locus of det(U(λ, u)) in Db×(Π−Θ′) is contained
in the subset Db× (Θ′′sing∪Θ′′0) which is contained in an analytic subset of codimension at
least 2. Since the zero locus of a holomorphic function is either empty or it has complex
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codimension 1, we get that U(λ, u) must be invertible for all (λ, u) ∈ Db × (Π − Θ′).
Similarly, W (λ, u) is invertible for all (λ, u) ∈ D∞ × (Π−Θ′). We get that E|P1×(Π−Θ′)

is trivial, that is, Π−Θ′ ⊂ N which is what we had to prove.
b) Let e = (e1, . . . , ep), ei ∈ Γ(P1 × (T −Θ), E) be a trivializing frame. Every other

trivializing frame has the from eC, where C : T −Θ→ GL(Cp). On the other hand, since
E{b0}×T is trivial we get that we can always choose C in such a way that eC extends to
a trivializing frame of E{b0}×T . Therefore there exists a frame e such that e|{b0}×(T−Θ)

extends to a trivializing frame of E|{b0}×T . We claim that such a frame e is meromorphic.

Let us choose the covering {Db, D∞} of P1 in such a way that b0 ∈ Db∞ = Db ∩D∞.
Let u0 ∈ Θ be an arbitrary point and let Π ⊂ T be an open polydisc neighborhood of
u0. Let eΠ

ν = (eΠ
ν1, . . . , e

Π
νp), e

Π
νi ∈ Γ(Dν ×Π, E), ν = b,∞ be trivializing frames of E and

M : Db∞ → GL(Cp) be the corresponding transition matrix, that is, eΠ
∞ = eΠ

b M . There
exists a Birkhoff factorization

M(λ, u) = U1(λ, u) (λ− b)KW1(λ, u),

such that, U1 and W1 are Π-rational, U1(λ, u) (resp. W1(λ, u)) is holomorphic and in-
vertible for all (λ, u) ∈ Db× (Π−Θ1) (resp. Db× (Π−Θ1)), where Θ1 ⊂ Π is an analytic
hypersurface. Since E|P1×(Π−Θ) is trivial, we have K1 = 0 and Π−Θ1 ⊆ Π−Θ, that is,
Θ ⊆ Θ1. Let U and W be the transition matrices between the frame e and respectively
eΠ
b and eΠ

∞, that is, e = eΠ
b U and e = eπ∞W−1, where U = U(λ, u) is holomorphic and

invertible for all (λ, u) ∈ Db × (Π − Θ) and W = W (λ, u) is holomorphic and invertible
for all (λ, u) ∈ D∞ × (Π−Θ). Note that

M(λ, u) = U1(λ, u)W1(λ, u) = U(λ, u)W (λ, u).

Therefore, U1(λ, u)−1U(λ, u) = W1(λ, u)W (λ, u)−1 and by comparing the domain of an-
alyticity of the LHS and RHS we get that for every fixed u ∈ Π − Θ1 both the LHS
and the RHS are analytic for all λ ∈ P1. Recalling Louiville’s theorem, we get that
there exists a matrix Q(u) independent of λ and holomorphic for all u ∈ Π − Θ1, such
that, U(λ, u) = U1(λ, u)Q(u) and W1(λ, u) = Q(u)W (λ, u). Let us specialize λ = b0.
Since both e and eΠ

b are holomorphic frames for E over {b0} × Π, the matrix U(b0, u) is
holomorphic for all u ∈ Π. By construction, U1 is Π-rational which in particular implies
that the entries of U1(b0, u) are meromorphic. Therefore, Q(u) is also meromorphic in Π.
Recalling again that U1(λ, u) is Π-ratiional, we get that U(λ, u) = U1(λ, u)Q(u) is mero-
morphic in Db×Π. Finally, U(λ, u) is holomorphic and invertible for (λ, u) ∈ Db×(Π−Θ)
⇒ the poles of U(λ, u) are along the hypersurface Db × Θ. The proof that W (λ, u) is
meromorphic in D∞ ×Π with possible poles along D∞ ×Θ is similar. �

2.3. Painleve property for the Schlesinger equations

Let ∇◦ be a Fuchsian connection on the trivial vector bundle P1 × Cp. Written in
coordinates

∇◦ = d−A◦(λ)dλ,

where

A◦(λ) =
A◦1

λ− u◦1
+ · · ·+ A◦N

λ− u◦N
,

where A◦i are p × p matrices and u◦i are the finite poles of ∇◦. Let us also assume that∑N
i=1A

◦
i 6= 0, so that the connection has a Fuchsian singularity at λ =∞.
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The Schlesinger equations are the following system of differential equations

∂Ai
∂uj

=
[Aj , Ai]

uj − ui
, 1 ≤ i 6= j ≤ N,(2.5)

∂Ai
∂u1

+ · · ·+ ∂Ai
∂uN

= 0, 1 ≤ i ≤ N,(2.6)

Ai(u
◦) = A◦i 1 ≤ i ≤ N,(2.7)

where u◦ = (u◦1, . . . , u
◦
N ). Here

Ai(u1, . . . , uN ) ∈ gl(Cp), 1 ≤ i ≤ N,

is a set of matrix-valued functions which should be viewed as deformations of the coeffi-
cients of the Fuchsian connection∇◦. It is easy to check that the Schlesinger equations are
compatible (integrable). Therefore the solution exists for all u = (u1, . . . , uN ) sufficiently
close to u◦.

Let us denote by U ⊂ CN a sufficiently small neighborhood of u◦ and let (U ×C)′ be
the set of all (u, λ) ∈ U × C, such that

(λ− u1) · · · (λ− uN ) 6= 0.

The Schlesinger equations are equivalent to the 0-curvature equations for the following
connection on the trivial bundle on (U × C)′ of rank p:

∇Schl∂ui
=∂ui +

Ai(u)

λ− ui
(1 ≤ i ≤ N),

∇Schl∂λ
=∂λ −

N∑
i=1

Ai(u)

λ− ui
.

Remark 2.17. The Schlesinger equations provide a solution to the isomonodromy
problem for the Fuchsian connection ∇◦: find a deformation of ∇◦, such that the mon-
odromy of the deformed connection is independent of the deformation parameters. We
refer to [10] for more details on the theory of isomonodromic deformations. �

Let us identify the configuration space of N points on C with

ZN = {u ∈ (P1)N+1 : ui 6= uj for i 6= j and uN+1 =∞}

Every point u ∈ ZN corresponds to a punctured sphere

P1 − {u1, . . . , uN+1} = C− {u1, . . . , uN}.

Let us denote by T the universal cover of ZN . The point u◦ ∈ ZN will be fixed as a
base point and we identify T as the set of pairs (u, [c]) such that u ∈ ZN and [c] is the
homotopy class of a path c in ZN from u◦ to u. A small neighborhood of u◦ in ZN has
a natural lift to a small neighborhood of t◦ := (u◦, [1]) ∈ T , where [1] is the trivial path
from u◦ to u◦. The solution to the Schlesinger equations (2.5)–(2.7) exists locally in a
neighborhood of t◦ ∈ T . The main goal of this chapter is to prove the following theorem
due to Malgrange:

Theorem 2.18 ([43]). If {Ai(u)}Ni=1 is a solution to the Schlesinger equations, then
each Ai extends to a meromorphic function on T .
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2.3.1. Malgrange’s vector bundle. The Fuchsian connection ∇◦ determines a
monodromy representation

µ : π1(C− {u◦1, . . . , u◦N}, b◦)→ GL(Cp),

where b◦ is a reference point. The representation is defined as follows. Let Y ◦(λ) be the
fundamental solution of ∇◦ defined in a neighborhood of b◦ such that Y ◦(b◦) = 1. If γ
is a closed path in C− {u◦1, . . . , u◦N} then the analytic continuation of Y ◦(λ) along γ has
the form Y (λ)µ(γ).

Let us denote by Di ⊂ P1 × T , 1 ≤ i ≤ N + 1, the hypersurface consisting of points
(λ, u, [c]) such that λ = ui (uN+1 := ∞). Let C := P1 × T − ∪N+1

i=1 Di. The projection
map

π : C → T, (λ, u, [c]) 7→ (u, [c])

is a smooth fibration with fiber diffeomorphic to π−1(t◦) = C − {u◦1, . . . , u◦N}. Since
πk(T ) = πk(ZN ) = 0 for k > 1 and π1(T ) = {1}, we get that T is a contractible space.
Using the long exact sequence of homotopy groups we get that the natural inclusion

(C− {u◦1, . . . , u◦N}, b◦)→ (C, (b◦, t◦))

induces an isomorphism between the fundamental groups. Therefore the monodromy
representation µ◦ of ∇◦ induces a representation

(2.8) µ : π1(C, (b◦, t◦))→ GL(Cp).

There exists a unique vector bundle E → C of rank p equipped with a flat connection ∇
such that the monodromy representation of ∇ is equivalent to the given representation
(2.8). We will refer to E → C as the Malgrange’s vector bundle. The equivalence between
the monodromy representation of ∇ and (2.8) means that there exists a row vector f◦ =
(f◦1 , . . . , f

◦
p ) whose entries form a basis of the fiber Eb◦,t◦ such that the parallel transport

with respect to ∇ along a closed loop γ based at (b◦, t◦) transforms f◦ into f◦ µ(γ).
For the reader’s convenience let us recall the construction of E. We choose a covering

of C by open balls {Bi}i∈C that have contractible connected intersections. This can be
achieved by choosing a Riemannian metric on C and letting Bi be the ball with center
i ∈ C of radius ri, where ri is the injectivity radius of C at the point i. It is known that
if x′, x′′ ∈ Bi, then there exists a unique geodesic in C from x′ to x′′ whose length is the
distance between x′ and x′′. Moreover, such a geodesic is entirely in Bi. If Bi ∩ Bj 6= ∅,
then we choose a smooth path γij in Bi ∪ Bj between the centers of Bi and Bj . Let us
also fix B0 to be the ball with center the base point (b◦, t◦). Let us also fix a path γi from
B0 to Bi consisting of paths γab. Then we define E|Bi := Bi×Cp and let ei = (ei1, . . . , e

i
p)

be the trivializing frame corresponding to the standard basis of Cp. On the overlaps
Bi ∩Bj 6= ∅ the bundles are glued via

ej = ei gij , gij = µ(γ−1
i ◦ γji ◦ γj),

where µ is the given monodromy representation (2.8). Since gij are constants, the stan-
dard flat connections given by the de Rham differential on Bi × Cp glue together, so the
bundle E is naturally equipped with a flat connection.
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2.3.2. Extension of E. Recall that Y ◦(λ) is the fundamental solution of∇◦ defined
in a neighborhood of a fixed reference point λ = b◦. Y ◦(λ) is uniquely determined by
requiring that it satisfies the initial condition Y ◦(b◦) = 1. For every singular point u◦i
(1 ≤ i ≤ N) of ∇◦ let us fix a sector with vertex at u◦i of the following form

{λ ∈ C : 0 < |λ− u◦i | < R◦i , −ε < Arg(λ− u◦i ) < ε},
where Ri is sufficiently small so that the disc with center u◦i and radius R◦i does not
contain other singular points u◦j and 0 < ε < 2π. Let us fix a path γ◦i (1 ≤ i ≤ N + 1) in
C − {u◦1, . . . , u◦N} from b◦ to a point u◦i + λ◦i in the above sector, e.g., λ◦i := R◦i /2. Let
us extend analytically Y ◦(λ) along γ◦i . We get an analytic solution of ∇◦ defined in the
above sector. Finally, let us choose an invertible matrix S◦i ∈ GL(Cp), such that Y ◦(λ)S◦i
is a weak Levelt solution for the Fuchsian singularity of ∇◦ at λ = u◦i . We have

(2.9) Y ◦(λ)S◦i = U◦i (λ)(λ− u◦i )Ki(λ− u◦i )Ei ,
where the matrix

Ei = diag(E1
i , . . . , E

pi
i )

is block diagonal with each block corresponding to an eigenvalue of Ei, the block Eji =

ρji I+NJ
i , where N j

i is an upper-triangular nilpotent matrix and the eigenvalue ρji satisfies

0 ≤ Re(ρji ) < 1,

Ki = diag(K1
i , . . . ,K

pi
i ) has the same block diagonal structure as Ei with each block Kj

i

being a diagonal matrix with decreasing integer entries, and U◦i (λ) is holomorphically
invertible in a neighborhood of λ = u◦i .

It is convenient to extend our notation for the singular points of∇◦ in order to include
also the singularity at λ = u◦N+1 = ∞. The above statements remain the same except

that we have to replace everywhere λ − u◦i with λ−1. In particular, the fundamental
solution takes the forms

(2.10) Y ◦(λ)SN+1 = U◦N+1(λ)λ−KN+1λ−EN+1 .

The vector bundle E can be extended across the divisors Di, 1 ≤ i ≤ N+1 as follows.
Let us take a tubular neighborhood

Ti = {(λ, u, [c]) : |λ− ui| < Ri(u)} ⊂ P1 × T,
where Ri : ZN → R>0 is a smooth function satisfying

Ri(u) < |uj − ui|, for all 1 ≤ i 6= j ≤ N,
and

RN+1(u) > |uj |, for all 1 ≤ j ≤ N.
Using parallel transport with respect to the flat connection ∇ we construct a multivalued
flat frame f = (f1, . . . , fp) of E whose value at a point (λ, t) ∈ C

f(λ, t) = (f1(λ, t), . . . , fp(λ, t)), fi(λ, t) ∈ Eλ,t
depends on the choice of a reference path in C from (b◦, t◦) to (λ, t): the component
fi(λ, t) is obtained from f◦i ∈ Eb◦,t◦ via a parallel transport along the reference path. Let
us trivialize E|Ti−Di via the frame

(2.11) f(λ, t)S◦i (λ− ui)−Ei(λ− ui)−Ki , (λ, t) ∈ Ti −Di,
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where t = (u, [c]) ∈ T and the path specifying the value of f(λ, t) is chosen as follows.
We identify C−{u◦1, . . . , u◦N} with the fiber Ct◦ := π−1(t◦). Note that the path γ◦i ⊂ Ct◦
connects the reference point (b◦, t◦) with the point (u◦i + R◦i /2, t

◦) ∈ Ti (provided we
define R◦i := Ri(u

◦)). The path that we would like to select consists of two pieces the
path γ◦i and any path in Ti −Di connecting the end point of γ◦i and (λ, t). The analytic
continuation of f(λ, t◦) and Y ◦(λ) along a closed loop around λ = u◦i are respectively

f(λ, t◦)Mi and Y ◦(λ)Mi. Note that MiS
◦
i = S◦i e

2π
√
−1Ei , therefore the monodromy of

f(λ, t)Si around Di cancels out the monodromy of (λ − ui)−Ei(λ − ui)−Ki around Di.
Hence the frame (2.11) provides a holomorphic trivialization of E|Ti−Di . We extend E
across Di in the obvious way: on the overlap of Ti and Ti −Di we identify the standard
frame of Ti × Cp with the frame (2.11) of E|Ui−Di .

2.3.3. Proof of Theorem 2.18. We are going to construct a multivalued analytic
function Y (λ, t) with values in GL(Cp) defined for all (λ, t) ∈ C such that

(1) Y (λ, t◦) = Y ◦(λ).
(2) The 1-form ω := dY (λ, t)Y (λ, t)−1 is a meromorphic 1-form on P1 × T of the

form
N∑
i=1

Ai(t)

λ− ui
(dλ− dui),

where Ai is a gl(Cp)-valued meromorphic function on T and ui : T → C is the
ith component of the projection map T → ZN .

If we manage to do this then Theorem 2.18 follows immediately. Indeed, the 1st condition
implies that Ai(t

◦) = A◦i . While the fact that Ai(t) satisfy the Schlesinger equations
follows from the fact that ω is a 1-form satisfying

dω + ω ∧ ω = d(dY Y −1) + dY Y −1 ∧ dY Y −1 = 0.

The matrix-valued function Y (λ, t) is constructed by comparing two trivializing frames
of E. The first one is the multivalued flat frame

f(λ, t) = (f1(λ, t), . . . , fp(λ, t)), fi(λ, t) ∈ Eλ,t,
defined by the parallel transport with respect to ∇ with initial value f(b◦, t◦) := f◦.
Recall that f◦ is the frame of Eb◦,t◦ that we fixed so that the monodromy representation
of ∇ coincides with the monodromy representation (2.8).

The 2nd frame will be constructed by using Theorem 2.9, which guarantees the exis-
tence of a meromorphic trivialization of E. Let us check that the conditions of Theorem
2.9 are satisfied. By definition, DN+1 = {∞} × T and E|DN+1

is trivial.

Lemma 2.19. The restriction E|P1×t◦ is trivial.

Proof. We will prove that f(λ, t◦)Y ◦(λ)−1 is a trivializing frame. By definition the
monodromy of the frame f(λ, t◦) and the monodromy of the matrix Y ◦(λ)−1 cancel each
other. Therefore the above frame provides a trivialization of E|P1×t◦ on C−{u◦1, . . . , u◦N}.
Let us check that the trivialization extends analytically in a neighborhood of λ = u◦i for
all 1 ≤ i ≤ N + 1. Let us assume that 1 ≤ i ≤ N . The case i = N + 1 is the same but
one has to use slightly different notation. By definition the trivializing frame of E|P1×t◦

in a neighborhood of λ = u◦i is given by

f(λ, t◦)S◦i (λ− u◦i )−Ei(λ− u◦i )−Ki .
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However, recalling the definition of S◦i we get that the above frame coincides with

f(λ, t◦)Y ◦(λ)−1U◦i (λ).

According to Levelt’s theorem U◦i (λ) is holomorphically invertible at λ = u◦i . Therefore
the frame f(λ, t◦)Y ◦(λ)−1 extends holomorhically and it remains a frame at the point
λ = u◦i . �

According to Theorem 2.9, there exists an analytic hypersurface Θ ⊂ T , such that
E|P1×(T−Θ) is a trivial vector bundle. Let

ẽ = (ẽ1, . . . , ẽp), ẽi ∈ Γ(P1 × (T −Θ), E)

be a trivializing frame. We may further assume that ẽ(λ, t◦) = f(λ, t◦)Y ◦(λ)−1. The
frame that we need in order to define Y (λ, u) is slightly different. The necessary modifi-
cation is constructed as follows. In the tubular neighborhood TN+1 we have

f(λ, t)S◦N+1λ
EN+1λKN+1 = ẽ(λ, t)Ũ(λ, t), ∀(λ, t) ∈ TN+1 − TN+1 ∩ (P1 ×Θ),

where Ũ(λ, t) is holomorphic and invertible for all (λ, t) ∈ TN+1 − TN+1 ∩ (P1 ×Θ) and
meromorphic along TN+1 ∩ (P1 ×Θ). The Taylor series expansion at λ =∞ yields

Ũ(λ, t) = Ũ0(t) + Ũ1(t)λ−1 + Ũ2(t)λ−2 + · · · ,

where Ũ0(t) is holomorphic and invertible for all t ∈ T − Θ and meromorphic along Θ.
The frame that we need is

e(λ, t) = ẽ(λ, t)Ũ0(t)−1Ũ0(t◦).

Note that the above frame is holomorphic for all t ∈ T −Θ and meromorphic along Θ.
Let us define Y (λ, t) ∈ GL(Cp) as the transition matrix

f(λ, t) = e(λ, t)Y (λ, t), (λ, t) ∈ C − (C ∩ (P1 ×Θ)).

Note that at t = t◦ we have Y (λ, t◦) = Y ◦(λ). Therefore, we need to check that the
1-form ω = dY Y −1 has the required properties.

To begin with, note that ω is single valued and analytic. Indeed, the monodromy
of Y (λ, t) is the same as the monodromy of f(λ, t), i.e., under the analytic continuation
along a closed loop γ the value of Y (λ, t) changes into Y (λ, t)µ(γ). However, µ(γ) is
independent of λ and t, so the value of ω remains the same. Since being analytic is a
local property and locally Y (λ, t) is analytic the same is true for ω.

Let us analyze the singularities of ω as a 1-form on P1 × T . The possible singular
locus is along the following divisors

Di (1 ≤ i ≤ N + 1), P1 ×Θ.

Let us fix t /∈ Θ and look in a neighborhood of λ = ui for 1 ≤ i ≤ N . We have

f(λ, t)S◦i (λ− ui)−Ei(λ− ui)−Ki = e(λ, u)Ui(λ, t),

where Ui is holomorphic and invertible for all (λ, t) ∈ Ti−Ti∩ (P1×T ) and meromorphic
along Ti ∩ (P1 × T ). In particular, the Taylor series expansion at λ = ui takes the form

Ui(λ, t) = Ui,0(t) + Ui,1(t)(λ− ui) + · · · ,
where Ui,0(t) is holomorphic and invertible for t ∈ T − Θ and meromorphic along Θ.
Recalling the definition of Y (λ, t) we get

Y (λ, t)S◦i = Ui(λ, t)(λ− ui)Ki(λ− ui)Ei ,
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where the branch of Y (λ, t) is determined by an appropriate reference path (see Section
2.3.2 and the definition of the frame (2.11)). Similarly, at λ =∞ we get

Y (λ, t) = Ũ0(t◦)Ũ0(t)−1Ũ(t, λ)λ−KN+1λ−EN+1 .

Put

Ai(t, λ) := −(λ− ui)(∂uiY (λ, t))Y (λ, t)−1.

If t /∈ Θ is fixed then Ai is an analytic matrix-valued function on C−{u1, . . . , uN}. Near
λ = uj with 1 ≤ j 6= i ≤ N we get

Ai(t, λ) = (ui − uj)(∂uiUj,0(t))Uj,0(t)−1 +O(λ− uj),

which is analytic in a neighborhood of λ = uj . Nera λ = ui we get

Ai(t, λ) = −(λ− ui)(∂uiUi(λ, t))Ui(λ, t)−1 +

Ui(λ, t)
(
Ki + (λ− ui)KiEi(λ− ui)−Ki

)
Ui(λ, t)

−1.

Using the special form of the matrices Ei and Ki we get that the above expression is
analytic at λ = ui. Finally at λ =∞ we have

Ai(t, λ) = −(λ− ui)Ũ0(t◦)∂ui(Ũ0(t)−1Ũ(t, λ))Ũ(t, λ)−1Ũ0(t)Ũ0(t◦)−1,

and this again is analytic at λ = ∞. According to Louiville’s theorem Ai(t, λ) is inde-
pendent of λ. Setting λ = ui we get that

Ai(t) := Ai(t, λ) = Ui,0(t)CiUi,0(t)−1,

where Ci is a constant upper triangular matrix. Moreover, we get that Ai is meromorphic
along Θ.

Similar alrgument shows that the matrix

A(λ, t) := (∂λY (λ, t))Y (λ, t)−1

is holomorphic at λ =∞ and equal to 0 at λ =∞. While at λ = ui we have

A(λ, t) =
Ai(t)

λ− ui
+ · · · ,

where the dots stand for terms analytic at λ = ui. This implies that

A(λ, t)−
N∑
i=1

Ai(t)

λ− ui

is analytic for all λ ∈ P1 and vanishing at λ =∞. Recalling again Louiville’s theorem we
get that

A(λ, t) =

N∑
i=1

Ai(t)

λ− ui
.

Summarizing, we get that

ω = dY Y −1 =

N∑
i=1

Ai(t)

λ− ui
(dλ− dui),

where Ai are meromorphic functions on T . This completes the proof of Theorem 2.18. �
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2.4. Painleve property for semi-simple Frobenius manifolds

Let us assume that M is a semi-simple Frobenius manifold. Let t◦ ∈ M be a semi-
simple point, such that, the canonical coordinates (u1(t◦), . . . , uN (t◦)) of t◦ are pairwise
distinct. In particular, u◦ := (u1(t◦), . . . , uN (t◦)) is a point in the configuration space ZN
and the germ of the Frobenius structure at t◦ determines a Frobenius structure defined
in a neighborhood of u◦ in ZN . The goal in this section is to prove the following theorem.

Theorem 2.20. Let U be a contractible open neighborhood of u◦. There exists an
analytic hypersurface K, such that, the germ of the Frobenius structure at u◦ extends to
a Frobenius structure on U \K.

The proof of the above theorem is based on the fact that a semi-simple Frobenius
manifold can be viewed as a solution to the Schlesinger equations satisfying certain special
initial conditions. This result is due to Manin [44]. A precise statement with a proof will
be given below in Theorem 2.28. Once this fact is established, Theorem 2.20 becomes an
easy consequence of Theorem 2.18.

Remark 2.21. The main application of Teorem 2.20 will be for the case when U is
an open neighborhood of a fixed path in ZN .

Remark 2.22. In fact we can say a little bit more. The extended Frobenius structure
in Theorem 2.20 is meromorphic in the following sense: in a flat trivialization of the tan-
gent bundle the operators of Frobenius multiplication by ∂ui are represented by matrices
whose entries are meromorphic functions on U . In that sense, the extended Frobenius
structure is meromorphic and hence it is appropriate to say that semi-simple Frobenius
manifolds have the Painleve property.

2.4.1. Second structure connection. Suppose that M is a Frobenius manifold.
The hypersurface in M × C defined by

{(t, λ) ∈M × C | det(λ− E•t) = 0}

is called the discriminant of the Frobenius manifold M . The complement of the discrim-
inant will be denoted by (M ×C)′. Let prM : (M ×C)′ →M be the projection (t, λ) 7→ t.
For each complex number n we define a connection ∇(n) on the vector bundle pr∗M TM ,
by the following formulas:

∇(n)
v :=∇L.C.v + (λ− E•)−1 v •

(
θ − n+ 1

2

)
, v ∈ TM

∇(n)
∂λ

:=∂λ − (λ− E•)−1
(
θ − n+ 1

2

)
,

where ∂λ := ∂
∂λ . The connection ∇(n) is usually called the second structure connection.

Remark 2.23. Informally, the second structure connection should be thought off as
the Laplace transform of the Dubrovin’s connection in the following sense: If I(n)(t, λ) is
a horizontal section of ∇(n), then the integral

J(t, z) := z−n−
1
2

∫
Γ

eλ/zI(n)(t, λ)dλ

is a horizontal section for the Dubrovin’s connection, provided that the path Γ can be
chosen such that the integral is convergent and integration by parts works. �

Proposition 2.24. The second structure connection ∇(n) is flat.
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Proof. This is a straightforward computation, so let us just sketch the main steps
leaving the details as an exercise. The problem is local, so let us choose a local flat
coordinate system (t1, . . . , tN ) for ∇L.C.. The Dubrovin’s connection takes the form

∇∂ti = ∂ti − z−1Ai(t) (1 ≤ i ≤ N), ∇∂z = ∂z − z−1θ + z−2E(t),

where the connection matrices Ai(t) (1 ≤ i ≤ N) and E(t) pairwise commute, because
they represent respectively the operators of Frobenius multiplication by ∂ti and E and the
Frobenius multiplication is commutative. The connection matrix θ is a constant matrix
because it represents the grading operator θ. The flatness of the Dubrovin’s connection
is equivalent to the following relations:

(2.12) ∂ti(Aj) = ∂tj (Ai) (1 ≤ i, j ≤ N), ∂ti(E) = Ai + [θ,Ai] (1 ≤ i ≤ N).

The second structure connection takes the form

∇(n)
∂ti

= ∂ti − z−1Bi(t, λ)) (1 ≤ i ≤ N), Bi(t, λ) := −(λ− E(t))−1Ai(t)(θ − n− 1/2)

and

∇(n)
∂λ

= ∂λ −B0(t, λ), B0(t, λ) := −(λ− E(t))−1(θ − n− 1/2).

Using (2.12) we get

∂tj (Bi) = (λ− E)−1(Aj + [θ,Aj ])Bi − (λ− E)−1∂tj (Ai)(θ − n− 1/2).

Using ∂ti(Aj) = ∂tj (Ai) and AjBi = AiBj (∵ Ai and (λ− E)−1 commute), we get

∂tj (Bi)− ∂ti(Bj) = [Bj , Bi],

which is precisely the 0-curvature equation [∇(n)
∂ti
,∇(n)

∂tj
] = 0. The remaining 0-curvature

equations [∇(n)
∂ti
,∇(n)

∂λ
] = 0 are proved similarly. �

2.4.2. Schlesinger equations. We would like to prove that the second structure
connection is a solution to the Schlesinger equations. In particular, it is an isomonodromic
family of Fuchsian connections. Suppose that M is a semi-simple Frobenius manifold.
Let t◦ be a generic semi-simple point, such that, the corresponding canonical coordinates
(u◦1, . . . , u

◦
N ) are pairwise distinct. Let us fix an open neighborhood U of t◦, such that

U admits a canonical coordinate system (u1, . . . , uN ) and ui(t) 6= uj(t) for all t ∈ U and
i 6= j. Put H = Tt◦U and let us trivialize the tangent bundle

(2.13) TU ∼= U ×H ∼= U × CN

using the Levi–Civita connection. In other words, we fix a basis {φa}Na=1 of H and let
∂ta ∈ TU be the flat vector field on U obtained by parallel transport with respect to the
Levi–Civita connection. Then the isomorphisms (2.13) are given by the map

(u, v) ∈ TU 7→ (u, v1φ1 + · · ·+ vNφN ) ∈ U ×H 7→ (u, v1, . . . , vN ) ∈ U × CN ,

where v ∈ TuU and v =: v1∂t1 + · · · + vN∂tN . The isomorphism (2.13) identifies the
structure connection of the Frobenius structure with the flat connection on the trivial
bundle

(U × C∗)× CN → U × C∗
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defined by

∇∂ui = ∂ui − z−1Pi(u), 1 ≤ i ≤ N,
∇∂z = ∂z − z−1θ + z−2E(u),

where Pi : U → gl(CN ) is a holomorphic map whose (a, b)-entry Piab(u) is defined by the
identity

∂ui • ∂tb =

N∑
a=1

Piab(u)∂ta ,

E =
∑N
i=1 uiPi(u), and θ is a constant matrix whose (a, b)-entry θab is defined by

θ(∂tb) = [∂tb , E]− (1−D/2)∂tb =:

N∑
a=1

θab∂ta .

The second structure connection takes the following form:

∇(n)
∂ui

= ∂ui + (λ− E)−1Pi(u)(θ − n− 1/2), 1 ≤ i ≤ N,

∇(n)
∂λ

= ∂λ − (λ− E)−1(θ − n− 1/2).

This is a connection on

(U × C)′ × CN → (U × C)′,

where

(U × C)′ = {(u, λ) ∈ U × C | (λ− u1) · · · (λ− uN ) 6= 0}.

Lemma 2.25. Let Ψ̃ be the matrix whose (a, i)-entry is given by Ψ̃ai = ∂ta/∂ui. Then

Ψ̃−1PiΨ̃ = Eii, Ψ̃−1EΨ̃ = diag(u1, . . . , uN ),

where Eii is the matrix whose entry in position (i, i) is 1 and all other entries are 0.

Proof. We have

∂ui • ∂tb = ∂ui •
N∑
j=1

∂uj
∂tb

∂uj =
∂ui
∂tb

∂ui =

N∑
a=1

∂ui
∂tb

∂ta
∂ui

∂ta .

Therefore

Piab =
∂ui
∂tb

∂ta
∂ui

.

Using this formula we find that the (a, j)-entry of PiΨ̃ is

N∑
b=1

∂ui
∂tb

∂ta
∂ui

Ψ̃bj =

N∑
b=1

∂ui
∂tb

∂ta
∂ui

∂tb
∂uj

= δij
∂ta
∂ui

= δijΨ̃aj .

The latter is precisely the (a, j)-entry of Ψ̃Eii. Therefore PiΨ̃ = Ψ̃Eii. �

Proposition 2.26. Let n ∈ C be arbitrary. Then the matrix-valued functions

A
(n)
i (u) := Pi(u)(θ − n− 1/2), 1 ≤ i ≤ N,

satisfy the Schlesinger equations.
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Proof. We have to prove that the connection

∇Schl
∂ui

= ∂ui +
A

(n)
i (u)

λ− ui
, 1 ≤ i ≤ N

∇Schl
∂λ

= ∂λ −
N∑
i=1

A
(n)
i (u)

λ− ui

is flat. However, using Lemma 2.25 we get

(λ− E)−1Pi(θ − n− 1/2) =
A

(n)
i (u)

λ− ui
.

Therefore ∇Schl = ∇(n), so it remains only to recall Proposition 2.24. �

2.4.3. Special initial conditions. In this section we prove a result due to Manin
[44], which answers the following question: what kind of initial conditions for the Schlesinger
equations determine semi-simple Frobenius structures. Following Manin, we give the fol-
lowing definition.

Definition 2.27. Let H be a vector space equipped with a non-degenerate symmetric
bi-linear pairing ( , ) and a distinguished vector e ∈ H. Suppose also that we have a set
of linear operators θ, {P ◦i }Ni=1 ∈ gl(H). The data (H, ( , ), e, θ, {P ◦i }Ni=1) is said to be a
special initial condition if the following conditions are satisfied:

(1) θ is skew-symmetric: (θ(a), b) + (a, θ(b)) = 0 for all a, b ∈ H.
(2) e is an eigenvector of θ with eigenvalue D/2.
(3) The set {P ◦i }Ni=1 is a complete set of orthogonal projectors of H, that is,

(a) P ◦i P
◦
j = δijP

◦
j for all 1 ≤ i, j ≤ N .

(b) P ◦1 + · · ·+ P ◦N = 1.
(c) (P ◦i (a), b) = (a, P ◦i (b)) for all 1 ≤ i ≤ N and for all a, b ∈ H.
(d) P ◦i e 6= 0 for all 1 ≤ i ≤ N . �

Suppose that (( , ), •, e, E) is a semi-simple Frobenius structure on some complex
manifold M and that t◦ ∈M is a semi-simple point, such that the canonical coordinates
ui 6= uj for i 6= j in a sufficiently small neighborhood of t◦. The data

H := Tt◦M, ( , ), e, θ := ∇L.C.E − (1−D/2), P ◦i = Pi(u
◦), 1 ≤ i ≤ N,

is a special initial condition. In fact, the only property that we did not check yet is that
e is an eigenvector of θ. However

θ(e) = [e, E]− (1−D/2)e = e− (1−D/2)e = (D/2)e,

where in the first equality we used that e is flat and in the second equality we used that
e =

∑
i ∂ui and E =

∑
i ui∂ui . Let

ZN = {u ∈ CN | ui 6= uj for i 6= j}

be the configuration space of N points on the complex line C.

Theorem 2.28. Suppose that (H, ( , ), e, θ, {P ◦i }Ni=1) is a special initial condition and
that u◦ ∈ ZN is any point. Let U ⊂ ZN be a contractible open neighborhood of u◦, such
that, the Schlesinger equations admit a solution in U satisfying the special initial condition
at u◦. Then there exists an analytic hypersurface K ⊂ U \ {u◦} and an isomorphism
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Tu◦U ∼= H, such that, the special initial condition is obtained from a uniquely determined
semi-simple Frobenius structure on U \K.

Proof. Let A
(n)
i (u), 1 ≤ i ≤ N be solutions to the Schlesinger equations such that

A
(n)
i (u◦) = P ◦i (θ − n− 1/2).

If n+ 1
2 is not an eigenvalue of θ, then we define

P
(n)
i (u) = A

(n)
i (u)(θ − n− 1/2)−1.

Lemma 2.29. The set {P (n)
i (u)}Ni=1 is a complete set of orthogonal projections for all

u sufficiently close to u◦.

Proof. Let us fix a basis {φi}Ni=1 of H and identify gl(H) with the space of p × p-
matrices. Let A be the polynomial ring

A = C[(ui − uj)±1 : 1 ≤ i < j ≤ N ]⊗ C[A1, . . . , AN ],

where Ai = (Aiab)
N
a,b=1 are matrix variables. We define derivations ∂u1 , . . . , ∂uN of A

such that

∂uiAj :=
[Ai, Aj ]

ui − uj
, 1 ≤ i 6= j ≤ N,

(∂u1 + · · ·+ ∂uN )Aj := 0,

and if f ∈ A depends only on u1, . . . , uN then ∂ui is defined to be the usual derivative. It
is easy to check that these differentiations pairwise commute, so A becomes a D-module
for the ring D of differential operators on ZN .

Let us define I ⊂ A to be the ideal generated by the relations corresponding to
conditions (a)–(c) in Definition 2.27. More precisely, we replace P ◦i by Ai(θ−n− 1/2)−1

and take the entries of the corresponding matrix identities as generators of I. Condition
(a) yields generators given by the entries of

Rij(A1, . . . , AN ) = Ai(θ − n− 1/2)−1Aj − δijAj , 1 ≤ i, j ≤ N.

Condition (b) gives the entries of

R(A1, . . . , AN ) = A1 + · · ·+AN − θ + n+
1

2
.

Finally, condition (c) gives the entries of

Ri(A1, . . . , AN ) = Ai(θ − n− 1/2)−1 + (θ + n+ 1/2)−1ATi , 1 ≤ i ≤ N,

where T is the transposition operation in gl(H) with respect to the pairing ( , ).
We claim that in order to prove the lemma it is enough to check that I is D-invariant.

Indeed, condition (a) in Definition 2.27 will be satisfied if

Rij(A
(n)
1 (u), . . . , A

(n)
N (u)) = 0.

On the other hand, the Taylor series expansion of Rij(A
(n)
1 (u), . . . , A

(n)
N (u)) at u = u◦

has the form
∞∑

m1,...,mN=0

(∂m1
u1

m1!
· · ·

∂mNuN
mN !

Rij

)
(A

(n)
1 (u◦), . . . , A

(n)
N (u◦))(u1 − u◦1)m1 · · · (uN − u◦N )mN ,
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where we used that A
(n)
i (u) solve the Schlesinger equations, so the evaluation maps Ai 7→

A
(n)
i (u) are D-equivariant. It remains only to notice that all Taylor’s coefficients must

vanish, because P
(n)
i (u◦) = P ◦i form a complete system of orthogonal projections, so

the evaluation R(A
(n)
1 (u◦), . . . , A

(n)
N (u◦)) = 0 for all generators R of I and hence for all

R ∈ I.
Let us check that I is D-invariant. We will prove only that ∂ukRij ∈ I because the

remaining cases can be dealt in the same way. It is more convenient to prove that

dRij :=

N∑
k=1

∂ukRij ⊗ duk ∈ I ⊗ Ω1(ZN ),

where Ω1(ZN ) denotes the ring of holomorphic 1-forms on ZN . By definition dRij is∑
k:k 6=i

[Ak, Ai]

uk − ui
(θ − n− 1/2)−1Aj ⊗ (duk − dui) +

+
∑
k:k 6=j

Ai(θ − n− 1/2)−1 [Ak, Aj ]

uk − uj
⊗ (duk − duj) +

−δij
∑
k:k 6=j

[Ak, Aj ]

uk − uj
⊗ (duk − duj)

On the other hand

[Ak, Ai](θ − n− 1/2)−1Aj = δijAkAj − δkjAiAj (mod I)

and

Ai(θ − n− 1/2)−1[Ak, Aj ] = δikAkAj − δijAjAk (mod I)

Therefore modulo terms in I the differential dRij coincides with the sum of the following
2 terms

δij

(
AkAj ⊗

duk − dui
uk − ui

−AjAk ⊗
duk − duj
uk − uj

− [Ak, Aj ]⊗
duk − duj
uk − uj

)
and

−δkjAiAj ⊗
duk − dui
uk − ui

+ δikAkAj ⊗
duk − duj
uk − uj

.

Both terms vanish, which proves that the entries of dRij are in I ⊗ Ω1(ZN ).

This completes the proof that the set {P (n)
i (u)}Ni=1 satisfies conditions (a)–(c) in

Definition 2.27. The last condition (d) will be satisfied for all u sufficiently close to u◦,

because P
(n)
i (u) is continuous and P

(n)
i (u◦)e = P ◦i e 6= 0. �

Lemma 2.30. If n+ 1
2 and m+ 1

2 are not eigenvalues of θ, then P
(m)
i (u) = P

(n)
i (u).

Proof. According to Lemma 2.29 the matrices P
(n)
i (u) pairwise commute. Using

that A
(n)
i (u) satisfy the Schlesinger equations we get

dP
(n)
i (u) =

∑
j:j 6=i

duj − dui
uj − ui

(
P

(n)
j (u)θP

(n)
i (u)− P (n)

i (u)θP
(n)
j (u)

)
.
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Using these equations and the fact that P
(n)
i (u) pairwise commute we get that the matrix-

valued functions Ã
(n)
i (u) := P

(m)
i (u)

(
θ − n − 1

2

)
(1 ≤ i ≤ N) satisfy the Schlesinger

equations. However the initial condition Ã
(n)
i (u◦) = A

(n)
i (u◦). Therefore Ã

(n)
i (u) =

A
(n)
i (u). �

According to Lemma 2.30 the matrices Pi(u) := P
(n)
i (u) are independent of n, while

Lemma 2.29 implies that they form a complete system of orthogonal projections.

Lemma 2.31. The 1-form

N∑
i=1

ηi(u)dui, ηi(u) := (Pi(u)e, e), 1 ≤ i ≤ N,

defines a Frobenius structure on U \K, where K is the analytic hypersurface in U defined
by η1 · · · ηN = 0. Moreover, we have u◦ /∈ K.

Proof. Let us first check that the above 1-form is closed. We have

ηij(u) := ∂ujηi = ∂uj (Pi(u)e, e) =
2

D − 1− 2n
(∂ujA

(n)
i (u)e, e),

where we used that Pi(u) = A
(n)
i (u) (θ− n− 1/2)−1 and that θ(e) = (D/2)e. We have to

prove that ηij(u) = ηji(u). Let us assume that i 6= j. Since A
(n)
i (u) (1 ≤ i ≤ N) satisfy

the Schlesinger equations we get

∂ujA
(n)
i =

[Aj , Ai]

uj − ui
= ∂uiA

(n)
j ,

which implies that ηij = ηji, so the 1-form is closed. To complete the proof we have to
check that the 4 conditions of Theorem 1.6 are satisfied.

The first condition is satisfied by definition. We need only to check that u◦ /∈ K.
Note that the vectors P ◦i e (1 ≤ i ≤ N) form a basis of H. Indeed, if

∑
i αiP

◦
i e = 0,

then applying to both sides P ◦i we get αiP
◦
i e = 0. By assumption P ◦i e 6= 0, so αi = 0.

The matrix of the form ( , ) is diagonal in the basis P ◦i e with diagonal entries ηi(u
◦).

Therefore ηi(u
◦) 6= 0 for all i, that is, u◦ /∈ K.

The second condition that we have to check is eηi = 0. This follows from the fact
that

N∑
j=1

ηj(u) =
( N∑
j=1

Pj(u)e, e
)

= (e, e)

is a constant independent of u.
The third condition that we have to check is Eηi = −Dηi. We have (see above)

ηi(u) =
2

D − 1− 2n
(A

(n)
i (u)e, e).

Note that

EA
(n)
i (u) = ιEdA

(n)
i (u) = ιE

∑
j:j 6=i

duj − dui
uj − ui

[A
(n)
j (u), A

(n)
i (u)] = [θ,A

(n)
i (u)],
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where in the second equality we used the Schlesinger equations and inthird one we used
that

N∑
j=1

A
(n)
j (u) =

N∑
j=1

Pj(u)(θ − n− 1/2) = θ − n− 1/2.

Therefore

Eηi =
2

D − 1− 2n
([θ,A

(n)
i (u)]e, e).

It remains only to use that θ(e) = (D/2)e and that θ is skew-symmetric with respect to
the pairing.

Finally, the last condition that we have to check is

(2.14)
∂ηij
∂uk

=
1

2

(ηikηjk
ηk

+
ηjiηki
ηi

+
ηkjηij
ηj

)
, k 6= i 6= j 6= k.

Let us explain how to express the LHS as a quadratic expression in the functions ηab.
Recall that we have the following differential equation

∂ujPi =
1

uj − ui

(
PjθPi − PiθPj

)
.

Using the above differential equations and the fact that the operators Pa are self-adjoint
and θ is skew symmetric with respect to ( , ) we get

(2.15) ηij = (∂ujPi(u)e, e) =
2

ui − uj
(Pi(u)e, θPj(u)e).

The derivative ∂ukηij becomes

2

ui − uj

( (PkθPie, θPje)

uk − ui
− (PkθPje, θPie)

uk − uj
+

(PiθPke, θPje)

ui − uk
− (PjθPke, θPie)

uj − uk

)
.

Using the projection formula Pix = (x, Pie)
Pie
ηi

we get

(2.16)
(PkθPie, θPje)

uk − ui
= (θPie, Pke)(Pke, θPje)

1

ηk
=
ηikηjk

4ηk
(uk − uj).

Similar formulas hold for the remaining 3 terms above, so for the derivative ∂ukηij we get

2

ui − uj

(ηikηjk
4ηk

(uk − uj)−
ηikηjk

4ηk
(uk − ui) +

ηkiηji
4ηi

(ui − uj)−
ηkjηij

4ηj
(uj − ui)

)
.

The above expression is precisely the RHS of (2.14). �

The proof of the theorem can be completed as follows. Let us define the isomorphims

Tu◦U ∼= H, ∂ui 7→ P ◦i e,

where slightly abusing the notation we have denoted by ∂ui the tangent vector in Tt◦U
representing the value of the coordinate vector field ∂ui at u◦. We claim that the spe-
cial initial condition corresponding to the Frobenius structure defined by Lemma 2.31
coincides with the given special initial condition. The easiest way to see this is if we fix
the basis of H to be φi = P ◦i e. Then for the given special initial condition we have:
the matrix P ◦j is Ejj (the matrix with 1 on place (j, j) and 0 elsewhere), the matrix of
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the pairing ( , ) is diagonal with diagonal entries (P ◦i e, e) = ηi(u
◦), the vector e has

coordinates (1, . . . , 1), and the matrix of θ becomes (see formula (2.15))

θij = (u◦i − u◦j )
ηij(u

◦)

2ηi(u◦)
, 1 ≤ i, j ≤ N.

Comparing with the special initial condition corresponding to the Frobenius structure we

see that the only thing left to prove is that the grading operator θ̃|Tu◦U coincides with θ.

Let us compute the matrix of θ̃ in canonical coordinates. Note that θ̃ij = 0 for i = j due
to skew-symmetry. Let us assume that i 6= j. Then

θ̃ij(u)ηi(u) = (∂ui ,∇L.C.
∂uj E) = ∂uj (∂ui , E)−

N∑
k=1

Γkij(u)(∂uk , E),

where Γkij are the Christoffel’s symbols of the Frobenius pairing. Recalling the formulas
for the Christoffel’s symbols (see Step 1 in the proof of Theorem 1.6) we get

(2.17) θ̃ij(u)ηi(u) = (ui − uj)
ηij(u)

2
⇒ θ̃ij(u) = (ui − uj)

ηij(u)

2ηi(u)
.

Restricting to u = u◦ we get that θ̃(u◦) = θ.
Finally, in order to prove that the Frobenius structure on U\K is uniquely determined,

we need only to use that the solution of Schlesinger equation satisfying the given (special)
initial condition is unique. �





CHAPTER 3

Vertex operators

The goal of this chapter is to define a certain set of vertex operators associated
with any semi-simple Frobenius manifold and to establish some of their properties. The
construction was initiated by Givental in [22] and was developped further in the sequence
of works [24, 16, 8, 46]. The main application that we have in mind is the construction of
Hirota Quadratic Equations (HQEs) for the total descendent potential. Although such an
application is known in some very special cases, the methods developed so far should be
sufficient for the most general case too. The problem of whether HQEs exist in general can
be formulated as a problem in the settings of lattice VertexOperator Algebras (VOAs).

3.1. HQEs for the KdV hierarchy

Let us start with the computation of Givental in [22] that motivated the definition
and study of vertex operators for semi-simple Frobenius manifolds.

Recall that a formal power series τ ∈ C[[y1, y2, . . . ]] is said to be a tau-function of the
Kadomtsev–Petviashvili (KP)hierarchy if the following condition is satisfied:

(3.1) Resζ=∞

(
Γ+(ζ)⊗ Γ−(ζ)

)
τ ⊗ τ = 0,

where

Γ±(ζ) = exp
(
±
∞∑
n=1

ynζ
n
)

exp
(
∓
∞∑
n=1

ζ−n

n
∂yn

)
are vertex operators and the residue is interpreted formally as the coefficient in front of
−z−1. The standard interpretation of the above equation is to make a substitution

(3.2) xn =
1

2
(y′n − y′′n), tn =

1

2
(y′n + y′′n),

where y′n := yn ⊗ 1 and y′′n := 1⊗ yn are two copies of the variables of the tau-function.
Then (3.1) can be expanded into a Taylor series in x1, x2, . . . whose coefficients are qua-
dratic expressions in the partial derivatives of τ(t1, t2, . . . ). In other words, (3.1) is
equivalent to an infinite system of Partial differential equations, which are usually called
Hirota Bilinear Equations (HBEs).

We will interpret (3.1) in a slightly different way. Namely, let us expand the expression
Γ+(ζ)⊗Γ−(ζ)τ(y′)τ(y′′) as a formal power series in y′ = (y′1, y

′
2, . . . ) and y′′ = (y′′1 , y

′′
2 , . . . )

with coefficients formal Laurent series in ζ−1, whose coefficeints are quadratic polynomials
in the Taylor coefficients of τ(y1, y2, . . . ). Then (3.1) is equivalent to an infinite system
of algebraic equations, which we will refer to as Hirota Quadratic Equations (HQEs).

The KP hierarchy was studied quite extensively by many people. We will not give a
hystorical overview here, since this is quite a difficult task. Nevertheless, let us point out
that the above approach to the KP hierarchy is due to M. Sato (see [56]). He proved that

101
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the solutions to the KP hierarchy can be parametrized by the points of an inifinite Grass-
mannian, which is now called the Sato Grassmannian. The HQEs of the KP hierarchy
defined above coinicde with the Plücker relations defining the Plücker embedding of the
Sato Grassmannian in a projective space (see [56]). Sato’s result motivated a series of
works investigating the role of affine Lie algebras in the theory of integrable hierarchies.
In particular, the most general construction based on Sato’s idea was obtained by Kac
and Wakimoto (see [40]).

There are many integrable hierarchies that can be obtained as a reduction of the
KP hierachy. The example that we would like to discuss is the Korteweg–de Vries (KdV)
hierarchy. The tau-functions τ of the KdV hierarchy are tau-functions of the KP hierarchy
independent of the even variables y2, y4, . . . , that is, τ = τ(y1, y3, . . . ). Let us decompose
the vertex operators Γ±(ζ) = Γ±odd(ζ)Γ±ev(ζ), where

Γ±odd(ζ) = exp
(
±
∞∑
k=0

y2k+1ζ
2k+1

)
exp

(
∓
∞∑
k=0

ζ−2k−1

2k + 1
∂y2k+1

)
and Γ±ev(ζ) is the remaning part of the vertex operator involving only the even variables
y2k (k ≥ 1). If τ is a tau-function of the KdV hierarchy, then (3.1) takes the following
form

(3.3) Resζ=∞ e
∑∞
k=1(y′2k−y

′′
2k)ζ2k

(
Γ+

odd(ζ)⊗ Γ−odd(ζ)
)
τ(y′1, y

′
3, . . . )τ(y′′1 , y

′′
3 , . . . ) = 0.

Note that (3.3) is equivalent to

(3.4) Resζ=∞ ζ2k
(

Γ+
odd(ζ)⊗ Γ−odd(ζ)

)
τ(y′1, y

′
3, . . . )τ(y′′1 , y

′′
3 , . . . ) = 0

for all k ≥ 0. In other words, the coefficients in front of ζ−2k−1 (k ≥ 0) in Γ+
odd(ζ) ⊗

Γ−odd(ζ)τ ⊗ τ vanish. On the other hand, there is a natural way to extract the odd
coefficients of a Laurent series f(ζ), that is, 1

2 (f(ζ)− f(−ζ)) is the series obtained from
f(ζ) be truncating all terms involving even powers of ζ. Therefore, (3.4) is equivalent to
saying that the following expression does not have negative powers of ζ:

(3.5)
1

ζ

(
Γ+

odd(ζ)⊗ Γ−odd(ζ)− Γ−odd(ζ)⊗ Γ+
odd(ζ)

)
τ(y′1, y

′
3, . . . )τ(y′′1 , y

′′
3 , . . . ),

where we used that Γ±odd(−ζ) = Γ∓odd(ζ). Note that if τ is an arbitrary power series in
y1, y3, . . . , then (3.5) takes valuesin C((ζ−2))[[y′, y′′]]. The HQEs of KdV are equivalent to
the condition that (3.5) belongs to C[ζ2][[y′, y′′]].

Let us transform (3.5) having in mind the applications to the Witten–Kontsevich

tau-function (see Section 1.6.1). Namely, put qk =
√
~(2k + 1)!!y2k+1 and λ = ζ2/2.

Then the vertex operators Γ±odd(ζ) = Γ
± 1

2
pt (λ), where

(3.6) Γcpt(λ) = exp
(

2c

∞∑
k=0

(2λ)k+
1
2

(2k + 1)!!

qk√
~

)
exp

(
− 2c

∞∑
k=0

(2k − 1)!!

(2λ)k+
1
2

√
~
∂

∂qk

)
,

where c ∈ C is a complex number. Therefore, we can reformulate Witten’s conjecture
proved by Kontsevich as follows. The total descendent potential of a point Dpt(~,q)
satisfies the HQEs of KdV, that is, the expression

(3.7)
1√
λ

(
Γ

1
2
pt(λ)⊗ Γ

− 1
2

pt (λ)− Γ
− 1

2
pt (λ)⊗ Γ

1
2
pt(λ)

)
Dpt(~,q′)Dpt(~,q′′)
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takes values in C[λ][[q′,q′′]].
The vertex operators (3.6) have a very nice interpretation in terms of Givental’s quan-

tization formalism (see Section 1.4) applied to the symplectic loop space H := C((z−1)).
The differential operator in the exponent is a quantization of the linear Hamiltonian

2c

∞∑
k=0

(2λ)k+
1
2

(2k + 1)!!
qk − 2c

∞∑
k=0

(2k − 1)!!

(2λ)k+
1
2

pk.

Recalling the triavialization of the tangent bundle TH ∼= H ×H in which ∂
∂qk
7→ zk and

∂
∂pk
7→ (−z)−k−1, we get that the corresponding Hamiltonian vector field is

(3.8) f c(λ, z) := −
∑
n∈Z

I(n)
c (λ)(−z)n,

where I
(n+1)
c (λ) = ∂λI

(n)
c (λ) and I

(0)
α (λ) = 2c(2λ)−1/2. The function I

(0)
c (λ) is the period

of A1-singularity! Namely, let f(x) := x2

2 and ω = dx be the standard holomorphic

volume form on Z := C. The fiber Zλ = f−1(λ) consists of two points x±(λ) = ±
√

2λ.

The 0-dimensional cycle ϕλ := [x+(λ)]− [x−(λ)] ∈ H̃0(Xλ;Z) is a vanishing cycle and we
have the following 0-dimensional period integral corresponding to the cycle cϕ:∫

cϕλ

ω

df
=

∫
cϕλ

1

x
=

c

x+(λ)
− c

x−(λ)
=

2c√
2λ

= I(0)
c (λ).

It turns out that the above interpretation of the coefficients of the vertex operators as pe-
riods generalizes to any singularity and even more generally to any semi-simple Frobenius
manifold. The resulting vertex operators have very interesting applications to represen-
tation theory of vertex algebras and to integrable hierarchies.

3.2. Periods of a semi-simple Frobenius manifold

We would like to define the periods of a semi-simple Frobenius manifold as solutions
to the second structure connection having a certain normal form in a neighborhood of
the singularity at infinity. Before going into the details, let us specify the settings in
which we would like to work. Let (M, •, ( , ), e, E) be a semi-simple Frobenius manifold
(see Definitions 1.1 and 1.4). For simplicity, let us assume that M is simply connected.
Let t◦ ∈ M \ K be a semi-simple point and t = (t1, . . . , tN ) be flat coordinates defined
in a neighborhood of t◦. Since M is simply connected, the flat vector fields φa := ∂

∂ta
(1 ≤ a ≤ N) extend to global vector fields on M and they provide a trivialization of the
tangent bundle: TM ∼= M ×H, where H = ⊕1≤a≤NC∂a denotes the space of flat vector
fields on M . Using the Frobenius pairing ( , ) we identify the cotangent and the tangent
bundles, that is, the 1-forms φa = dta (1 ≤ a ≤ N) correspond to a basis of H dual to φa
with respect to the Frobenius pairing.

We will make a further assumption that the grading operator θ is diagonalizable
with rational eigenvalues and that the Frobenius manifold M has a calibration S(t, z) =
1 +

∑∞
k=1 Sk(t)z−k satisfying the following conditions:

(i) Sk : M → End(H) is a holomorphic map.
(ii) Symplectic condition holds: S(t, z)S(t,−z)T = 1.

(iii) The Dubrovin connection admits a fundamental solution of the form Y (t, z) =
S(t, z)zθz−ρ, where ρ : H → H is a nilpotent operator, satisfying [θ, ρ] = −ρ.
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Recalling the recursive formula (1.11) for the calibration, we get that ρ = −ν[−1] =
(E•)[−1], that is, the operator ρ is uniquely determined from the operator of Frobenius
multiplication by the Euler vector field. If the grading operator θ satisfies the above
conditions, then we will say that θ is a Hodge grading operator.

Remark 3.1. The construction that will follow can be generalized to semi-simple
Frobenius manifolds for which the grading operator is not necessarily diagonalizable and
[θ, ρ] 6= −ρ. However, the formulas become more cumbersome and so far we do not have
any examples for which such a generality is needed.

3.2.1. Calibrated periods. Let u = (u1, . . . , uN ) be the canonical coordinates
defined in a neighborhood of t◦. Let us fix a positive real number λ◦, λ◦ > |ui(t◦)| for all
1 ≤ i ≤ N . We will use (t◦, λ◦) as a reference point in M × C in order to keep track of
the branches of the solutions to the second structure connection. Using the calibration
S(t, z) we would like to describe the space of solutions of the second structure connection
∇(m) in a neighborhood of λ =∞. To begin with, put

(3.9) Ĩ(m)
a (λ) := e−ρ∂λ∂m

 λθ−m−
1
2

Γ(θ −m+ 1
2 )

 a,

where m is a complex number. Note that ρ is a nilpotent operator, so the exponential
produces a finite order differential operator. Formula (3.9) defines a multivalued function
on C \ {0} with values in End(H). Its value in a neighborhood of λ = λ◦ is determined
by the principal branch of the logarithm, while the values at the remaining points depend
on the choice of a refernce path.

Lemma 3.2. The functions (3.9) satisfy the following differential equation:

(λ− ρ) ∂λ Ĩ
(m) =

(
θ −m− 1

2

)
Ĩ(m).

Proof. Let L := (λ − ρ)∂λ − θ + m + 1
2 . We need to prove that LĨ(m) = 0. Note

that

[ρ∂λ∂m, L] = ρ∂λ.

Using the formula eABe−A = B +
∑∞
k=1

1
k!ad

k
A(B) with A = ρ∂λ∂m and B = L, we get

eρ∂λ∂m Le−ρ∂λ∂m = L+ ρ∂λ = λ∂λ − θ +m+ 1
2 .

Therefore, the lemma follows from the fact that

λ∂λ λ
θ−m− 1

2 =
(
θ −m− 1

2

)
λθ−m−

1
2 . �

The functions (3.9) will be called calibrated periods. Note that since 1
Γ(z) is an entire

function in z, definition (3.9) makes sense for all m ∈ C. We will be interested however,
only in the case when m ∈ Z. Let us point out the following important property:

(3.10) ∂λĨ
(m)
a (λ) = Ĩ(m+1)

a (λ).

Put

(3.11) I(m)
a (t, λ) :=

∞∑
k=0

(−1)kSk(t)Ĩ(m+k)
a (λ),
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where a ∈ H, m ∈ C, and the RHS is interpreted as a formal Laurent series near λ =∞.

We claim that I
(m)
a (t, λ) is a solution to the second structure connection (see Section 2.4).

More precisely, we have the following proposition.

Proposition 3.3. The series I
(m)
a (t, λ) is a solution to the following system of dif-

ferential equations:

(λ− E•)∂λI(m)
a (t, λ) =

(
θ −m− 1

2

)
I(m)
a (t, λ)

∂tiI
(m)
a (t, λ) =− φi • ∂λI

(m)
a (t, λ) (1 ≤ i ≤ N).

Proof. The proof is straightforward verification using Lemma 3.2, formula (3.10),
and that the coefficients Sk(t) of the calibration series satisfy the following recursion
equations:

kSk(t) + [θ, Sk(t)] = E • Sk−1(t)− Sk−1(t)ρ,

∂tiSk(t) = −φi • Sk−1(t).

We leave the details as an exercise. �
Let us list several key properties of the period vectors, which will be used quite

frequently.
1) As we already discussed in great details in Section 2.4, the system in Proposition

3.3 is an isomonodromic family of Fuchsian equations (in λ). Therefore, the formal series
(3.11) is convergent for all (t, λ) sufficiently close to the reference point (t◦, λ◦). Using

the differential equations from Proposition 3.3, we get that the periods I
(m)
a (t, λ) extend

analytically along any path avoiding the discriminant.
2) We have a monodromy representation

(3.12) r : π1((M × C)′, (t◦, λ◦))→ End(H),

where (M ×C)′ is the complement of the discriminant, defined as follows: if C is a closed

loop in (M × C)′ based at(t◦, λ◦), then the analytic continuation of I
(m)
a (t, λ) along C

is equal to I
(m)
rC(a)(t, λ) for some rC(a) ∈ H. Clearly, rC ∈ End(H) depends only on the

homotopy class of the map C and hence the map C 7→ rC induces a representation of the
fundamental group.

3) We have ∂λI
(m)
a (t, λ) = I

(m+1)
a (t, λ). This follows immediately from (3.10).

4) Since ∂t1I
(m)
a (t, λ) = −∂λI(m)

a (t, λ) the periods have the following translation in-
variance property:

I(m)
a (t, λ) = I(m)

a (t− λ1, 0),

where t− λ1 ∈M is the time −λ-flow of the unit vector field, that is, in flat coordinates
t = (t1, . . . , tN ) such that ∂

∂t1
is the unit vector field of the Frobenius manifold, we have

t− λ1 = (t1 − λ, t2, . . . , tN ).
5) There is a canonical way to change the refrence point. Suppose that we choose

a 2nd reference point (t#, λ#) ∈ (M × C)′, such that, λ# is a positive real number
and |λ#| > |u#| for all eigenvalues u# of the operator of Frobenius multiplication by

E•t# . Now we have two ways to define the periods I
(m)
α (t#, λ#). First, by using formula

(3.11) and second, by fixing a path A in (M × C)′ connecting (t◦, λ◦) and (t#, λ#) and

analytically continuing I
(m)
α (t◦, λ◦) along A. We claim that we can always choose the

path A in such a way that the two definitions will agree. Such a path A will be called
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admissible. Indeed, the calibrated periods are defined through the principal branch of
log λ and since the line segment [λ◦, λ#] is on the positive real axis, we get that the

analytic continuation of Ĩ(k)(λ◦) along [λ◦, λ#] is Ĩ(k)(λ#). Since we assumed that M
is simply connected, the analytic continuation of the calibration S(t, w) along any path
between t◦ and t# will transform S(t◦, w) into S(t#, w). Therefore, for A we can choose
any path in M × R>0, such that, if (t, λ) ∈ A then |λ| > u for all eigenvalues u of the
operator of Frobenius multiplication by E•t. Note that the image of the monodromy
representation is independent of the choice of a reference point. More precisely, given an
admissible path A, we have an isomorphism

π1((M × C)′, (t◦, λ◦)) ∼= π1((M × C)′, (t#, λ#)), C 7→ A ◦ C ◦A−1

compatible with the monodromy representation, that is, rC = rACA−1 .

3.2.2. Singularities along the discriminant. We would like to describe the sin-
gularities of the period vectors in a neighborhood of a generic point on the discrimi-
nant. Suppose that t ∈ M is a semi-simple point, such that, the canonical coordinates
ui(t) 6= uj(t) for i 6= j. The second structure connection in canonical coordinates takes
the following form (see Proposition 2.26)

∂ujI
(m)(u, λ) = (λ− uj)−1 Pj(u)

(
− θ +m+ 1

2

)
I(m)(u, λ) (1 ≤ j ≤ N),(3.13)

∂λI
(m)(u, λ) =

N∑
j=1

(λ− uj)−1 Pj(u)
(
θ −m− 1

2

)
I(m)(u, λ)(3.14)

where Pi(u) ∈ End(H) is the operator of Frobenius multiplication by ∂
∂ui
• (see Lemma

2.25). We claim that the system (3.13)–(3.14) admits a basis of solutions of the form

(3.15) I(m)(u, λ) = (λ− ui)−α
( ∞∑
k=0

ak(u)(λ− ui)k
)
,

where the infinite power series on the RHS has a non-zero radius of convergence. Sub-
stituting formula (3.15) in the differential equation (3.14) and comparing the coefficients
in front of (λ − ui)−1, we get that a0(u) must be an eigenvector of the linear operator
Pi(u)(−θ+m+ 1

2 ) with eigenvalue α. Let us determine the eigenvalues and the correspond-

ing eigenvectors. To begin with, recall the Jacobi matrix Ψ̃ with (a, i)-entry Ψ̃ai = ∂ta
∂ui

,

U := diag(u1, . . . , uN ), and V := −Ψ̃−1θΨ̃ = −Ψ−1θΨ (see formula (1.67)). Recalling

Lemma 2.25, we get that the operator Ψ̃−1 (Pi(u)(−θ +m+ 1
2 )− α) Ψ̃−1 coincides with

Eii(V +m+ 1
2 )− α =



−α
. . .

−α
Vi1 · · · Vi,i−1 (Vii +m+ 1

2 − α) Vi,i+1 · · · ViN
−α

. . .

−α


.

Note that V is a skew-symmetric matrix, so Vii = 0. It follows that for each fixed u, the
linear operator Pi(u)(−θ+m+ 1

2 ) is diagonalizable, that is, it has an (N−1)-dimensional
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space of eigenvectors with eigenvalue 0 and a 1-dimensional space of eigenvectors with
eigenvalue m+ 1

2 .
Let us construct the solutions to (3.13)–(3.14) corresponding to α = 0, that is, the

solutions that are holomorphic at λ = ui. To begin with, let us substitute the ansatz
(3.15) in (3.14) and compare the coefficients in front of (λ − ui)k−1 for k ≥ 1. We get a
recursion relation of the following form:

(3.16)
(
k + Pi(u)(−θ +m+ 1

2 )
)
ak =

∑
j:j 6=i

k∑
s=1

Pj(u)

(uj − ui)s
(−θ +m+ 1

2 )ak−s.

We get that the solution, if it exists, is uniquely determined from a0. To determine a0,
let us substitute (3.15) in (3.13)–(3.14) and specialize λ = ui. We get that the coefficient
a0(u) is a solution to the following system of ODEs:

∂uja0 =
Pj(u)

uj − ui

(
θ −m− 1

2

)
a0, j 6= i,(3.17)

∂uia0 = −
∑
j:j 6=i

Pj(u)

uj − ui

(
θ −m− 1

2

)
a0.(3.18)

The compatibility of the above system follows from the fact that the operator valued
functions Aj(u) = Pj(u)(−θ + m + 1

2 ) (1 ≤ j ≤ N) are solutions to the Schlesinger

equations (see Proposition (2.26)). Let us choose a◦0 ∈ H, such that, Pi(u
◦)(θ−m− 1

2 )a◦ =
0, where u◦ = (u1(t◦), . . . , uN (t◦)) are the canonical coordinates of the reference point t◦.
Let us define a0(u) to be the solution to the system (3.17)–(3.18), satisfying the initial
condition a0(u◦) = a◦0. Furthermore, we define ak(u) for k ≥ 1 by the recursion (3.16).
We leave it as an exercise for the reader to check that the series (3.15) with coefficients
defined as above is indeed a solution to (3.13)–(3.14).

Let us construct the solution to (3.13)–(3.14) of the form (3.15) with α = m + 1
2 .

Although one can follow the same method as above, it turns out that the solution in
this case can be expressed in terms of the asymptotic series R(t, z) – see Proposition
1.68. Namely, using the differential equations (1.69)–(1.70) defining the asymptotic series
R(t, z) we get that the Laurent series

(3.19) I
(m)
i (t, λ) =

√
2π

∞∑
k=0

(−1)kΨ(t)Rk(t)ei
(λ− ui)k−m−

1
2

Γ(k −m+ 1
2 )

is a solution to (3.13)–(3.14). Since (3.14) has a regular singular point at λ = ui, the
above series must be convergenet. Here ei is a vector column with 1 on the ith position
and 0 elsewhere and the matrix Ψ(t) is viewed as an isomorphism CN ∼= H, defined by

Ψ(t)ei =
√

∆i
∂
∂ui

=

N∑
a=1

Ψai φa.

In other words, we proved the following proposition.

Proposition 3.4. The space of solutions to the second structure connection (3.13)–
(3.14) in a neighborhood of a generic point (t◦, u◦) on the discriminant has the following
properties.

a) The subspace of solutions analytic at (t, λ) = (t◦, u◦) is (N − 1)-dimensional.
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b) A solution I(m)(t, λ) is analytic at (t, λ) = (t◦, u◦) if and only if it is locally
monodromy invariant, i.e., it is invariant under the analytic continuation along a closed
loop around the disrciminant branch λ = ui(t), where i is such that u◦ = ui(t

◦).
c) The Laurent series (3.19), up to a constant factor,is the unique solution which

is anti-invariant with respect to the analytic continuation along a closed loop around the
discriminant branch λ = ui(t) – same convention as in part b). �

3.2.3. Vertex operators and phase factors. Our main interest is in the following
vertex operators

(3.20) Γα(t, λ) = ef
α
−(t,λ,z)̂ ef

α
+(t,λ,z)̂

and

(3.21) Γ̃α(λ) = ef̃
α
−(λ,z)̂ ef̃

α
+(λ,z)̂

where α ∈ H,

fα(t, λ, z) =
∑
m∈Z

I(m)
α (t, λ)(−z)m,

and

f̃α(λ, z) =
∑
m∈Z

Ĩ(m)
α (λ)(−z)m.

The second structure connection has the form (1.57). In particular, the construction in
the example of Section 1.5.1 applies in the current settings. In other words, the coefficients
of the above vertex operators take values in the ring generated by the components of all
period vectors. Note that the definition (3.11) of the periods can be written equivalently
as

fα(t, λ, z) = S(t, z)f̃α(λ, z).

Recalling formula (1.62) we get

(3.22) Γ̃α(λ)Ŝ−1 = Ŝ−1 eW (f̃α+ ,̃f
α
+)/2Γα(t, λ).

Let us fix a path C avoiding the discriminant from (t◦, λ◦) to a generic point on the

discriminant(t, ui(t)). Then the anti-invariant solution I
(m)
i (t, λ) = I

(m)
α (t, λ) for some

α ∈ H, where the value of the period vector I
(m)
α (t, λ) is specified by the path C. Such a

vector α will be called reflection vector. The set of all reflection vectors will be denoted
by R. Our interest in the reflection vectors comes from the fact that the corresponding
vertex operators Γα(t, λ) are conjugated to the vertex operators used in the definition of
the HQEs of the KdV hierarchy. More precisely, put

fpt(u, λ, z) =
∑
m∈Z

(−z∂λ)m
2√

2(λ− u)
=
√

2π
∑
m∈Z

(−z)m (λ− u)−m−
1
2

Γ(−m+ 1
2 )

.

The vertex operator

Γcpt(ui, λ) := ec(f
−
pt(ui,λ,z)ei )̂ ec(f

+
pt(ui,λ,z)ei )̂ ,
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where c ∈ C is a complex constant and ei :=
√

∆i
∂
∂ui

, takes the form

exp
(
c

∞∑
k=0

N∑
a=1

I
(−k−1)
pt (ui, λ)

∂ui
∂ta

qk,a√
~∆i

)
exp

(
c

∞∑
k=0

N∑
a=1

(−1)k+1I
(k)
pt (ui, λ)

∂ta

∂ui

√
~∆i

∂

∂qk,a

)
,

where

I
(m)
pt (ui, λ) =

√
2π

(λ− ui)−m−
1
2

Γ(−m+ 1
2 )

= ∂mλ

( 2√
2(λ− ui)

)
.

Note that up to some linear change of the variables, the operator Γ1
pt(ui, λ) coincides with

the vertex operator (3.6). On the other hand, the definition (3.19) is equivalent to

fi(t, λ, z) :=
∑
m∈Z

I
(m)
i (t, λ)(−z)m = (Ψ(t)R(t, z)Ψ(t)−1) ei fpt(ui, λ, z).

Recalling the conjugation formula (1.63) we get that if α ∈ R then

(3.23) Γcα(t, λ) (ΨRΨ−1)̂= e
c2

2 V (fα−,f
α
−)(ΨRΨ−1)̂Γcpt(ui, λ),

where λ is sufficiently close to ui and the reference path specifying the value of Γcα(t, λ) is

the same as the path used in the definition of the reflection vector α, that is, I
(m)
α (t, λ) =

I
(m)
i (t, λ). Formula (3.23) makes sense because if α is a reflection vector, then Γcα(t, λ) is

a tame vertex operator and hence the conjugation by upper-triangular symplectic trans-
formations is defined (see Section 1.5.4).

Formulas (3.22) and (3.23) involve the quadratic expressions W (f̃α+(λ, z), f̃α+(λ, z))
and V (fα−(t, λ, z), fα−(t, λ, z)), which we will refer to as phase factors, where the qua-
dratic forms W and V are defined in terms of the symplectic transformations S(t, z)
and Ψ(t)R(t, z)Ψ(t)−1 according to respectively formulas (1.37)–(1.38) and (1.49)–(1.50).
Our goal now is to express the phase factors as integrals along the path of a certain
multivalued 1-form on (M × C)′ (see also [22], Section 7).

Let us begin with the phase factor corresponding to W . More generally, let us com-
pute

(3.24) Wα,β(t, λ, µ) = W (f̃α+(λ, z), f̃β+(µ, z)) =

∞∑
k,l=0

(−1)k+l(Wkl(t)Ĩ
(l)
α (λ), Ĩ

(k)
β (µ)).

Recalling formula (1.38) and the differential equation for the calibration dMS(t, z) =

z−1A(t)S(t, z), where dM is the de Rham differential on M and A(t) =
∑N
a=1(φa•)dta,

we get dMWkl(t) = Sk(t)T A(t)Sl(t) and hence

dMWα,β(t, λ, µ) =

∞∑
k,l=0

(−1)k+l(A(t)Sl(t)Ĩ
(l)
α (λ), Sk(t)Ĩ

(k)
β (µ) =

= (A(t)I(0)
α (t, λ), I

(0)
β (t, µ)) =

N∑
a=1

(φa, I
(0)
α (t, λ) • I(0)

β (t, µ))dta =

= I(0)
α (t, λ) • I(0)

β (t, µ) ∈ T ∗t M,

where in the last equality we used the identification TM ∼= T ∗M defined via the Frobenius
pairing.
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Let us compute the phase factor corresponding to V . Put

R̃(t, z) := Ψ(t)R(t, z)Ψ(t)−1 =:

∞∑
k=0

R̃k(t)zk.

Recalling the differential equations (1.69) for the asymptotic series R(t, z) we get

dM R̃k = −R̃kB + [A, R̃k+1],

where B := dMΨ Ψ−1 and we supressed the dependence on t. Note that BT = −B and
AT = A. On the other hand, according to Proposition 1.40, part a), we have

Vkl(t) =

l∑
i=0

(−1)i+1R̃k+1+i(t)R̃l−i(t)
T .

Therefore,

dMVkl(t) = A(t)Vk+1,l(t) + Vk,l+1(t)A(t) + R̃k+1(t)A(t)R̃l+1(t)T ,

for all k, l ≥ 0. By definition (see formula (1.49))

V (fα−(t, λ, z), fα−(t, λ, z)) =

∞∑
k,l=0

(I(−1−k)
α (t, λ), Vkl(t)I

(−1−l)
α (t, λ))

and dMI
(−1−k)
α (t, λ) = −A(t)I

(−k)
α (t, λ). Therefore, after a straightforward computation,

we get

dMV (fα−(t, λ, z), fα−(t, λ, z)) =

− (A(t)I(0)
α (t, λ), I(0)

α (t, λ)) +

∞∑
k,l=0

(A(t)R̃l(t)
T I(−l)

α (t, λ), R̃k(t)T I(−k)
α (t, λ)).

The above sums can be simplified in the case when α ∈ R is a reflection vector, (t, λ)
is sufficiently close to a generic point (t◦, u◦) = (t◦, ui(t

◦)) on the discriminant, and the

periods I
( )
α (t, λ) coincide with the corresponding anti-invariant solution of the second

structure connection. Recall that in that case we have

fα(t, λ, z) = R̃(t, z)ei

(∑
n∈Z

(−z∂λ)n
( 2√

2(λ− ui)

))
.

The symplcetic condition implies that R̃(t, z)−1 = R̃(t,−z)T , so applyig to both sides of

the above formula the operator R̃(t, z)−1 and comparing the coefficients in front of z0 we
get

∞∑
k=0

R̃k(t)T I(−k)
α (t, λ) =

2ei√
2(λ− ui)

.

The formula for the differential of the phase factor takes the form

dMV (fα−(t, λ, z), fα−(t, λ, z)) =
2dui
λ− ui

− I(0)
α (t, λ) • I(0)

α (t, λ).

Since fα−(t, λ, z) vanishes at λ = ui, we get

(3.25) V (fα−(t, λ, z), fα−(t, λ, z)) =

∫ t

t+(λ−ui)1

( 2dui(s)

λ− ui(s)
− I(0)

α (s, λ) • I(0)
α (s, λ)

)
,
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where s is the integration variable.
We proved the following proposition.

Proposition 3.5. a) We have

dMWα,β(t, λ, µ) = I(0)
α (t, λ) • I(0)

β (t, µ),

where Wα,β(t, λ, µ) is defined by formula (3.24).
b) If α ∈ R and (t, λ) is sufficiently close to the corresponding generic point (t◦, u◦) =

(t◦, ui(t
◦)) on the discriminant, then

V (fα−(t, λ, z), fα−(t, λ, z)) = lim
ε→0

∫ t+(λ−ui+ε)1

t

(
I(0)
α (s, λ) • I(0)

α (s, λ) +
2dui(s)

ui(s)− λ

)
,

where the branch of the period vectors is specified by the same reference path as the one
used in the definition of the reflection vector α. �

The formula in part b) of Proposition 3.5 is obtained from (3.25) by the substitution
x = s− λ1. Note that ui(x) = ui(s)− λ, because ∂

∂t1
= ∂u1

+ · · ·+ ∂uN , so ∂ui
∂t1

= 1, that

is, ui(t) is the sum of t1 and a function that depends only on t2, . . . , tN .

3.3. Propagators

The main tool for constructing Hirota quadratic equations for the total descendent
potential is the formalism of vertex operators that we introduced in Section 3.2. Recall
that conjugating vertex operators by quantized symplectic tranformations produces the
so-called phase factors (3.24). The latter are multivalued analytic functions on the com-
plement of the discriminant. Our next goal is to understand the dependence of the phase
factors on the choice of a reference path, i.e., how do the phase factors tranform under
the analytic continuation along a closed loop? The answer to this question will be very
important for the applications to integrable systems.

3.3.1. Product of vertex operators. Let us consider a product of two vertex
operators

Γα(t, λ1)Γβ(t, λ2) = eΩα,β(t,λ1,λ2) : Γα(t, λ1)Γβ(t, λ2) : ,

where : : denotes normal ordering – all differentiation operators should be moved to the
right, and

Ωα,β(t, λ1, λ2) = Ω(fα+(t, λ1, z), f
β(t, λ2, z)) =

=

∞∑
k=0

(−1)k+1(I(k)
α (t, λ1), I

(−1−k)
β (t, λ2)).(3.26)

Following physicists terminology, we refer to Ωα,β(t, λ1, λ2) as propagators. We will always
assume that λ2 is sufficiently close to λ1, so that the disk in {t} × C with center (t, λ1)
and radius |λ2−λ1| does not intersect the discriminant. In particular, the composition of
the reference path for Γα(t, λ1) and the line segment in {t}×C between (t, λ1) and (t, λ2)
qualifies as a reference path for the vertex operator Γβ(t, λ2). The propagator (3.26) is
interpreted as a formal Laurent series in λ−1

1 . We will see later on that the formal Laurent
series is in fact convergent.



112 3. VERTEX OPERATORS

Remark 3.6. One might ask whether expanding (3.26) as a Laurent series in λ−1
1

and choosing (t, λ1, λ2), such that, the resulting Laurent series is convergent is equivalent
to requiring that the partial sums of (3.26) are convergent, that is, the limit

lim
K→∞

K∑
k=0

(−1)k+1(I(k)
α (t, λ1), I

(−1−k)
β (t, λ2))

exists. The answer is no. Let us consider the following series

∞∑
k=0

(λ1 − t)−k−1(λ2 − t)k,

where t ∈ C is a complex number. The partial sums of the above series are convergent iff
|λ2 − t| < |λ1 − t|. On the other, if we expand in the powers of λ−1

1 , then we get

∞∑
l=1

( l∑
k=1

(
−k
−k + l

)
(−t)−k+l(λ2 − t)k−1

)
λ−l1 .

Differentiating the coefficient in front of λ−l1 with respect to t, it is easy to check that

they are independent oft. Setting t = 0 we get that the above sum is
∑∞
l=1 λ

l−1
2 λ−l1 . The

domain of convergence is given by |λ2| < |λ1|. �

Similarly, consider the product

Γ̃α(λ1)Γ̃β(λ2) = eΩ̃α,β(λ1,λ2) : Γ̃α(λ1)Γ̃β(λ2) : ,

where the expression

Ω̃α,β(λ1, λ2) = Ω(f̃α+(λ1, z), f̃
β(λ2, z)) =

∞∑
k=0

(−1)k+1(Ĩ(k)
α (λ1), Ĩ

(−k−1)
β (λ2))

will be refered to as calibrated propagator.

Lemma 3.7. The following identifty holds:

Ωα,β(t, λ1, λ2) = Ω̃α,β(λ1, λ2) +Wα,β(t, λ1, λ2),

where Wα,β(t, λ1, λ2) is the phase factor (3.24).

Proof. Put fα and f̃α for repectively fα(t, λ1, z) and f̃α(λ1, z), and fβ and f̃β for

repectively fβ(t, λ2, z) and f̃β(λ2, z). We have

Ωα,β(t, λ1, λ2) = Ω(fα+, f
β) = Ω((S f̃α)+, S f̃β) = Ω((S f̃α)+, S f̃β−) + Ω((S f̃α)+, S f̃β+).

According to part c) of Proposition 1.34, the symplectic pairing Ω((S f̃α)+, S f̃β+) = Wα,β(t, λ1, λ2).
Using that S is a symplectic tranformation, H[z] and H[[z−1]]z−1 are Lagrangian sub-

spaces, and S f̃β− ∈ H[[z−1]]z−1, we get

Ω((S f̃α)+, S f̃β−) = Ω(S f̃α, S f̃β−) = Ω(f̃α, f̃β−) = Ω(f̃α+, f̃
β),

which by definition is the calibrated propagator Ω̃α,β(λ1, λ2). �
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3.3.2. Energy propagators. According to Lemma 3.7 the propagator decomposes
as a calibrated propagator and a phase factor. Our next goal is to find an explicit
formula for the calibrated propagator. Note that the phase factor is analytic at λ1 = λ2.
Therefore, our explicit formula will describe the singularity of the propagator at λ1 = λ2.

It turns out, that it is easier to compute the propagator with respect to a slightly
different polarization of the symplectic vector space H = H((z−1)). Let us consider the
following operator

` := w∂w +
1

2
− θ : H→ H.

The origin of the above operator is in Givental’s formulation of Virasoro conjetcure in
Gromov–Witten theory (see [20]). More precisely, ` is the semi-simple part of an infini-
tesimal symplectic transformation whose quantization is the Virasoro operator L0.

The operator ` is diagonalizable – an eigenbasis is given by φiw
k, where φi (1 ≤ i ≤ N)

is an eigenbasis for the grading operator θ, that is, θ(φi) = θiφi for some rational numbers

θi ∈ Q. Note that `(φiw
k) =

(
k+ 1

2 − θi
)
φiw

k. Let us decompose H = H<0⊕H0⊕H>0,

where H0 = ker(`) and H<0 (resp. H>0) is the vector subspace spanned by eigenvectors
with negative (resp.) positive eigenvalues. If f ∈ H, then we denote by f<0, f0, and
f>0 the corresponding projections of f on H<0, H0, and H>0. Our goal is to compute

the symplectic pairings Ω(f̃α(λ1, w)>0, f̃β(λ2, w)) and Ω(f̃α(λ1, w)0, f̃β(λ2, w)). In order to
state the answer we need some further notation. Put

(3.27) σ := e2πi(θ+ 1
2 )e2πiρ : H → H.

Using formula (3.9) we get that σ is the endomorphism rerpresenting via (3.12) a big
loop in (M ×C)′ around the discriminant. We will refer to σ as the classical monodromy
operator. Let us fix a logarithm of the classical monodromy operator

(3.28) σ = e−2πiN , N = Ns + Nn, [Ns,Nn] = 0.

where Nn = −ρ and Ns is defined as follows. Let us write the eigenvalues of θ+ 1
2 in the

form

θi + 1
2 =: −pi − νi, pi ∈ Z, −1 < νi ≤ 0.

In other words,

νi =
[
θi + 1

2

]
− θi − 1

2 ,

where [x] denotes the integral part of x. Then Ns : H → H is defined by Ns(φi) =

νiφi. Note that e−2πiNs = e
2πi
(
θ+

1
2

)
and that [Ns,Nn] = 0 ⇒ formula (3.28) holds.

Furthermore, let us introduce the following power series

Liσ(x) =

∞∑
m=1

xm+N

m+ N
,

where xA := eA log x. The series is convergent for |x| < 1 and therefore it defines a
multivalued analytic function on the unit disk with values in End(H). Finally, let us
define the (non-symmetric in general) bilinear pairing

(3.29) 〈 , 〉 : H ⊗H → C, 〈a, b〉 :=
1

2π

(
a, eπiθeπiρb

)
.
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In the case of a Frobenius structure coming from quantum cohomology the pairing (3.29)
coincides with the Euler pairing. For that reason we will refer to (3.29) as the Euler
pairing of the Frobenius manifold. The symmetrization of the Euler pairing

(3.30) ( | ) : H ⊗H → C, (a|b) := 〈a, b〉+ 〈b, a〉
will be called intersection pairing. Our motivation for such a name comes from mirror
symmetry. Namely, in all known examples in which the quantum cohomology is isomor-
phic to the Frobenius structure associated with a primitive form of a mirror family of
functions, the pairing ( | ) coincides with the intersection pairing in vanishing homology.
Using that θT = −θ and ρT = ρ, it is easy to prove that

(3.31) (a|b) = 〈(1− σ)a, b〉, a, b ∈ H.
In particular, since the Euler pairing is non-degenerate, the kernel of the intersection
pairing coincides with Ker(1 − σ). The following spectral decomposition will play an
important role: H = H0 ⊕H6=0, where

H0 := Ker(Ns) and H6=0 :=
⊕

λ∈Q\{0}

Ker(Ns − λ).

Lemma 3.8. Let N T
s be the transpose of Ns with respect to the Frobenius pairing.

a) The subspaces H0 and H6=0 are orthogonal with respect to the Frobenius pairing.
b) We have N T

s (x) = −x−Ns(x) for all x ∈ H6=0.
c) We have N T

s (x) = −Ns(x) for all x ∈ H0.

Proof. Recall that −θi− 1
2 = νi + pi. The subspace H0 has a basis given by the set

of all φi with νi = 0, while H6=0 has a basis given by the set of all φi with νi 6= 0.
a) We have to prove that if νi = 0 and νj 6= 0, then (φi, φj) = 0. If this is not the

case, then since θT = −θ, we must have θi + θj = 0. Therefore νi + νj must be an integer
– contradiction.

b) We have to prove that

(Nsφi, φj) + (φi,Nsφj) = −(φi, φj),

for all i, j, such that, νi 6= 0 and νj 6= 0. If (φi, φj) = 0, then the identity is obviously
true. Otherwise, θi + θj = 0 ⇒ νi + νj must be an integer. However, −1 < νi, νj < 0, so
the only option is that νi + νj = −1 so the identity holds again.

c) The proof is similar to the proof of part b), so we will leave it as an exercise. �

Theorem 3.9. The following formulas hold:

(3.32) Ω(f̃α(λ1, w)>0, f̃β(λ2, w)) = − (Liσ(λ2/λ1)α|β)

and

(3.33) Ω(f̃α(λ1, w)0, f̃β(λ2, w)) = −
〈
e2πiρ − 1

ρ
(λ2/λ1)−ρα0, β0

〉
,

where α0 and β0 are the projections of α and β on H0.

Proof. In order to avoid cumbersome notation we introduce the followingnotation:
λ(x) = λx

Γ(x+1) , where x is a rational number which is not a negative integer. By definition

(3.34) f̃α(λ,w) =
∑
m∈Z

(−w)m∂m+l
λ eρ∂λ∂l

(
λ(θ+l− 1

2 )
)
α,
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where first l is allowed to be a real number, so that ∂l makes sense and then, after all
derivations in l are computed, we specialize l to be an integer Note that ∂λλ

(x) = λ(x−1).
Using this fact we get

eρ∂λ∂l
(
λ(θ+l− 1

2 )
)

=

∞∑
k=0

1

k!
ρk ∂kl λ

(θ+l−k− 1
2 ) =

∞∑
k=0

1

k!
∂kl λ

(θ+l− 1
2 )ρk,

where in the second equality we used that ρθ = (θ+ 1)ρ. Substituting the above formula
in (3.34) we get

(3.35) f̃α(λ,w) =
∑
m∈Z

∞∑
k=0

(−w)m∂m+l
λ

1

k!
∂kl

(
λ(θ+l− 1

2 ) ρk α
)
.

Let us transform the following expression:

λ(θ+l− 1
2 ) ρk α =

N∑
i=1

(λ(θ+l− 1
2 ) ρk α, φi)φ

i =

N∑
i=1

(α, ρk λ(−θ+l− 1
2 ) φi)φ

i,

where we used that θT = −θ. Recall that {φi}Ni=1 is an eigenbasis of θ and that θi
denotes the eigenvalue corresponding to φi. Note that the dual basis {φi}Ni=1 is also an
eigenbasis and that the eigenvalue corresponding to φi is −θi. Finally, recall also that
−θi − 1

2 = νi + pi, where −1 < νi ≤ 0 and pi ∈ Z. Using these remarks we get

∞∑
k=0

1

k!
∂kl

(
λ(θ+l− 1

2 ) ρk α
)

=

N∑
i=1

∞∑
k=0

1

k!
∂kl (α, ρkλ(l+νi+pi)φi)φ

i =

N∑
i=1

(α, λ(l+νi+pi+ρ)φi)φ
i.

Substituting the above formula in (3.35) we get

f̃α(λ,w) =

N∑
i=1

∑
m∈Z

(−w)m (α, λ(νi+pi−m+ρ)φi)φ
i.

Changing the summation index m = k + pi and using that Ns(φi) = νiφi we get

f̃α(λ,w) =

N∑
i=1

∑
k∈Z

(−w)k+pi (α, λ(Ns+ρ−k)φi)φ
i.

Let us decompose α = α6=0 + α0 and recall Lemma 3.8. We get

(3.36) f̃α(λ,w) =

N∑
i=1

∑
k∈Z

(−w)k+pi φi
(

(λ(−Ns+ρ−k−1)α6=0, φi) + (λ(−Ns+ρ−k)α0, φi)
)
.

Formula (3.36) allows us to compute easily the projection on H>0. Indeed, the energy of
the monomial wk+piφi, that is, the eigenvalue of the Virasoro operator ` is k+pi+

1
2 +θi =

k − νi. If νi = 0, then theenergy is positive iff k ≥ 1, while if νi 6= 0, then the energy is
positive iff k ≥ 0. We get

f̃α(λ,w)>0 =

N∑
i=1

φi
( ∞∑
k=0

(−w)k+pi(λ(−Ns+ρ−k−1)α6=0, φi)+(3.37)

∞∑
k=1

(−w)k+pi(λ(−Ns+ρ−k)α0, φi)
)
.
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Using formulas (3.36) and (3.37) we get the following formula:

Ω(f̃α(λ1, w)>0, f̃β(λ2, w)) =

N∑
i,j=1

( ∞∑
k=0

(
(φi, eπi(l

′+pj)φj) (λ
(−Ns+ρ−k−1)
1 α6=0, φi) (λ

(−Ns+ρ−l′−1)
2 β 6=0, φj)

)
+

∞∑
k=1

(
(φi, eπi(l

′′+pj)φj) (λ
(−Ns+ρ−k)
1 α0, φi) (λ

(−Ns+ρ−l′′)
2 β0, φj)

))
,

where l′ and l′′ are determined from the conditions k + l′ + pi + pj = −1 and k + l′′ +
pi + pj = −1. Note that in the first sum over k, since νi 6= 0 we have pi + pj = 0 (∵
−1 = −θi − 1

2 − θj −
1
2 = νi + νj + pi + pj and νi + νj = −1) ⇒ l′ = −k − 1. Similar

reasoning yields l′′ = −k.
In order to simplify the above formula let us rewrite

eπi(l
′+pj)φj = eπi(−k−1−νj−θj− 1

2 )φj = eπi(−k+Ns+θ− 1
2 )φj ,

where we used that

Ns(φ
j) =

{
−(νj + 1)φj if νj 6= 0,

0 if νj = 0.

The proof here is as follows. Suppose that νj 6= 0, then using Lemma 3.8 we get

(Nsφ
j , φi) = (φj , (−Ns − 1)φi) = −(νi + 1) (φj , φi) = −(νj + 1) (φj , φi), ∀i,

where in the last equality we used that (φj , φi) = δij . Since the pairing is non-degenerate
we get Nsφ

j = −(νj + 1)φj as claimed. The case Nsφ
j = 0 for νj = 0 is proved similarly.

Similar computation yields

eπi(l
′′+pj)φj = eπi(−k−νj−θj−

1
2 )φj = eπi(−k+Ns+θ− 1

2 )φj

The formula for the propagator takes the form

Ω(f̃α(λ1, w)>0, f̃β(λ2, w)) =
∞∑
k=0

(λ
(−Ns+ρ−k−1)
1 α6=0, e

πi(−k+Ns+θ− 1
2 )λ

(−Ns+ρ+k)
2 β 6=0)+

∞∑
k=1

(λ
(−Ns+ρ−k)
1 α0, e

πi(−k+Ns+θ− 1
2 )λ

(−Ns+ρ+k)
2 β0).

Let us look at the first sum over k ≥ 0. If we move the term λ
(−Ns+ρ+k)
2 to the left

through eπiθ, the operator ρ will change to −ρ, that is we will get λ
(−Ns−ρ+k)
2 . If we

move the latter to the left slot of the Frobenius pairing, then using Lemma 3.8, part b),

we will get λ
(Ns+1−ρ+k)
2 . Finally, after moving the exponential term eπi(−k+Ns+θ− 1

2 ) on
the left slot of the Frobenius pairing, the summand of the 1st sum takes the form

(eπi(−k−1−Ns−θ− 1
2 )λ

(Ns−ρ+k+1)
2 λ

(−Ns+ρ−k−1)
1 α 6=0, β6=0)

Rewriting the summand of the 2nd sum in a similar way we get

(eπi(−k−Ns−θ− 1
2 )λ

(Ns−ρ+k)
2 λ

(−Ns+ρ−k)
1 α0, β0).
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Note that after shifting the summation index in the 1st sum k 7→ k − 1 the two sums
become identical except for the following difference: the terms α6=0 and β 6=0 in the 1st
sum and the terms α0 and β0 in the 2nd sum are the only places where the two sums do
not coincide. In other words, the two sums add up to

(3.38)

∞∑
k=1

(eπi(−k−Ns−θ− 1
2 )λ

(Ns+k−ρ)
2 λ

(−Ns−k+ρ)
1 α, β).

Let us simplify

λ
(Ns+k−ρ)
2 λ

(−Ns−k+ρ)
1 =

(λ2/λ1)Ns+k−ρ

Γ(−Ns − k + ρ+ 1)Γ(Ns + k − ρ+ 1)
.

Using that Γ(1 + x)Γ(1− x) = 2πix
eπix−e−πix , we get

1

Γ(−Ns − k + ρ+ 1)Γ(Ns + k − ρ+ 1)
=

1

2πi

1

Ns + k − ρ

(
eπi(Ns+k−ρ) − e−πi(Ns+k−ρ)

)
.

Note that
1

2πi
eπi(−k−Ns−θ− 1

2 )
(
eπi(Ns+k−ρ) − e−πi(Ns+k−ρ)

)
= − 1

2π
e−πiθ

(
e−πiρ − e−πi(2Ns−ρ)

)
.

Recalling that σ = e−2πi(Ns−ρ), we get that the above expression is

− 1

2π
e−πiθe−πiρ

(
1− e−2πi(Ns−ρ)

)
= − 1

2π
eπiρe−πiθ(1− σ).

Formula (3.38) takes the form

− 1

2π

∞∑
k=1

(
eπiρe−πiθ(1− σ)

(λ2/λ1)N +k

N + k
α, β

)
= − 1

2π

(
(1− σ) Liσ(λ2/λ1)α, eπiθeπiρβ

)
.

Using (3.31) and the definition (3.29) of the Euler pairing, we get that the above formula
is precisely the RHS of (3.32).

The proof of formula (3.33) is completely analogous, so let us just sketch the main
steps leaving the details as an exercise. Using formula (3.36), we get that the projection

of f̃α(λ1, w) on H0 is

f̃α(λ1, w)0 =

N∑
i=1

φi(−w)pi(λ(ρ)α0, φi).

The symplectic pairing

Ω(f̃α(λ1, w)0, f̃β(λ2, w)) =

N∑
i,j=1

(φi, eπipjφj)(λ
(ρ)
1 α0, φi)(λ

(ρ)
2 β0, φj).

Note that in the above sum the non-trivial contributions come only from i and j, such
that, νi = νj = 0. In particular, pj = pj + νj = −θj − 1

2 . Therefore, eπipjφj = eπi(θ−
1
2 )φj

and the symplectic pairing becomes

Ω(f̃α(λ1, w)0, f̃β(λ2, w)) = (λ
(ρ)
1 α0, e

πi(θ− 1
2 ) λ

(ρ)
2 β0) =

(
e−πi(θ+

1
2 )λ

(−ρ)
2 λ

(ρ)
1 α0, β0

)
.

Just like before, using Γ(1 + x)Γ(1− x) = 2πix
eπix−e−πix we get

e−πi(θ+
1
2 )λ

(−ρ)
2 λ

(ρ)
1 = − 1

2π
e−πiθe−πiρ(1− e2πiρ)

(λ2/λ1)−ρ

−ρ
.
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It remains only to notice that (e−πiθe−πiρ)T = (eπiρe−πiθ)T = eπiθeπiρ and to recall
thedefinition of the Euler pairing (3.29). �

3.3.3. Polylogorithms. The polylogorithm function is defined by the following se-
ries:

Lip(x) :=

∞∑
k=1

xk

kp
,

where p ≥ 1. The series is convergenet for |x| < 1, so Lip(x) is an analytic function inside
the unit disk. Note that

Lip(x) =

∫ x

0

Lip−1(t)
dt

t
,

and that

Li1(x) = −Log(1− x),

where

Log(y) := ln |y|+ i Arg(y), −π < Arg(y) < π,

is the principal branch of the logarithm function. Arguing by induction on p, we get that
Lip(x) extends analytically along any path avoiding x = 0 and x = 1. Our main interest
in the polylogorithm function is due to the following Lemma.

Lemma 3.10. The following formula holds:

Liσ(x) = x−ρ
∞∑
p=1

|σ|∑
r=1

(|σ| ρ)p−1 Lip(η
rx1/|σ|)σrs ,

where σs := e
2πi
(
θ+

1
2

)
is the semi-simple part in the Jordan decomposition of σ, |σ| is

the order of the automorphism σs, and η = e2πi/|σ|.

Proof. We have

Liσ(x) =

∞∑
m=1

xm+Ns−ρ

m+ Ns − ρ
=

∞∑
m=1

∞∑
p=1

xm+Ns−ρ

(m+ Ns)p
ρp−1.

By definition the eigenvalues of Ns are rational numbers ν satisfying −1 < ν ≤ 0. Since
the order of σs is |σ| the number |σ|ν must be an integer. The identity that we have to
prove is equivalent to the following identity:

(3.39)
1

|σ|p
∞∑
m=1

xm+Ns

(m+ Ns)p
=

1

|σ|

|σ|∑
r=1

∞∑
k=1

(ηrx1/|σ|)k

kp
σrs .

This is an identity between two operator valued series. It is sufficient to prove that
applying both sides of (3.39) to an eigenvector φ of Ns yields the same vector. Let ν be
the eigenvalue of φ. The RHS takes the form

1

|σ|

|σ|∑
r=1

∞∑
k=1

(ηrx1/|σ|)k

kp
η−ν|σ|r φ.
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Exchanging the order of the summation and using that

1
|σ|

|σ|∑
r=1

ηr(k−ν|σ|) =

{
1 if k = (ν +m)|σ| for some m ∈ Z,
0 otherwise ,

we get that in the summation over k only the terms for which k = (ν+m)|σ| with m ∈ Z
and m ≥ 1 could have non-trivial contribution. Therefore, it remains only to check that
after substituting k = (ν +m)|σ| and summing over all m ≥ 1 we get precisely the LHS
of (3.39) applied to the eigenvector φ. �

Lemma 3.10 implies that Liσ(x) extends analytically along any path avoiding 0 and
the |σ|-roots of 1. In particular, using analytic continuation we can define

(3.40) Ω̃α,β(λ1, λ2)− Ω̃β,α(λ2, λ1).

This difference measures the failure of the vertex operators Γ̃α(λ1) and Γ̃β(λ2) to commute
and as we will see later on it will play a key role in understanding the analytic continuation
of the phase factors. It turns out that (3.40) can be expressed in terms of the Euler pairing.
In order to derive the precise formula we need to recall the so-called Jonquière’s inversion
formula ([37]). Let Bp(x) (p ≥ 0) be the Bernoulli polynomials. They are defined by the
following formula:

tetx

et − 1
=:

∞∑
p=0

Bp(x)
tp

p!
.

Lemma 3.11. If 0 < |x| < 1, then

(3.41) Lip(1/x) = (−1)p+1 Lip(x) + (−1)p+1 (2πi)p

p!
Bp

( 1

2πi
log x

)
,

where the value of Lip(1/x) is determined from the value of Lip(x) via analytic continu-
ation along a path that does not wind around x = 1 and the value of log x is chosen in
such a way that the formula holds for p = 1.

Proof. By continuity, it is sufficient to prove the lemma for x such that Im(x) 6= 0.
Let C be the path from x to 1/x along which Li(x) is extended analytically. Since C does
not wind around x = 1, we may assume that C intersect the real axis once. There are
four cases dependning on whether Im(x) is > 0 or < 0 and C intersects or it does not
intersect the interval (1,∞). Let us consider the case when Im(x) < 0 and C does not
intersect (1,∞). The argument in the remaining cases is similar. Put

fp(x) = Lip(x) + (−1)p Lip(1/x).

Note that since x∂xfp(x) = fp−1(x), the function fp(x) must be a polynomial in log x,
that is,

fp(x) = − (2πi)p

p!
hp

( log x

2πi

)
,

for some polynomial hp. In order to determine hp, we will find the analytic continuation
of f(x) when x varies along a circle γ with center at 0. To begin with, let us determine
the branch of log x. Formula (3.41) for p = 1 takes the form

−Log(1− 1/x) = −Log(1− x) + 2πi
( 1

2πi
log x− 1

2

)
,
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γ

0

x
1 z0

y

x−1

z−0

Cε

z+0

Figure 1. Contour deformation.

where we used that the path 1−C := {1− y | y ∈ C} connecting 1− x and 1− 1/x is in
the domain of analyticicty for the principal branch of the logarithm, i.e., the path 1− C
does not intersect the negative real axis. We get

log x = ln |x|+ i
(

Arg(1− x)−Arg(1− 1/x) + π
)

= ln |x|+ i
(

Arg(x) + 2π
)

= Log(x) + 2πi,

where we used that 1− x = −x(1− 1
x ) and hence

Arg(1− x) = Arg(−x) + Arg(1− 1/x) = π + Arg(x) + Arg(1− 1/x).

We have the following integral representation:

(3.42) Lip(y) :=
y

Γ(p)

∫ ∞
1

(ln z)p−1

z − y
dz

z
, |y| < 1,

where the integration path is the real interval [1,∞). Indeed, for |y| < 1 we can expand
1

z−y into a geometric series in the powers of y/z. Changing the integration variable

z = et and integrating termwise the geometric series we get precisely the polylogorithmic
series Lip(y). The RHS of formula (3.42) is an analytic function in y ∈ C \ [1,∞), that is,
formula (3.42) provides the analytic continuation of Lip(y) in the complex plane cut along
the interval [1,∞). If we vary x anti-clockwise along the circle γ, then y = x−1 varies
clockwise along a circle γ′ that intersects the interval [1,∞). If y ∈ γ′ is a point in the

lower half-plane, then let us compare the value of Lip(y) and the value L̃ip(y) obtianed
from Lip(y

′) when y′ approaches y along an arc that crosses the interval (1,∞). The value

L̃ip(y) can be computed by deforming the integration contour in (3.42) near the point z0

at which γ′ intersects (1,∞). Namely, let us cut out from (1,∞) a small interval [z−0 , z
+
0 ]

around z0 and replace it with a smooth curve Cε from z−0 to z+
0 , such that, Cε does not

intersect the arc on γ′ from z0 to y (see Figure 1). The difference of the two values can
be computed with the Cauchy residue theorem, that is,

L̃ip(y)− Lip(y) =
y

Γ(p)
Resz=y

(Log z)p−1

z − y
dz

z
=

2πi

Γ(p)
(Log y)p−1.

Using the above formula we get

a.c.fp(x)− fp(x) = (−1)p
(

L̃ip(x
−1)− Lip(x

−1)
)

= (−1)p
2πi

Γ(p)
(Log x−1 − 2πi)p−1,

where the shift of Log x−1 by −2πi comes from the fact that we analytically extend
Log(y) along a path that crosses the negative real axis, that is, the cut in the domain of
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analyticity of Log. Note that Log x−1 − 2πi = − log x. Therefore,

a.c.fp(x)− fp(x) = − 2πi

Γ(p)
(log x)p−1.

On the other hand, substituting for fp(x) in the above formula the formula for fp(x) in
terms of the polynomial hp, we get the following difference equation:

hp(L+ 1)− hp(L) = pLp−1, L := log x/2πi, p ≥ 1.

Using x∂xfp(x) = fp−1(x), we also get ∂Lhp(L) = php−1(L). It is easy to check that the
solution to these relations is unique and it is given by the Bernoulli polynomials, that is,
hp(L) = Bp(L). �

Let us point out the following rule for finding the branch of log x in formula (3.41).
If we walk along the path connecting x and x−1, then when crossing the real axis either
1 is on our left or on our right and we have

log x =

{
Log x if 1 is on our left,

Log x+ 2πi if 1 is on our right.

This rule is proved by analyzing formula (3.41) for p = 1 in the same way as we did in
the proof of Lemma 3.11.

3.3.4. Analyticity of the calibrated propagators. Let us write the calibrated
propagator in the form

Ω̃α,β(λ1, λ2) = Ω(f̃α(λ1, w)>0, f̃β(λ2, w)) + Pα,β(λ1, λ2),

where the term Pα,β(λ1, λ2) is a polynomial expression in log λi and λ
1/|σ|
i . By definition,

Ω̃α,β(λ1, λ2) is a formal Laurent series of the following form:

|σ|−1∑
r=0

d−1∑
l=0

λ
m+ r

|σ|
1 (log λ1)l

∞∑
k=0

Ω̃r,l,kα,β (λ2)λ−k1 ,

where the value of log λ1 is specified by a reference path from λ◦ to λ1, the coefficients

Ω̃r,l,kα,β (λ2) are multivalued analytic functions in λ2 whose value is determined from the

reference path between λ◦ and λ1 and the straight segment [λ1, λ2]. Using Theorem 3.9,
we get that the above series is convergent if the following two conditions are satisfied: (i)
|λ1| > |λ2| and (ii) the straight segment [λ1, λ2] does not contain the origin 0. Let us
construct a domain where these two conditions are satisfied. Let us fix a real number ε,
such that, 0 < ε < 1. Put

D̃ := {(λ1, λ2) ∈ C2 | |λ1 − λ2| < εmin(|λ1|, |λ2|)}

and let

D̃+ := {(λ1, λ2) ∈ D̃ | |λ1| > |λ2|}.

The calibrated propagator is a multi-valued analytic function onD̃+, where we choose the

reference point in D̃+ to be the point
(
λ◦, λ◦

(
1− ε2

2

))
. The domains D̃ and D̃+ can be

described also in the following way. Let us define

∆ε := {x ∈ C | |x− 1| < ε} ∩ {x ∈ C | |x−1 − 1| < ε}.
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Note that the inequality |x−1 − 1| < ε defines a disk in C with center 1
1−ε2 and radius

ε
1−ε2 . In other words, ∆ε is an intersection of two disks in C. Moreover, the bounderies

of these disks, that is, {|x− 1| = ε} and |x−1 − 1| = ε, intersect at the points

a := 1− ε2

2
+ iε

√
1− ε2

4
and a = 1− ε2

2
− iε

√
1− ε2

4
,

which belong to the unit circle |x| = 1. In particular, the unitcircle devides ∆ε into two
subdomains

∆+
ε := {x ∈ ∆ε | |x| < 1} and ∆−ε := {x ∈ ∆ε | |x| > 1}.

We have an isomorphism

D̃ ∼= C∗ ×∆ε, (λ1, λ2) 7→ (λ1, λ2/λ1)

under which the subdomain D̃+ is mapped to C∗ × ∆+
ε and the reference point of D̃+

is mapped to
(
λ◦, 1− ε2

2

)
. From now on we require that ε is so small that the only

solution to the equation x|σ| = 1 for x ∈ ∆ε is x = 1. To be more specific, if |σ| = 1,
then we choose ε := 1/2. If |σ| > 1, then note that the length of the side of a regular
|σ|-gon inscribed in the unit circle is 2 sin(π/|σ|). Therefore, for ε we can choose any
number < 2 sin(π/|σ|). Let us fix ε := sin(π/|σ|). Recalling Theorem 3.9 we get that the
calibrated propagator can be written as follows:

(3.43) Ω̃α,β(λ1, λ2) = − (Liσ(x)α|β) + Pα,β(λ1, λ2),

where x := λ2/λ1 and the RHS is viewed as an analytic function in D̃+ ∼= C∗ × ∆+
ε .

According to Lemma 3.10, the series Liσ(x) can be expressed as a polynomial expression
in x−ρ = e−ρLog x and the values of Lip at the points

φr(x) := ηrx1/|σ| := exp
( 1

|σ|
(Log x+ 2πir)

)
, 1 ≤ r ≤ |σ|.

Therefore, the calibrated propagator is an analytic function on D̃+ which extends ana-

lytically along any path in D̃ avoiding the diagonal {λ1 = λ2} ⊂ D̃.

Lemma 3.12. Suppose that (λ1, λ2) ∈ D̃+ and that C ⊂ D̃ \ {λ1 = λ2} is a path from
(λ1, λ2) to (λ2, λ1), such that, C does not wind around the diagonal {λ1 = λ2}. Then

Ω̃α,β(λ1, λ2)− Ω̃β,α(λ2, λ1) = −2πi
(
〈α, β〉+ k(α|β)

)
,

where Ω̃β,α(λ2, λ1) is obtained from Ω̃β,α(λ1, λ2) via analytic continuation along the path
C and k ∈ Z depends on the choice of C.

Proof. Using formula (3.43), we get

Ω̃α,β(λ1, λ2)− Ω̃β,α(λ2, λ1) =
(

(Liσ(1/x)− Liσ(x)t)β|α
)

+ Pα,β(λ1, λ2)− Pβ,α(λ2, λ1),

where x := λ2/λ1 and t denotes transposition with repspect to the intersection pairing
( | ). By definition

Pα,β(λ1, λ2) = Ω(f̃α(λ1, w)+, f̃β(λ2, w))− Ω(f̃α(λ1, w)>0, f̃β(λ2, w)).
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Using that Ω is a symplectic pairing and that H>0 is symplectic orthogonal to H≥0 we
get

Pβ,α(λ2, λ1) = Ω(f̃β(λ2, w), f̃α(λ1, w)−)− Ω(f̃β(λ2, w), f̃α(λ1, w)<0).

Therefore,

Pα,β(λ1, λ2)− Pβ,α(λ2, λ1) = Ω(f̃α(λ1, w)0, f̃β(λ2, w)) = −Ω(f̃β(λ2, w)0, f̃α(λ1, w)).

Recalling formula (3.33) we get

(3.44) Pα,β(λ1, λ2)− Pβ,α(λ2, λ1) =

〈
e2πiρ − 1

ρ
xρβ0, α0

〉
.

Recalling Lemma 3.10 we get

Liσ(x)t = xρ
∞∑
p=1

|σ|∑
r=1

(−|σ|ρ)p−1 Lip(φr(x))σ−rs ,

where we used that ρt = −ρ and σts = σ−1
s . The value of Liσ(1/x) is obtained via analytic

continuation as follows. Under the isomorphism D̃ ∼= C∗ × ∆ε, the path C = (C ′, C ′′),
where C ′ is a path from λ1 to λ2 and C ′′ is a path from x = λ2/λ1 to 1/x that does not
wind around 1. Let us recall the map

φr : ∆ε → C∗, φr(x) := ηrx1/|σ| := ηre
1
|σ| Log x.

The analytic continuation of Lip(φr(x)) along C ′′ yields Lip(φr(x
−1)) = Lip(φ−r(x)−1).

Let C−r be the composition of a path inside the unit disk from φ−r(x) to φr(x) and
the path φr(C

′′). Note that Lip(φr(x
−1)) is obtained from Lip(φ−r(x)) via the analytic

continuation along C−r. Using Jonquière’s inversion formula (3.41) we get

(3.45) Lip(φr(1/x)) = (−1)p+1 Lip(φ−r(x)) + (−1)p+1 (2πi)p

p!
Bp

( 1

2πi
log φ−r(x)

)
,

where log φ−r(x) = Log φ−r(x) + 2πiχ−r with χ−r = 0 or 1 dependnig on whether 1 is
on the left or on the right of the path C−r. Since

Liσ(x) = x−ρ
∞∑
p=1

|σ|∑
r=1

(|σ|ρ)p−1 Lip(φr(x))σrs ,

using formula (3.45) we get that the analytic continuation of Liσ(x) along C ′′ is

Liσ(1/x) = Liσ(x)t − xρ

|σ|ρ

|σ|∑
r=1

∞∑
p=1

(−2πi|σ|ρ)p

p!
Bp

( 1

2πi
log φr(x)

)
σ−rs .

Recalling the definition of the Bernoulli polynomials we get that the infinite sum over p
can be computed explicitly, that is,

(3.46) Liσ(1/x)− Liσ(x)t = − xρ

|σ|ρ

|σ|∑
r=1

(
−2πi|σ|ρ e

−|σ|ρ log φr(x)

e−2πi|σ|ρ − 1
− 1

)
σ−rs .

Note that if φr(x) is above the real axis, then 1 is on the left of the path Cr, that is,
χr = 0 and we have

(3.47) Arg(φr(x)) + 2πχr =
2πr

|σ|
+

1

|σ|
Arg(x).
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If φr(x) is below the real axis, then 1 is on the right of Cr, that is, χr = 1 and formula
(3.47) continues to hold. Therefore, log φr(x) = 1

|σ| Log x + 2πir
|σ| for 1 ≤ r ≤ |σ| − 1 and

log φ0(x) = 1
|σ| Log x+ 2πiχ0, where χ0 is 0 or 1 dependning on whether 1 is on the left

or on the right of the path C ′′. Using these formulas for log φr(x), we get that the RHS
of (3.46) takes the form

2πixρ

e−2πiρ|σ| − 1

|σ|−1∑
r=1

e−ρ(Log x+2πir)σ−rs + e−ρ(Log x+2πi|σ|χ0)

+
xρ

ρ

 1

|σ|

|σ|∑
r=1

σ−rs

 .

Recall that σ = σse
2πiρ and that σ

|σ|
s = 1. Therefore, the above formula takes the form

2πi

σ−|σ| − 1

|σ|−1∑
r=1

σ−r + σ−|σ|χ0

+
xρ

ρ

 1

|σ|

|σ|∑
r=1

σ−rs

 .

Note also that 1
|σ|

(∑|σ|
r=1 σ

−r
s

)
(1−σ) = 1

|σ|

(∑|σ|
r=1 σ

−r
s

)
(1− e2πiρ). Using formula (3.46)

and that χ0 = 0 or 1 we get

(Liσ(1/x)− Liσ(x)t)(1− σ) = 2πiσ1−χ0 − xρ e
2πiρ − 1

ρ

( 1

|σ|

|σ|∑
r=1

σrs

)
.

Recalling formula (3.31) we get

((Liσ(1/x)− Liσ(x)t)β|α) = 2πi 〈σ1−χ0β, α〉 −
〈
xρ

e2πiρ − 1

ρ
β0, α0

〉
,

where we used that 1
|σ|
∑|σ|
r=1 σ

r
s is the projection operator H → H0. Recalling (3.44), we

get

Ω̃α,β(λ1, λ2)− Ω̃β,α(λ2, λ1) = 2πi 〈σ1−χ0β, α〉.
In order to complete the proof of the theorem we need only to notice that if χ0 = 0, then

〈σβ, α〉 = 〈β, α〉+ 〈(σ − 1)β, α〉 = 〈β, α〉 − (β|α) = −〈α, β〉,
and if χ0 = 1, then 〈β, α〉 = −〈α, β〉+ (α|β). �

3.3.5. Analyticity of the propagators. Our goal now is to establish the analytic
properties of the propagators (3.26). By definition, Ωα,β(t, λ1, λ2) is a formal Laurent
series of the following form:

|σ|−1∑
r=0

d−1∑
l=0

λ
m+ r

|σ|
1 (log λ1)l

∞∑
k=0

Ωr,l,kα,β (t, λ2)λ−k1 ,

which is obtained from (3.26) by expanding each of the periods I
(k)
α (t, λ1) into a Laurent

series in λ
−1/|σ|
1 . Note that in order for such an expansion to exist we need to choose the

point (t, λ1) to be such that |λ1| > r(t), where

r(t) := max {|u| |u ∈ Spec(E•t)},
where Spec(E•t) is the set of eigenvalues of the operator of Frobenius multiplication by

E. Indeed, for fixed t ∈ M , the periods I
(k)
α (t, λ) are solutions to a Fuchsian differential

equation in λ whose singularities are precisely at the points where λ − E•t is not an
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invertible operator. Furthermore, in order to specify the value of I
(−k−1)
β (t, λ2) we require

that the line segment[(t, λ1), (t, λ2)] in {t}×C does not intersect the discirminant. If this
condition is satisfied, then the composition of the line segment [(t, λ1), (t, λ2)] and the

reference path to (t, λ1) will be a reference path for I
(−k−1)
β (t, λ2).

Lemma 3.13. Let ε be a real number satisfying 0 < ε < 1. If

|λ1 − λ2| < ε min(|λ1| − r(t), |λ2| − r(t)),
then the line segment [(t, λ1), (t, λ2)] does not intersect the discriminant.

Proof. Suppose that there exist a real number x ∈ [0, 1] such that λ2 + x(λ1 − λ2)
is an eigenvalue of E•t. Recalling the definition of r(t), we get |λ2 + x(λ1 − λ2)| ≤ r(t).
Using the triangle inequality, we get

r(t) ≥ |λ2 + x(λ1 − λ2)| ≥ |λ2| − x|λ1 − λ2|.
Therefore,

ε (|λ2| − r(t)) ≤ εx|λ1 − λ2| < |λ1 − λ2| < ε (|λ2| − r(t)).
This is a contradiction, so the Lemma follows. �

Let us fix ε to be the same as in the definition of the domain D̃ of the calibrated
propagator. Motivated by the estimate in Lemma 3.13 we define

D := {(t, λ1, λ2) ∈M × C2 | |λ1 − λ2| < ε min(|λ1| − r(t), |λ2| − r(t))}.
Note that our definition of Ωα,β(t, λ1, λ2) works for all (t, λ1, λ2) ∈ D. The following
simple lemma will allow us to determine the domain of convergence of the propagator.

Lemma 3.14. The following identity holds:

∂λ1
Ωα,β(t, λ1, λ2) =

1

λ1 − λ2

(
I(0)
α (t, λ1), (λ2 − E•)I(0)

β (t, λ2)
)
.

Proof. Recalling the definition of the propagator we get

(λ1 − λ2)∂λ1
Ωα,β(λ1, λ2) =

∞∑
k=0

(−1)k+1(λ1 − λ2)∂λ1
(I(k)
α (t, λ1), I

(−k−1)
β (t, λ2)).

Note that since I
(−k−1)
β (t, λ2) = ∂λ2

I
(−k−2)
β (t, λ2), the above formula can be rewritten as

∞∑
k=0

(
(−1)k+1

(
λ1∂λ1I

(k)
α (t, λ1), I

(−k−1)
β (t, λ2)

)
+ (−1)k

(
I(k+1)
α (t, λ1), λ2∂λ2I

(−k−2)
β (t, λ2)

))
.

Recalling the differential equations of the 2nd structure connection we get

λ1∂λ1I
(k)
α (t, λ1) = E • I(k+1)

α (t, λ1) +
(
θ − k − 1

2

)
I(k)
α (t, λ1)

and

λ2∂λ2
I

(−k−2)
β (t, λ2) = E • I(−k−1)

α (t, λ2) +
(
θ + k +

3

2

)
I

(−k−2)
β (t, λ2).

Substituting these formulas for the derivatives in the above sum, all terms will cancel out
except for

−
((
θ − 1

2

)
I(0)
α (t, λ1), I

(−1)
β (t, λ2)

)
=
(
I(0)
α (t, λ1),

(
θ + 1

2

)
I

(−1)
β (t, λ2)

)
.
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It remains only to use that(
θ + 1

2

)
I

(−1)
β (t, λ2) = (λ2 − E•)I(0)

β (t, λ2).

�

Since the radius of convergence of Ωα,β(t, λ1, λ2) and its λ1-derivative are the same,
the formula in Lemma 3.14 implies that the propagator series is convergent for |λ1| >
max(r(t), |λ2|). Let us define

D+ := {(t, λ1, λ2) ∈ D | |λ1| > |λ2|}.
Then the propagator series is convergent on D+, that is, the propagator is a multivalued
analytic function in D+.

Lemma 3.15. The phase factor Wα,β(t, λ1, λ2) is convergent for all (t, λ1, λ2) ∈ D,
that is, it is a multivalued analytic function in D.

Proof. Suppose that (t, λ1, λ2) ∈ D. Let us look at the identity

(λ1 − λ2)∂λ1
Wα,β(t, λ1, λ2) =

(I(0)
α (t, λ1), (λ2 − E•)I(0)

β (t, λ2))− (λ1 − λ2)∂λ1
Ω̃α,β(λ1, λ2).(3.48)

Note that (3.48) is a polynomial in log λi (i = 1, 2), whose coefficients are Laurent series

in λ
−1/|σ|
1 and λ

−1/|σ|
2 convergent for |λ1| > r(t) and |λ2| > r(t). The phase factor is

appriory a formal Laurent series of the same type in which the substitution λ1 = λ2

makes sense. It follows that(3.48) vanishes for λ1 = λ2. In order to complete the proof
we need only to prove that (3.48) is divisible by λ1 − λ2. By comparing the coefficients
in front of the monomials in log λ1 and log λ2 we can reduce the general case to the case
when (3.48) does not involve logorithms, i.e., we may assume that (3.48) is a Laurent

series in λ
−1/|σ|
1 and λ

−1/|σ|
2 convergent for |λ1| > r(t) and |λ2| > r(t). Let us consider

the |σ|-fold covering of the polydisk

{(λ1, λ2) | |λ1| > r(t), |λ2| > r(t)},

that is, λ−1
i = x

|σ|
i , where (x1, x2) belongs to

∆ := {(x1, x2) ∈ (C∗)2 | |xi| < r(t)1/|σ|}
We have to prove that if f is a holomorphic function in ∆, such that, f vanishes on the

hypersurface Z := {x|σ|1 = x
|σ|
2 } ⊂ ∆, then f must be divisible by x

|σ|
1 −x

|σ|
2 . Indeed, note

that h(x1, x2) := f(x1,x2)

x
|σ|
1 −x

|σ|
2

is a holomorphic function on ∆ \ Z. Suppose that z ∈ Z, that

is, z = (ηa, a) for some a ∈ C∗ and some |σ|-root of unity η. Using Weierstrass divison
theorem, we get that the germ of f in O∆,z is divisible by x1−ηx2. Therefore, h(x1, x2) is
locally bounded near every point z ∈ Z. It remains only to recall the Riemann extension
theorem. �

Using Proposition 3.5 we will prove that the phase factors and hence the propagators
can be extended analytically beyond the domain D. However, let us postpone this goal
for the next section because now we are in position to prove a remarkable identity which
has several important consequences.

Proposition 3.16. The following identity holds

(3.49) (I(0)
α (t, λ), (λ− E•)I(0)

β (t, λ)) = (α|β).
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Proof. Using Lemma 3.14 and since (λ − µ)∂λWα,β(t, λ, µ) → 0 when µ → λ, we
get that the LHS of the formula can be written as

lim
µ→λ

(λ− µ)∂λΩ̃α,β(λ, µ).

Note that in the above formula we may replace the calibrated propagator Ω̃α,β(λ, µ) with

the energy propagator Ω(f̃α(λ,w)>0, f̃β(µ,w)), because the difference between the two

propagators is a polynomial expression in log λ, logµ, λ±1/|σ|, and µ±1/|σ|, which clearly
does not contribute to the above limit. Recalling Theorem 3.9 we get

− lim
µ→λ

(λ− µ)∂λ

( ∞∑
n=1

(µ/λ)n+N

n+ N
α|β
)

= lim
µ→λ

(λ− µ)
µ/λ

λ− µ
((µ/λ)Nα|β) = (α|β).

�

Remark 3.17. The formula in Proposition 3.16 was discovered first by K. Saito in
the settings of singularity theory (see [53]). It is a bit surprising because the LHS is an
analytic expression defined via period integrals and a residue pairing, while the RHS is
purely topological, that is, the intersection pairing in vanishing cohomology.

Let us recall the monodromy representation of the second structure connection – see
item 2) after Proposition 3.3. Since the RHS of (3.49) is a constant invariant under
the analytic continuation, we get that the intersection pairing is monodromy invariant.
Moreover, using (3.49) we will prove that the monodromy group of the 2nd structure
connection is a reflection group. Let us recall that with every simple loop C around
a generic point on the discriminant we have associated a reflection vector ϕ – see the
discussion after Proposition 3.4. By definition, in a neighborhood of a generic point on
the discriminant we have (see formula (3.19))

I(0)
ϕ (t, λ) =

2
√

∆i√
2(λ− ui)

( ∂

∂ui
+O(λ− ui)

)
,

where ui = ui(t) is the canonical coordinate, such that, locally near the generic point on
the discriminant, the equation of the discriminant is given by λ = ui(t). Substituting the
above expansion in

(I(0)
ϕ (t, λ), (λ− E•)I(0)

ϕ (t, λ)) = (ϕ|ϕ)

and recalling that ( ∂
∂ui

, ∂
∂ui

) = ∆−1
i and (λ − E•) ∂

∂ui
= (λ − ui)

∂
∂ui

we get that the

LHS of the above equation has the form 2 + O(λ − ui). Therefore,(ϕ|ϕ) = 2 for every
reflection vector ϕ ∈ R. Suppose now that a ∈ H is arbitrary and let us decompose
a = a′ + kϕ, where a′ ∈ H is invariant with respect to the monodormy rC along the
simple loop C – such a decomposition exists according to Proposition 3.4. Since the
intersection pairing is monodromy invariant we have (a′|ϕ) = (rC(a′)|rC(ϕ)) = −(a′|ϕ)
⇒ (a′|ϕ) = 0. Therefore,

(a|ϕ) = (a′|ϕ) + k(ϕ|ϕ) = 2k,

that is, k = (a|ϕ)/2. Finally, we get

rC(a) = a′ − kϕ = a− 2kϕ = a− (a|ϕ)ϕ.
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In other words, the local monodromy rC coincides with the reflection in H corresponding
to the reflection vector ϕ. Therefore, the monodromy group of the 2nd structure connec-
tion coincides with the reflection group WR, that is, the subgroup of GL(H) generated
by the reflections

(3.50) rϕ(a) := a− (a|ϕ)ϕ, ϕ ∈ R.

Remark 3.18. Let us recall that the Frobenius manifold M here is simply connected.
If M is not simply connected, then the monodormy group π1(M, t◦) will contribute to
the monodromy of the 2nd structure connection, that is, the monodromy group of the
2nd structure connection is not a reflection group in general.

3.4. Phase form

Let us compute the differential of the propagator

Wα,β(t, λ1, λ2) := dΩα,β(t, λ1, λ2),

where the differential is the de Rham differential on D+. Using Proposition 3.5 we get

(3.51) ∂tiΩα,β(t, λ1, λ2) = (I(0)
α (t, λ1), φi • I(0)

β (t, λ2)).

Recall that we fixed a flat coordinate system on M , such that, ∂
∂t1

is the unit vector field.

We have (∂t1 + ∂λ1
+ ∂λ2

)Ωα,β(t, λ1, λ2) = 0 due to the translation invariance of the

periods I
(k)
α (t, λ) = I

(k)
α (t− λ1, 0). Therefore,

(∂λ1
+ ∂λ2

)Ωα,β(t, λ1, λ2) = −(I(0)
α (t, λ1), I

(0)
β (t, λ2)).

Finally, recalling Lemma 3.14 we get the following formula for the differential of the
propagator

Wα,β(t, λ1, λ2) =

N∑
i=1

(I(0)
α (t, λ1), φi • I(0)

β (t, λ2)) dti+(3.52)

+ ((λ1 − E•)I(0)
α (t, λ1), I

(0)
β (t, λ2))

d(λ1 − λ2)

λ1 − λ2
+

− (I(0)
α (t, λ1), I

(0)
β (t, λ2))dλ1.

We will refer to Wα,β as the phase form. It alows us to extend analytically the propagators
along paths in the domain of analyticicty of Wα,β . In particular, the possible values of
the propagators are governed by the periods of the phase form, i.e., integrals of Wα,β

along closed loops with a base point. The phase form is multivalued, so the notion of a
period is a bit subtle, i.e., the value of the period depends on the choice of a base point.
The periods of the phase form will alow us to solve an important problem, i.e., to measure
the failure of the propagators to be compatible with the monodromy representation.

3.4.1. Domain of analyticity. Let us fix a domain in which the phase form is a
multivalued analytic 1-form. Looking at formula (3.52) we get that we need a domain
consisting of points (t, λ1, λ2), such that, (t, λ1) ∈ (M ×C)′ and λ2 is sufficiently close to
λ1 so that the straight segment in {t}×C between the points (t, λ1) and (t, λ2) does not
intersect the discriminant. The following choice seems to be quite natural: let (M ×C2)′

be the set of points (t, λ1, λ2) ∈M × C2 satisfying

|λ1 − λ2| < ε|λi − u| ∀u ∈ Spec(E•t) ∀ and i = 1, 2,
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where ε is the same number used in the definition of the domain D̃. Note that (t, λ1) ∈
(M × C)′ and that for fixed (t, λ1) the set of λ2 satisfying the above condition is the
intersection of several disks (in C) containing the point λ1.

Let us identify the propagator Ωα,β(t, λ1, λ2) with a multivalued analytic function on
a certain subdomain of (M ×C2)′. Clearly, we have to remove from (M ×C2)′ the points
for which λ1 = λ2. More precisely, we have a natural embedding

(M × C)′ → (M × C2)′, (t, λ) 7→ (t, λ, λ).

We will refer to the image of the embedding as the diagonal of (M ×C2)′. Let us denote
by (M × C2)′′ the complement of the diagonal. Furthermore, note that the domain
D ⊂ (M × C2)′. Indeed, if (t, λ1, λ2) ∈ D, then using the triangle inequality we get

|λ1 − λ2| < ε(|λi| − r(t)) ≤ ε(|λi| − |u|) ≤ ε|λi − u|,
for all u ∈ Spec(E•t). Since the phase form Wα,β is a multivalued analytic 1-form on
the diagonal complement (M × C2)′′, we get that the propagator Ωα,β(t, λ1, λ2) extends
analytically from D+ along any path in (M × C2)′′. We fix the point

(t◦, λ◦1, λ
◦
2) :=

(
t◦, λ◦, λ◦

(
1− ε2

2

))
∈ D+

as a reference point. The value of the propagator is determined by the homotopy class of
a reference path in (M ×C2)′′ which will be called the reference path of the propagator.

The closed loops in (M × C2)′′ can be separated into two different types: closed
loops around the diagonal and closed loops around the discriminant. More precisely, the
projection map

(M × C2)′ → (M × C)′, (t, λ1, λ2) 7→ (t, λ1)

is a trivial smooth fibration. The fiber of the projection, as we already mentioned above,
is an intersection of several disks in C containing the point λ1. In particular, the diagonal
embedding is a section of this fibration, which will be refered to as the zero section. Our
main interest is in the periods of the phase form along a loop in (M × C2)′′ obtained as
a lift of a loop in (M × C)′. The ambiguity of choosing a lift can be described by yet
another loop in the fiber winding several times around the diagonal.

3.4.2. Analytic extension around the diagonal. Suppose that (t, λ1, λ2) ∈ D+

and that C is a simple loop based at (t, λ1, λ2) that goes around the diagonal in a counter-
clockwise direction, that is, the homotopy class of C can be represented by a loop with
parametrization

(s, µ1, µ2) = (t, λ1, λ1 + reiθ), 0 ≤ θ ≤ 2π,

where r > 0 is sufficietly small. Then the analytic continuation of Ωα,β(t, λ1, λ2) along C
is given by

Ωα,β(t, λ1, λ2) +

∫
(s,µ1,µ2)∈C

Wα,β(s, µ1, µ2).

Since the loop C is in the λ2-plane, only the term of Wα,β involving d(λ1−λ2)
λ1−λ2

contributes
to the integral. Using the Cauchy residue theorem, we get that the integral equals

2πi(I(0)
α (t, λ1), (λ1 − E•)I(0)

β (t, λ1)) = 2πi(α|β).

On the other hand, we can interpret log(λ1 − λ2) as a multivalued analytic function on
D \ {λ1 = λ2}. Indeed, given a reference path in (M × C2)′′ we get an induced path in
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C∗ between λ◦1 − λ◦2 and λ1 − λ2. Note that λ◦1 − λ◦2 is a positive real number. Let us
define the value log(λ◦1−λ◦2) by using the principal branch of the logarithm and the value
log(λ1 − λ2) by analytic continuation along the induced reference path.

Lemma 3.19. The multivalued analytic function in D+ given by

(3.53) Ωα,β(t, λ1, λ2)− (α|β) log(λ1 − λ2)

extends to a multi-valued analytic function in D.

Proof. If C is a simple loop around the diagonal, then the analytic continuation of
log(λ1 − λ2) along C is log(λ1 − λ2) + 2πi. Therefore, the branches of (3.53) are single
valued in a neighborhood of points on the diagonal. We need to check that (3.53) does
not have a singularity at λ1 = λ2. Differentiating (3.53) with respect to λ1, we get

1

λ1 − λ2
(I(0)
α (t, λ1), (λ2 − E•)I(0)

β (t, λ2))− (α|β)

λ1 − λ2
.

This function is regular at λ1 = λ2 due to Proposition 3.16. Therefore, the Laurent series
expansion of (3.53) in λ−1

1 is convergent for all |λ1| > r(t). The Lemma follows. �

The propagator Ωα,β(t, λ1, λ2) has an important symmetry, that is, there is a relation
between the values at (t, λ1, λ2) and (t, λ2, λ1). In order to compare the values at these
two points we need to fix a path C between them avoiding the diagonal. We would like
to avoid using paths that wind around the discriminant. We will say that C is a local
path if it is homotopic inside D to the straight segment in {t} × C2 between (t, λ1, λ2)
and (t, λ2, λ1).

Lemma 3.20. Suppose that (t, λ1, λ2) ∈ D+ and that C is a local path in D\{λ1 = λ2}
between (t, λ1, λ2) and (t, λ2, λ1). Then we have

Ωα,β(t, λ1, λ2)− Ωβ,α(t, λ2, λ1) = −2πi
(
〈α, β〉+ k(α|β)

)
,

where k ∈ Z is an integer depending on the choice of C and the propagator Ωβ,α(t, λ2, λ1)
is obtained from Ωβ,α(t, λ1, λ2) by analytic continuation along C.

Proof. We may assume that the path C does not wind around the diagonal, be-
cause the analytic continuation of the propagator along a closed loop around the diagonal
changes the value by 2πi(α|β), that is, changes the value of k. Furthermore,according to

Lemma 3.7 the propagator decomposes as a sum of the calibrated propagator Ω̃α,β(λ1, λ2)
and a phase factor Wα,β(t, λ1, λ2). We already proved that the phase factor is a mul-
tivalued analytic function in D. Recalling part b) of Proposition 1.34 we get that
Wα,β(t, λ1, λ2) = Wβ,α(t, λ2, λ1). Finally, it remain only to recall Lemma 3.12. �

3.4.3. Paths with transverse directions. Suppose that C ⊂ C is a smooth ori-
ented path without self-intersections. Let us fix a parametrization of C, that is, a smooth
embedding Λ : [0, 1]→ C compatible with the orientation. Put

T+(C) :=
⋃
s∈C

R≥0 Λ′(s).

In other words, T+(C) is the subcone of C consisting of all positively oriented tangent
vectors to C. Clearly, T+(C) is independent of the choice of the parametrization Λ. We
will say that δ ∈ C is a transverse direction for C if δ /∈ T+(C). Note that the set of all
transverse directions for C coincides with the complement C \ T+(C).
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Remark 3.21. The notion of transverese is slightly abused here. A transverse direc-
tion δ is allowed to be a tangent vector to C (at somepoint) as long as it has the opposite
orientation. �

Let u1, . . . , uN be a set of pairwise distinct complex numbers and Λ0 ∈ C is a reference
point, such that, |Λ0| > |uj | for all 1 ≤ j ≤ N . Recall that a simple loop L ⊂ C \
{u1, . . . , uN} around uj based at Λ0 is a path consisting of two pieces: a path C from Λ0

to some point uj + δ and a circle with radius |δ| and center uj , where |δ| is required to
be so small that the points ui (i 6= j) are outside the circle. The simple loop L is defined
as the path traversed by a point traveling along C from Λ0 to uj + δ, going around uj
in counter-clockwise direction along the circle, and finally returning back to Λ0 along the
path C. We will refer to C as the tail of the simple loop L.

Definition 3.22. Let L be a simple loop around ui based at Λ0. We say that L is
a simple loop approaching ui in a transverse direction δ if the following conditions are
satisfied:

(i) The tail C of the simple loop L ends at a point ui+δ, such that, δ is a transverse
direction for C.

(ii) We have |Λ0| > |λ− δ| for all λ ∈ C. �

A simple loop L approaching ui in a transverse direction can be constructed as follows.
Let [ui,Λ0] be the line segment between ui and Λ0. Let δ ∈ C be such that ui+δ ∈ [ui,Λ0]
and |δ| < |uj − ui| for all j 6= i. Note that since |ui| < |Λ0|, we have |λ − δ| < |Λ0| for
all λ ∈ [ui + δ,Λ0]. If the line segment [ui + δ,Λ0] does not contain any of the points uj ,
then we can simply take the tail of our loop to be C = [ui + δ,Λ0]. Otherwise, for each
uj ∈ [ui+δ,Λ0], we cut a small piece from the line segment around uj and replace it with
a half-circle avoiding uj . The resulting path C has all the required properties provided
the pieces that we have removed are sufficiently small. Note that in particular, the
fundamental group π1(C \ {u1, . . . , uN},Λ0) is generated by simple loops with transverse
directions. Therefore, it is sufficient to compute the periods of the phase form along
simple loops that admit a transverse direction.

3.4.4. Connection formula. Let t be a semi-simple point, such that, the canonical
coordinates u1(t), . . . , uN (t) are pairwise distinct. Let Λ2 ∈ C be such that |Λ2| > |uj(t)|
for all j. Suppose that C is the tail of a simple loop L around ui based at Λ2 approaching ui
in a transverse direction δ. Put λ2 := ui+δ. Note that {t}×L is a simple loop around the
discriminant. Let us fix a reference path (avoiding the discriminant) between (t◦, λ◦(1−
ε2/2)) and (t,Λ2) and let β be a reflection vector corresponding to the composition of
{t} × C and the reference path. Here ε = sin(π/|σ|) is the same number as in the
definition of the domain D (see Section 3.3.5). Let us consider the set Ui(t, C) of all
λ1 ∈ C satisfying the following 3 conditions:

(i) Put Λ1 := λ1 − λ2 + Λ2. Then (t,Λ1,Λ2) ∈ D+.
(ii) The following inequalities hold:

|λ2 − ui(t)| < |λ1 − ui(t)| < |uj(t)− ui(t)| ∀j 6= i.

(iii) Let Λ(s) (0 ≤ s ≤ 1) be a parametrization of C with Λ(0) = Λ2 and Λ(1) = λ2.

Put Ĉ for the path between (t,Λ1,Λ2) and (t, λ1, λ2) with parametrization

(3.54) (t, λ1 − λ2 + Λ(s),Λ(s)), 0 ≤ s ≤ 1.
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Then Ĉ ⊂ (M × C2)′′.

Note that Ui(t, C) is an open subset of C and that λ2 is a boundary point of Ui(t, C).
Condition (i) is imposed so that the propagator

Ωα,β(t,Λ1,Λ2) =

∞∑
n=0

(−1)n+1(I(n)
α (t,Λ1), I

(−n−1)
β (t,Λ2))

where each summand should be expanded into a Laurent series in Λ−1
1 . Furthermore,

condition (ii) is imposed so that the following series is convergent:

Ωiα,β(t, λ1, λ2) :=

∞∑
n=0

(−1)n+1(I(n)
α (t, λ1), I

(−n−1)
β (t, λ2))

where each summand on the RHS is expanded into a Laurent series in (λ2−ui(t))1/2. To
prove the convergence, we argue in the same way as in the proof of the convergence of the

propagators. Namely, since β is a reflection vector, the period vector I
(−n−1)
β (t, λ2) has a

zero at λ2 = ui(t) of order at least n+ 1/2. Therefore, the Laurent series expansions add
up to at least a formal Laurent series. The derivative with respect to λ2 is ι∂/∂λ2

Wα,β

which has a convergent Laurent series expansion at λ2 = ui(t) provided that condition (ii)
holds. Finally, condition (iii) guarantees that we can analytically extend the propagator

Ωα,β(t,Λ1,Λ2) along the path Ĉ. The following theorem is the first main result in this
chapter.

Theorem 3.23. Suppose that t,Λ2, λ2, and C are as above. If λ1 ∈ Ui(t, C), then∫
Ĉ

Wα,β = Ωiα,β(t, λ1, λ2)− Ωα,β(t,Λ1,Λ2),

where Λ1 = Λ2 + λ1 − λ2 and the path Ĉ is defined by (3.54).

The goal in the rest of this section is to prove Theorem 3.23. Let us make several
comments about the identity that we have to prove. First, of all the difference of the LHS
and the RHS is locally independent with respect to Λ2, λ2, and λ1. Therefore, we may
choose λ2 so close to ui(t) that the length of δ = λ2−ui(t) is as small as we wish. Let us
assume that

(3.55) 2|δ| (sin(π/|σ|) + 1) < |Λ(s)− uj(t)|
for all j 6= i and s ∈ [0, 1]. Similarly, we may choose λ1 as close to λ2 as we wish. Let
us consider the path A with parametrization A(s) := Λ(1− s)− δ, 0 ≤ s ≤ 1, connecting
the points A(0) = ui(t) and A(1) = Λ2 − δ. Let Dj (j 6= i) be a set of pairwise disjoint
open disks in C with centers at uj(t) and sufficiently small radii δj and let Di(A) be a
sufficiently small open neighborhood of A in C. We can slightly deform the base point
Λ2 of the tail C of the simple loop without destroying the property that δ is a transverse
direction. Therefore, using the Painleve property for semi-simple Frobenius manifolds,
we can arrange that the germ of the Frobenius manifold (M, t) extends to a Frobenius
structure on

D(A) = D1 × · · · ×Di−1 ×Di(A)×Di+1 × · · · ×DN .

Let us define the path τ(s), 0 ≤ s ≤ 1 in D(A) by the following formulas in canonical
coordinates

ui(τ(s)) = Λ(1− s)− δ, uj(τ(s)) = uj(t) (j 6= i),
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that is, the path τ is such that only the ith canonical coordinate varies while the remaining
ones remain fixed. The main idea here is the following. Note that we have extended the
Frobenius manifold along a path in such a way that the i-th canonical coordinate becomes
ui(τ(1)) = Λ2−δ while the remaining ones remain fixed. Therefore, since |δ| can be made
as small as we wish, we have a continuous deformation which makes the ith canonical
coordinate the longest one. Therefore, we can reduce the proof of the theorem to the case
when the canonical coordinate ui has maximal length among all canonical coordinates.
As we will see below the proof of the theorem in such a special case is quite easy. The
main difficulty will be to analyze the change of the integral of the phase form.

Lemma 3.24. If λ1 is sufficiently close to λ2, then (τ(s),Λ1,Λ2) ∈ D+ for all 0 ≤
s ≤ 1.

Proof. We have to prove the following inequalities:

|Λ1| > |Λ2| > |uj(τ(s))|, ∀1 ≤ j ≤ N
and

|λ1 − λ2| < ε(|Λa| − |uj(τ(s))|), ∀a = 1, 2, ∀1 ≤ j ≤ N,
where ε = sin(π/|σ|). The statement is true for s = 0 by definition and since uj(τ(s)) =
uj(t) for all j 6= i, the only inequalities that we have to check are the ones that involve
ui(τ(s)) = Λ(1 − s) − δ. Recalling the definition of a transverse direction for the simple
loop (see Definition 3.22, condition (ii)) we get |Λ2| > |Λ(1 − s) − δ| for all 0 ≤ s ≤ 1.
The remaining two inequalities

|λ1 − λ2| < ε(|Λa| − |ui(τ(s))|), ∀a = 1, 2,

can be achieved by choosing λ1 sufficiently close to λ2. �
Put

λ1(s) := λ1 − λ2 + Λ(1− s), λ2(s) := Λ(1− s), 0 ≤ s ≤ 1.

Lemma 3.25. If λ1 is sufficiently close to λ2, then

|λ2(s)− ui(τ(s))| < |λ1(s)− ui(τ(s))| < |uj(τ(s))− ui(τ(s))|, ∀j 6= i.

Proof. We have

λ1(s)− ui(τ(s)) = λ1 − λ2 + Λ(1− s)− (Λ(1− s)− δ) = λ1 − λ2 + δ = λ1 − ui(t)
and

λ2(s)− ui(τ(s)) = Λ(1− s)− (Λ(1− s)− δ) = λ2 − ui(t).
We need only to prove the inequality

|λ1 − ui(t)| < |uj(t) + δ − Λ(1− s)|.
We have

|λ1 − ui(t)| ≤ |λ2 − ui(t)|+ |λ1 − λ2| = |δ|+ |λ1 − λ2| < 2|δ|(1 + sin(π/|σ|))− |δ|
where the last inequality will hold provided we choose λ1 sufficiently close to λ2. Finally,
recalling the estimate (3.55) we get

2|δ|(1 + sin(π/|σ|))− |δ| < |Λ(1− s)− uj(t)| − |δ| ≤ |Λ(1− s)− uj(t)− δ|. �

Lemma 3.26. If λ1 is sufficiently close to λ2, then

(τ(s), λ1(s), λ2(s)) ∈ (D(A)× C2)′′.
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D(A)

C

ui

t

λ2

Λ2

C0

C1

C2

C

τ(1 − s)

Λ(s)

τ(1)

Figure 2. The paths C0, C1, and C2.

Proof. We have to prove the inequalities

|λ1 − λ2| < ε |λa(s)− uj(τ(s))|, a = 1, 2, 1 ≤ j ≤ N,

where ε = sin(π/|σ|). If j = i, then |λa − ui(τ(s))| = |λa − ui(t)| and the inequalities are
true because by definition (t, λ1, λ2) ∈ (M × C2)′′. If j 6= i, then

|λ1(s)− uj(τ(s))| = |λ1 − λ2 + Λ(1− s)− uj(t)| ≥ |Λ(1− s)− uj(t)| − |λ1 − λ2|

and

|λ2(s)− uj(τ(s))| = |Λ(1− s)− uj(t)|.

Recalling the estimate (3.55) we get that the inequalities that we have to prove hold for
λ1 sufficiently close to λ2. �

Let us consider the following paths in (D(A)× C)′:

C0 : (t,Λ(s)), 0 ≤ s ≤ 1,

C1 : (τ(1− s),Λ2), 0 ≤ s ≤ 1,

C2 : (τ(1− s),Λ(s)), 0 ≤ s ≤ 1

and the corresponding lifts

Ĉ0 : (t, λ1 − λ2 + Λ(s),Λ(s)), 0 ≤ s ≤ 1,

Ĉ1 : (τ(1− s), λ1 − λ2 + Λ2,Λ2), 0 ≤ s ≤ 1,

Ĉ2 : (τ(1− s), λ1 − λ2 + Λ(s),Λ(s)), 0 ≤ s ≤ 1.

Note that Ĉi (i = 0, 1, 2) belong to (D(A) × C2)′′ for λ1 sufficiently close to λ2: for Ĉ0

this holds by definition, for Ĉ1 – by Lemma 3.24, and for Ĉ2 – by Lemma 3.26. Figure 2
might be helpful for visualizing the paths Ci: the picture is inside the space D(A)× C.

Lemma 3.27. a) The path C2 is homotopic to C0 ◦ C1 in (D(A)× C)′.

b) If λ1 is sufficiently close to λ2, then the path Ĉ2 is homotopic to Ĉ0 ◦ Ĉ1 in
(D(A)× C2)′′



3.4. PHASE FORM 135

Proof. Let us proof a). Put

h(s1, s2) =


(τ(s1 + (1− 3s2)(1− s1)),Λ2) if 0 ≤ s2 ≤ 1/3,(
τ(s1),Λ

(
(3s2−1)(1−s1)

2−s1

))
if 1/3 ≤ s2 ≤ 1− s1/3,

(τ(3− 3s2),Λ(3s2 − 2)) if 1− s1/3 ≤ s2 ≤ 1.

Note that the path h(0, s2), 0 ≤ s2 ≤ 1 coincides with C0 ◦ C1 while h(1, s2), 0 ≤ s2 ≤ 1
coincides with C2. Therefore, it remains only to prove that h(s1, s2) ∈ (D(A)×C2)′. By
definition, (τ(s′),Λ(1− s′)) and (τ(s′),Λ2) belong to (D(A)×C)′ for all s′ ∈ [0, 1]. Only
the middle case is not obvious, that is, we have to prove that

Λ(s′) 6= ui(τ(s1)) = Λ(1− s1)− δ, s′ :=
(3s2 − 1)(1− s1)

2− s1
.

Note that

s′ − (1− s1) =
(3s2 − 3 + s1)(1− s1)

2− s1
≤ 0.

If we assume that Λ(s′) = Λ(1 − s1) − δ, then using the mean value theorem we get
δ = Λ(1− s1)−Λ(s′) = Λ′(s0)(1− s1− s′) for some s0 ∈ [s′, 1− s1]. Note that 1− s1 6= s′

because δ 6= 0. Therefore, 1−s1−s′ > 0⇒ δ ∈ T+(C) contradicting that δ is a transverse
direction for C. This completes the proof of a).

For part b), we need only to check that if λ1 is sufficiently close to λ2, then the

natural lift ĥ(s1, s2) defined by
(τ(s1 + (1− 3s2)(1− s1)), λ1 − λ2 + Λ2,Λ2) if 0 ≤ s2 ≤ 1/3,(
τ(s1), λ1 − λ2 + Λ

(
(3s2−1)(1−s1)

2−s1

)
,Λ
(

(3s2−1)(1−s1)
2−s1

))
if 1/3 ≤ s2 ≤ 1− s1/3,

(τ(3− 3s2), λ1 − λ2 + Λ(3s2 − 2),Λ(3s2 − 2)) if 1− s1/3 ≤ s2 ≤ 1.

takes values in (D(A)×C2)′′ and that (s1, s2) 7→ ĥ(s1, s2) is a homotopy between Ĉ0 ◦ Ĉ1

and Ĉ2. This is straightforward, so we leave the details as an exercise. �
Now we are in position to prove Theorem 3.23. Let us first prove that

(3.56)

∫
Ĉ2

Wα,β + Ωiα,β(τ(1),Λ1,Λ2) = Ωiα,β(t, λ1, λ2).

Let us denote by Ĉ2,s ⊂ Ĉ2 be the subpath connecting the points (τ(s), λ1(s), λ2(s)) and
(t, λ1, λ2) and consider the integral∫

Ĉ2,s

Wα,β + Ωiα,β(τ(s), λ1(s), λ2(s)).

Note that here we make use of Lemma 3.25 in order to prove that the Laurent series
expansion of the propagator in the powers of λ2(s)− ui(τ(s)) = λ2 − ui(t) is convergent.
The derivative of the above expression with respect to s is 0 while its value at s = 0
coincides with the RHS of (3.56). This completes the proof of formula (3.56).

Similarly, using Lemma 3.24 we get

(3.57)

∫
Ĉ1

Wα,β + Ωα,β(τ(1),Λ1,Λ2) = Ωα,β(t,Λ1,Λ2).
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The key observation now is that both Ωα,β(τ(1),Λ1,Λ2) and Ωiα,β(τ(1),Λ1,Λ2) coincide
with the infinite series

∞∑
n=0

(−1)n+1(I(n)
α (τ(1),Λ1), I

(−n−1)
β (τ(1),Λ2))

where each term in the sum is expanded into a Laurent series in Λ−1
1 and a Laurent series

in Λ2 − ui(τ(1)) = λ2 − ui(t). The convergence of both Laurent series expansions follows
from Lemma 3.24 and Lemma 3.25. Subtracting (3.57) from (3.56), we get∫

Ĉ2

Wα,β −
∫
Ĉ1

Wα,β = Ωiα,β(t,Λ1,Λ2)− Ωα,β(t,Λ1,Λ2).

It remains only to recall that Ĉ2 is homotopic to Ĉ0 ◦ Ĉ1 (see Lemma 3.27). Therefore,
the LHS of the above identity becomes∫

Ĉ2

Wα,β −
∫
Ĉ1

Wα,β =

∫
Ĉ0

Wα,β . �

3.4.5. Analytic extension around the discriminant. Now we are in position
to state and prove the second main result of this chapter. Suppose that t ∈ M is a
generic semi-simple point, where generic means that the canonical coordinates {ui(t)}Ni=1

are pairwise distinct: ui(t) 6= uj(t) for i 6= j. Let L be a simple loop in C around ui(t)
that approaches ui(t) in a transverse direction. We will be interested in loops L whose
base point Λ2 is such that |Λ2| > |uj(t)| for all 1 ≤ j ≤ N . If Λ1 is sufficiently close to
Λ2, then the path

L̂ : (t,Λ1 − Λ2 + λ, λ), λ ∈ L

belongs to (M ×C2)′′ and hence the integral of the phase form is well defined. Let us fix
a reference path in D so that the values of the propagators Ωα,β(t,Λ1,Λ2) are uniquely
fixed. Let ϕ be the reflection vector corresponding to the reference path and the simple
loop {t} × L ⊂ (M × C)′.

Theorem 3.28. Under the above notation the following formula holds:

(3.58) Ωα,β(t,Λ1,Λ2)− Ωw(α),w(β)(t,Λ1,Λ2) +

∫
L̂

Wα,β = −2πi (α|ϕ) 〈ϕ, β〉,

where w = rϕ is the reflection (3.50) corresponding to ϕ.

Let us make several remarks about the identity (3.58). Using Lemma 3.19 and
that (α|β) = (w(α)|w(β)) we get that the LHS is a multivalued analytic function in
(t,Λ1,Λ2) ∈ D. Note that

d

∫
L̂

Wα,β = Ww(α),w(β)(t, λ1, λ2)−Wα,β(t, λ1, λ2).

Therefore, the LHS in (3.58) is locally independent of t, Λ1, and Λ2. Let us first prove
the independence of the statement of Theorem 3.28 on the choice of a reference point
and a reference path (inside D!) for the propagators. Let us emphasize that it is very
important that the reference path of the propagators on the LHS of (3.58) is inside D,
that is, it is allowed to wind around the entire discriminant, but it is not allowed to wind
around a local branch of the discriminant.
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Lemma 3.29. Suppose that (3.58) holds for specific choices of a reference point and a
reference path in D, then it holds for any other choice of a reference point and a reference
path in D.

Proof. Suppose that (t#, λ#) is a different reference point in (M×C)′ and C# is an
arbitrary reference path from (t#, λ#) to (t,Λ1). Let A be an admissible path connecting
the two reference points (t◦, λ◦) and (t#, λ#) – see comment 5) after Proposition 3.3.
Let C◦ be the reference path from (t◦, λ◦) to (t,Λ1) for whichformula (3.58) is already
established. Note that C ′ := A−1◦(C#)−1◦C◦ is a loop winding around the discriminant.
Therefore, the corresponding mondromy transformation rC′ = σk, where σ is the classical
monodromy and k ∈ Z. Therefore, if we change the reference point and the reference
path, then the LHS of (3.58) becomes

Ωσk(α),σk(β)(t,Λ1,Λ2)− Ωσk◦w(α),σk◦w(β)(t,Λ1,Λ2) +

∫
Ĉ

Wσk(α),σk(β).

We have σk ◦ w(α) = σk ◦ w ◦ σ−k(σkα). Note that σk ◦ w ◦ σ−k is the reflection with
respect to σkϕ and that σkϕ is the reflection vector corresponding to the simple loop
{t} × C with a reference point to its base point (t,Λ1) given by C#. Therefore, in order
to complete the proof we need to check that

(σk(α)|σk(ϕ)) 〈σk(ϕ), σk(β)〉 = (α|ϕ) 〈ϕ, β〉.
This follows from the fact that both the intersection and the Euler pairings are σ-invariant.

�

Let us establish next the special case of Theorem 3.28 when α = β = ϕ.

Lemma 3.30. We have ∫
L̂

Wϕ,ϕ = −4πi.

Proof. The integral that we have to evaluate coincides with the LHS of (3.58) in

the case α = β = ϕ. The integral along L̂ ∼= L splits into two integrals along the tail of L
and an integral along a small loop around ui(t). Since the phase form Wϕ,ϕ is invariant
with respect to the local monodromy around ui(t), the two integrals along the tail of L
cancel out. Therefore, we may assume that L is a small circle around ui(t). The integral
is also independent of Λ1 and Λ2, so we may also assume that Λ1 = Λ2. The restriction

of the phase form to L̂ ∼= L is

Wϕ,ϕ(t, λ, λ) = −(I(0)
ϕ (t, λ), I(0)

ϕ (t, λ))dλ.

On the other hand, since λ is sufficiently close to ui(t), the period has the following
Laurent series expansion:

I(0)
ϕ (t, λ) =

2√
2(λ− ui(t))

(
ei +O(λ− ui(t))

)
,

where ei =
√

∆i
∂
∂ui

is the normalized idempotent. Substituting this expansion in the

above formula for the phase form we get that only the leading order term of I
(0)
ϕ con-

tributes. Since (ei, ei) = 1 we get∫
L̂

Wϕ,ϕ = −
∫
L

(I(0)
ϕ (t, λ), I(0)

ϕ (t, λ))dλ = −2

∫
L

dλ

λ− ui(t)
= −4πi.
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�

Proof of Theorem 3.28 The LHS of (3.58) is locally independent of Λ1, so let us
assume that |Λ1| > |Λ2|, that is, (t,Λ1,Λ2) ∈ D+. According to Lemma 3.29 we have
the freedom to choose a reference path. Let us choose the reference path in such a way
that Ωα,β(t,Λ1,Λ2) coincides with the Laurent series expansion in Λ−1

1 of the propagator
series

∞∑
n=0

(−1)n(I(n)
α (t,Λ1), I

(−n−1)
β (t,Λ2)).

Let us introduce the following notation. The tail of the simple loop L will be denoted
by C and we fix a parameterization Λ(s) (0 ≤ s ≤ 1) of C. The end point of the tail
C is λ2 := Λ(1). The loop L is required to approach ui in a transverse direction. Let
us choose Λ1 sufficiently close to Λ2, such that, λ1 := Λ1 − Λ2 + λ2 belongs to the open
subset Ui(t, C), that is, the tail C satisfies the conditions of Theorem 3.23. The simple
loop L = C−1 ◦ γ ◦ C, where γ is a circle with center ui(t) and radius |λ2 − ui(t)|. The
integral of the phase form takes the form

(3.59)

∫
L̂

Wα,β =

∫
Ĉ

Wα,β +

∫
γ̂

Wα,β −
∫
Ĉ

Ww(α),w(β).

Let us decompose

α = α′ + (α|ϕ)ϕ/2, β = β′ + (β|ϕ)ϕ/2.

Note that α′ and β′ are invariant with respect to the monodromy transformation along

{t} × γ. Therefore, the periods I
(m)
α′ (t, λ1 − λ2 + λ) and I

(m)
β′ (t, λ) are analytic for all λ

inside the disk bounded by the cicrle γ. Therefore, using the Cauchy theorem we get that∫
γ̂

Wα′,β′ = 0. Since w(α′) = α′ and w(β′) = β′, the integrals of Wα′,β′ along the two

tails in (3.59) cancel out. We get

(3.60)

∫
L̂

Wα,β =
(β|ϕ)

2

∫
L̂

Wα′,ϕ +
(α|ϕ)

2

∫
L̂

Wϕ,β′ +
(α|ϕ) (β|ϕ)

4

∫
L̂

Wϕ,ϕ.

We claim that

(3.61) Fα′,ϕ(t, µ1, µ2) := (µ2 − ui(t))−1/2Ωiα′,ϕ(t, µ1, µ2)

is an analytic function in (µ1, µ2) in a neighborhood of (ui(t), ui(t)), where Ωiα′,ϕ(t, µ1, µ2)

denotes the Laurent series expansion in µ2 − ui(t) of the series

(3.62)

∞∑
n=0

(−1)n(I
(n)
α′ (t, µ1), I(−n−1)

ϕ (t, µ2)).

Indeed, we already known that (µ2−ui(t))−1/2I
(−k−1)
ϕ (t, µ2) are analytic functions in µ2

in a neighborhood of ui(t) and that the Taylor series expansion in µ2 − ui(t) produces
at least a formal power series. In order to determine the radius of convergence let us
differentiate (3.62) with respect to µ2 (see formula (3.52)):

− 1

µ1 − µ2
((µ1 − E•)I(0)

α′ (t, µ1), I(0)
ϕ (t, µ2)).

Recalling Saito’s formula (3.49), we get that the above expression is analytic at µ2 = µ1,
because (α′|ϕ) = 0. Therefore, the radius of convergence of the Laurent series expansion



3.4. PHASE FORM 139

Ωiα′,ϕ(t, µ1, µ2) is minj:j 6=i |uj(t) − ui(t)|. In addition, since the periods I
(n)
α′ (t, µ1) are

analytic at µ1 = ui, the Laurent series expansion Ωiα′,ϕ(t, µ1, µ2) depends analytically on

µ1 for all µ1 sufficiently close to ui(t), that is, |µ1 − ui(t)| < |uj(t) − ui(t)| for all j 6= i.
Our claim that (3.61) is analytic follows.

The analytic continuation of the propagator

Ωiα′,ϕ(t, λ1 − λ2 + λ, λ) = (λ− ui(t))1/2Fα′,ϕ(t, λ1 − λ2 + λ, λ)

when λ varies along γ starting at λ = λ2 is −Ωiα′,ϕ(t, λ1, λ2). Therefore,∫
γ̂

Wα′,ϕ = −2Ωiα′,ϕ(t, λ1, λ2).

On the other hand, according to Theorem 3.23∫
Ĉ

Wα′,ϕ = Ωiα′,ϕ(t, λ1, λ2)− Ωα′,ϕ(t,Λ1,Λ2).

Therefore, we get ∫
L̂

Wα′,ϕ = 2Ωα′,ϕ(t,Λ1,Λ2),

where we used formula (3.59) and the fact that w(α′) = α′ and w(ϕ) = −ϕ. Note that
the above formula and Lemma 3.30 complete the proof of (3.28) in the case when β = ϕ.

Similarly, using that Wϕ,β′ = Wβ′,ϕ, we get that

(3.63)

∫
L̂

Wϕ,β′ = −2Ωβ′,ϕ(t,Λ2,Λ1).

There is a slight complication here, because in order to apply Theorem 3.23 we need the
condition |Λ2| > |Λ1|, while we already assumed the opposite inequality. This complica-
tion can be offset as follows. Note that λ1 − λ2 +C is the tail of a simple loop around ui
based at Λ1 and that if Λ1 is sufficiently close to Λ2, then this loop is approaching ui in
a transverse direction. Let us fix Λ1 and pick Λ2 sufficiently close to Λ1, such that, the
conclusion of Theorem 3.23 holds (in particular |Λ2| > |Λ1|). According to the argument
from the previous case formula (3.63) holds for all Λ2 belonging to some open subset of
C containing Λ1 as a boundary point. However, just like we argued above, the condition
(β′|ϕ) = 0 implies that the Laurent series expansion in Λ−1

2 of the series

∞∑
n=0

(−1)n(I
(n)
β′ (t,Λ2), I(−n−1)

ϕ (t,Λ1))

is analytic at Λ2 = Λ1. The LHS of (3.63) is also analytic in a neighborhood of Λ2 =
Λ1: recall formula (3.52) and note that the singularity at Λ2 = Λ1 cancels out because
(β′|ϕ) = 0. Therefore, the LHS and the RHS of (3.63) are analytic functions in Λ2 in a
neighborhood of Λ1 and they coincide on an open subset. Therefore, they must coincide
in an open neighborhood of Λ1, that is, the equality holds for all Λ2 sufficiently close to
Λ1.

Recalling Lemma 3.30 we get that the integral (3.60) takes the form

(3.64)

∫
L̂

Wα,β = −(β|ϕ) Ωα′,ϕ(t,Λ1,Λ2)− (α|ϕ) Ωβ′,ϕ(t,Λ2,Λ1)− πi(α|ϕ) (β|ϕ).
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On the other hand, using that w(α) = α− (α|ϕ)ϕ and w(β) = β − (β|ϕ)ϕ we get

Ωα,β − Ωw(α),w(β) = (α|ϕ) Ωϕ,β + (β|ϕ) Ωα,ϕ − (α|ϕ) (β|ϕ) Ωϕ,ϕ,

where we supressed the argument (t,Λ1,Λ2) of thepropagators. Let us combine each of
the first two terms on the RHS of the above expression with 1

2 of the last term. Recalling
that β − (β|ϕ)ϕ/2 = β′ and α− (α|ϕ)ϕ/2 = α′ we get

(3.65) Ωα,β − Ωw(α),w(β) = (α|ϕ) Ωϕ,β′ + (β|ϕ) Ωα′,ϕ.

Combining formula (3.65) and (3.64) we get that the LHS of (3.58) equals

(α|ϕ)
(

Ωϕ,β′(t, λ1, λ2)− Ωβ′,ϕ(t, λ2, λ1)
)
− πi(α|ϕ) (β|ϕ).

Recalling Lemma 3.20 we get

−2πi(α|ϕ) 〈ϕ, β′〉 − πi(α|ϕ) (β|ϕ) = −2πi(α|ϕ) 〈ϕ, β〉+ πi(α|ϕ) (β|ϕ) 〈ϕ,ϕ〉 − πi(α|ϕ) (β|ϕ).

Since 〈ϕ,ϕ〉 = 1, the last two terms in the above expression cancel out and we get precisely
the RHS of (3.58). �



CHAPTER 4

Analytic theory of primitive forms

This chapter is an introduction to the analytic theory of primitive forms. We follow
mostly the lecture notes of K. Saito [51]. Nevertheless, motivated by the applications to
mirror symmetry for toric orbifolds (see [34, 35]), we have extended slightly the original
framework.

4.1. Relative de Rham theory

The goal of this section is to recall some basic constructions from complex geometry
and to fix the notation which will be used through out this chapter.

Suppose that Z is a complex manifold. If we forget the complex structure, then Z
is a real smooth manifold. The corresponding tangent bundle is called the real tangent
bundle of Z and it will be denoted by TR

Z . Let TR
z Z denote the real tangent space of

Z at z. The complexified tangent bundle TC
Z of Z is the vector bundle whose fiber at a

point z ∈ Z is TC
z Z := TR

z Z ⊗R C. Complex conjugation defines an R-linear involution
κ : TC

Z → TC
Z , κ(v) := v. Let JZ : TR

Z → TR
Z , J2

Z = − id be the complex structure of Z.
The endomorphism JZ extends uniquely to a complex linear endomorphism of TC

Z . Since
J2
Z = −1, the endomorphism JZ is diagonalizable with eigenvalues ±i, where i :=

√
−1.

Let T 1,0
Z := Ker(JZ − i) and T 0,1

Z := Ker(JZ + i) be the corresponding eigen-subbundles.

Clearly T 0,1
Z = κ(T 1,0

Z ) and we have a direct sum decomposition TC
Z = T 1,0

Z ⊕ T 0,1
Z . It is

easy to check that TZ := T 1,0
Z is a holomorphic vector bundle, which is also known as

the holomorphic tangent bundle of Z. The fiber of TZ at z ∈ Z is denoted by TzZ and
it will be called the holomorphic tangent space. To avoid cumbersome notation, we put
TZ := T 0,1

Z – this is an anti-holomorphic vector bundle.
Suppose now that S is another complex manifold and that p : Z → S is a regular

holomorphic map, i.e., the tangent map dzp : TR
z Z → TR

p(z)S is surjective for all z ∈ Z.

Since the map p is regular, it is straightforward to check that the relative version of
the above discussion applies. Namely, by forgetting the complex structures on Z and S
and viewing p as a smooth map between real smooth manifolds, we can define the real
relative tangent bundle TR

Z/S := Ker(dp : TR
Z → p∗TR

S ). Since p is a holomorphic map,

dp◦JZ = JS ◦dp, so the real relative tangent bundle TR
Z/S is JZ-invariant. We refer to the

restriction JZ/S := JZ |TR
Z/S

as the relative complex structure. The endomorphism JZ/S
extends uniquely to a complex-linear endomorphism of the complexified relative tangent
bundle TC

Z/S := TR
Z/S ⊗ C. Again, JZ/S is diagonalizable with eigenvalues ±i and we

have a direct sum decomposition TC
Z/S = T 1,0

Z/S ⊕ T
0,1
Z/S , where T 1,0

Z := Ker(JZ/S − i) and

T 0,1
Z := Ker(JZ/S + i) are the corresponding eigen-subbundles. It is easy to check that

TZ/S := T 1,0
Z/S is a holomorphic vector bundle, also known as the holomorphic relative
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tangent bundle. To avoid cumbersome notation, we put TZ/S = T 0,1
Z/S – this is an anti-

holomorphic vector bundle on Z. Let T R
Z and T R

Z/S be the sheaves of smooth sections

of respectively the real vector bundles TR
Z and TR

Z/S . Let TZ and TZ/S be the sheaves of

holomorphic sections of respectively the holomorphic vector bundles TZ and TZ/S .
If E is a complex vector bundle on Z, then the dual complex vector bundle E∗ is

by definition the vector bundle whose fiber at a point z is the vector space of complex
linear functions on Ez. Let us denot by Ap,q

Z/S the sheaf of smooth sections of ∧p(T ∗Z/S)⊗
∧q(T ∗Z/S) and by ΩpZ/S the sheaf of holomorphic sections of ∧p(T ∗Z/S). Let us fix local

holomorphic coordinates (x, t) := (x0, . . . , xn, t1, . . . , tm) on Z and t = (t1, . . . , tm) on S,
such that, the map p : Z → S has the form of a projection (x, t) 7→ t. Then the sections
of Ap,q

Z/S take the form

ω =
∑
I,J

ωI,J(x, t)dxi1 ∧ · · · ∧ dxip ∧ dxj1 ∧ · · · ∧ dxjq ,

where the sum is over all multi-indexes I = (i1, . . . , ip) (0 ≤ i1 < · · · < ip ≤ n) and J =
(j1, . . . , jq) (0 ≤ j1 < · · · < jq ≤ n) and the coefficients ωI,J are smoot complex-valued
functions. Using the local coordinates, it is easy to see that the de Rham differential dZ on
Z induces two differentials d1,0

Z/S : Ap,q
Z/S → Ap+1,q

Z/S and d0,1
Z/S : Ap,q

Z/S → Ap,q+1
Z/S . Therefore,

Ap,q
Z/S is a double complex with anticommuting horizontal and vertical differentials. The

corresponding total complex

Am
Z/S :=

⊕
p+q=m

Ap,q
Z/S , dZ/S := d1,0

Z/S + d0,1
Z/S

is by definition the smooth relative de Rham complex. The relative version of the de
Rham lemma holds and the smooth relative de Rham complex provides a soft resolution
of the sheaf p−1OS .

Similarly, using local coordinates, it is not hard to see that the de Rham differential
dZ on Z induces a differential dZ/S : ΩpZ/S → Ωp+1

Z/S . The resulting complex is by definition

the holomorphic relative de Rham complex.

4.2. Family of functions

4.2.1. Definition and first properties. Suppose that we have a commutative
diagram

X × S

prS
##

Z? _oo F //

p

��

C

S

where S is a connected complex manifold, X is a Stein manifold, Z is an open subset of
X × S, F is a holomorphic function, and p is the map induced by the natural projection
prS : X × S → S. Let TZ/S be the sheaf of relative holomorphic vector fields on Z, that
is, the sheaf of sections of the holomorphic relative tangent bundle TZ/S := Ker{dp :
TZ → p∗TS}. The image of TZ/S under the natural morphism TZ/S → OZ , ξ 7→ 〈dF, ξ〉
defines a coherent sheaf of ideals JF ⊂ OZ . The zero locus of JF defines a closed complex
subspace CF of Z with structure sheaf OCF := OZ/JF . The complex subspace CF is
called the relative critical set of F .
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Definition 4.1. The data (F, p : Z → S) is said to be a family of functions over the
connected complex manifold S if the following two conditions are satisfied:

(i) The map p is a Stein map.
(ii) The restriction p|CF : CF → S is a proper finite map.

Let us denote by Zt := p−1(t) the fiber of p at a point t ∈ S and by ft := F |Zt : Zt →
C the restriction of F to Zt. Note that the critical points of ft coincide with CF ∩ Zt.
Since p|CF is a finite map, we get that ft is a holomorphic function with finitely many
isolated critical points.

Proposition 4.2. If (F, p : Z → S) is a family, then the relative critical set CF is a
locally complete intersection and pure dimensional of dimension m := dimC(S).

Proof. Let us first proof that CF is pure dimensional of dimension m. Suppose that
z = (x, t) ∈ CF . Since p|CF is a finite map, the image p(CF ) is an analytic subvariety of
S and for the dimension at t = p(z) we have

m = dimt S ≥ dimt p(CF ) = maxw∈CF∩Zt dimw CF ≥ dimz CF .

Let us prove the opposite inequality, that is, dimz CF ≤ m. Let us choose a product open
neighbourhood U ×V of z in Z, such that, U and V are open neighborhoods respectively
in X and S equipped with coordinates respectively (x0, x1, . . . , xn) and (t1, . . . , tm). The
relative critical set CF ∩ (U × V ) is given by the zero locus of the partial derivatives
∂F
∂x0

, . . . , ∂F∂xn . If dimz CF = k, then there are holomorphic functions f1, . . . , fk ∈ OZ(U ×
V ), such that, after shrinking U and V if neccessary, the zero locus {f1 = · · · = fk =
∂F
∂x0

= · · · = ∂F
∂xn

= 0} coincides with {z}. In particular, k+ n+ 1 ≥ dimz Z = m+ n+ 1,
that is, dimz CF = k ≥ m. Since the number of equations defining CF in U × V is n+ 1,
we get that CF is a locally complete intersection in Z. �

Corollary 4.3. If z◦ = (x◦, t◦) ∈ CF is an arbitrary point and (x0, x1, . . . , xn) and
(t1, . . . , tm) are local coordinates near x◦ ∈ X and t◦ ∈ S, then

a)
(
∂ft
∂x0

, . . . , ∂ft∂xn

)
is a regular sequence in OZt,x◦ .

b)
(
∂F
∂x0

, . . . , ∂F∂xn

)
is a regular sequence in OZ,z◦ .

Recall that if (A,m) is a Noëtherian local ring, then a sequence (a1, . . . , ar), ai ∈ m is
said to be regular if a1 is not a 0-divisor and ai is not a 0-divisor in A/(a1, . . . , ai−1)A for
2 ≤ i ≤ r. The depth of A is defined to be the maximal length of a regular sequence. The
ring A is said to be Cohen–Macualay if the dimension of A equals the depth of A. The
following simple lemma will be used both in the proof of Corollary 4.3 and to conclude
that the local rings OCF ,z are Cohen–Macualay.

Lemma 4.4. If (A,m) is a Cohen–Macualay ring and a ∈ A is not a 0-divisor, then
A/aA is a Cohen–Macualay ring of dimension dim(A/aA) = dim(A)− 1.

Proof. Recall that if A is a Noëtherian local ring and x ∈ A is not a 0-divisor, then
dim(A/xA) = dim(A)− 1 (see [7], Corollary 11.8). Therefore, we have

depth(A)− 1 ≤ depth(A/xA) ≤ dim(A/xA) = dim(A)− 1.

Since depth(A) = dim(A), all inequalities above must be equalities. �
Corollary 4.3 follows immediately from the following more general result:
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Proposition 4.5. Suppose that A is a Noëtherian local ring of dimension m and that
A is Cohen–Macualay. If f1, . . . , fm ∈ A is a sequence, such that dimA/(f1, . . . , fm)A =
0. Then (f1, . . . , fm) is a regular sequence.

Proof. We are going to assume that the reader is familiar with the basic facts
about associated prime ideals, primary ideals, and Cohen–Macualay rings. For some
background, we refer to [45], Sections 6 and 17.

If f1 is a 0-divisor, then f1 ∈ ann(x) for some x ∈ A. Let us choose x such that ann(x)
is maximal, then P := ann(x) is a prime ideal of A (see [45], Theorem 6.1). By definition,
P is an associated prime ideal of A. Since A is Cohen–Macualay, dim(A/P ) = dim(A) (see
[45], Theorem 17.3). Let gi (2 ≤ i ≤ m) be the image of fi in B := A/P under the natural
quotient map. Then dim(B/(g2, . . . , gm)B) = 0, so the radical of the ideal (g2, . . . , gm)
must coincide with the maximal ideal mB of B. Therefore, the ideal (g2, . . . , gm) is
mB-primary (see [7], Proposition 4.2). On the other hand, according to the dimension
theorem (see [7], Theorem 11.14), the number of generators in a mB-primary ideal is
≥ dim(B), that is, m− 1 ≥ dim(B) = dim(A) = m – contradiction. This proves that f1

is not a 0-divisor. According to Lemma 4.4, the quotient A/f1A is a Cohen–Macualay
ring of dimension m− 1. Clearly the ring A/f1A and the images of f2, . . . , fm in A/f1A
satisfy the assumptions of the proposition, so we can complete the proof by induction on
m. �

Part b) of Corollary 4.3 and Lemma 4.4 imply that OCF ,z is a Cohen–Macualay ring,
that is, CF is a Cohen–Macualay complex space.

4.2.2. Flatness. Recall that a holomorphic map f : X → Y between two complex
spaces is said to be flat if for every x ∈ X, y = f(x), the local ring OX,x is a flat OY,y-
module. If X and Y are complex manifolds, then the map f is flat if and only if it is open
(see [50], Section 2.3). In general, if X and Y have singularities, flat maps are open, but
the converse might fail. There are various criterias for flatness available. In our settings,
the following result will be very useful (see [4], Corollary 5.7):

Proposition 4.6. Suppose that (A,mA) and (B,mB) are Noëtherian local rings and
that ϕ : (B,mB)→ (A,mA) is a homomorphism of local rings, that is, ϕ(mB) ⊆ mA. If

(i) A is a flat B-module.
(ii) The elements Fi ∈ A (1 ≤ i ≤ n) and their images fi = π(Fi) (1 ≤ i ≤ n) under

the quotient map π : A→ A/mBA satisfy the condition: every linear relation

a1f1 + · · ·+ anfn = 0, ai ∈ A/mBA
lifts to a relation b1F1 + · · ·+ bnFn = 0 for some bi ∈ A, such that π(bi) = ai.

Then A/(F1, . . . , Fn) is a flat B-module.

Let us prove that p|CF : CF → S is flat. Let us fix local coordinates (x0, . . . , xn)
and (t1, . . . , tm) as in Corollary 4.3. We claim that A = OZ,z◦ , B = OS,t◦ , and Fi = ∂F

∂xi
(0 ≤ i ≤ n) satisfy conditions (i) and (ii) of Proposition 4.6. The map p : Z → S is
open, so condition (i) is satisfied. Let us check condition (ii). Note that the quotient map
A → A/mBA is just the restriction map OZ,z◦ → OZt◦ ,x

◦ , φ 7→ φ|t=t◦ . The image of Fi
is ∂ft◦

∂xi
. Suppose that we have a linear relation

n∑
i=0

ai(x)
∂ft◦

∂xi
= 0, ai ∈ OZt◦ ,x

◦ .
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According to Corollary 4.3, the partial derivatives ∂ft◦
∂xi

(0 ≤ i ≤ n) form a regular
sequence. In particular, the corresponding Koszul complex is exact

· · · // ∧2
(On+1

Zt◦ ,x
◦)

d2 // On+1
Zt◦ ,x

◦
d1 // OZt◦ ,x

◦ // OZt◦ ,x
◦/(∂ft◦∂x0

, . . . , ∂ft◦∂xn
) // 0 .

The linear relation implies that (a0, . . . , an) is in the kernel of the differential d1. There-
fore, there exists ai,j ∈ OZt◦ ,x

◦ (0 ≤ i, j ≤ n), such that ai,j = −aj,i and ai =∑n
j=0 ai,j

∂ft◦
∂xj

. Let us pick an arbitrary lift bi,j ∈ OZ,z◦ of ai,j for i < j and define

bi,j = −bj,i if i > j. Clearly, the functions bi :=
∑n
j=0 bi,j

∂F
∂xj

(0 ≤ i ≤ n) will sat-

isfy
∑n
i=0 bi

∂F
∂xi

= 0 and bi|t=t◦ = ai. This proves that condition (ii) is also satisfied.
According to Proposition 4.6, the local ring OCF ,z◦ is a flat OS,t◦ -module.

Let us prove that p∗OCF is a locally free OS-module. Recall that if a finitely generated
module over a Noëtherian local ring is flat, then it must be free (see [7], Chapter 7,
Exercise 15). In our case, OCF ,z◦ is a finitely generated OS,t◦ -module, because p∗OCF is
coherent. Therefore, OCF ,z◦ is a free OS,t◦ -module. Let us denote by µt◦(z

◦) the rank of
OCF ,z◦ . Put

µft◦ =
∑

z◦∈CF∩Zt◦

µt◦(z
◦).

Since p|CF is a finite map, the stalk

(p∗OCF )t◦ =
⊕

z◦∈CF∩Zt◦

OCF ,z◦ .

is a free OS,t◦ -module of rank µft◦ . Since p∗OCF is coherent, we get that it is locally free
and that the function t 7→ µft is locally constant and upper semi-continuous. However,
S is connected by assumption, so µft is an integer independent of t ∈ S, which from now
on will be denoted by µF .

4.2.3. Complete families. Let us recall the exact sequence of vector bundles on Z

(4.1) 0 // TZ/S // TZ
dp // p∗TS // 0 .

Since Z is an open subset of X × S, the above exact sequence splits. In particular, every

vector field δ ∈ Γ(V,TS) can be lifted to a vector field δ̂ ∈ Γ(p−1(V ),TZ). Let us define

(4.2) TS → p∗OCF , δ 7→ δ̂(F )|CF .

The definition is independent of the choice of a lift, because if δ̂′ and δ̂′′ are two different

lifts, then their difference ξ := δ̂′ − δ̂′′ ∈ TZ/S . Recalling the definition of the relative
critical set, we get that

δ̂′(F )− δ̂′′(F ) = 〈dF, ξ〉 ∈ JF
vanishes on CF . The map (4.2) is an OS-module morphism known as the Kodaira–Spencer
map.

Definition 4.7. A family (F, p : Z → S) is said to be complete if the Kodaira–
Spencer map (4.2) is an isomorphism.

Proposition 4.8. If the family (F, p : Z → S) is complete, then the relative critical
set CF is a smooth complex manifold.
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Proof. Suppose that z◦ = (x◦, t◦) ∈ CF is an arbitrary point. Let us choose a direct
product open neighborhood U×V of z◦ in Z and local coordinates (x0, . . . , xn, t1, . . . , tm)
on U × V with center at z◦, such that,

p(x0, . . . , xn, t1, . . . , tm) = (t1, . . . , tm)

and

F = F (z◦) +
1

2
(x2

0 + · · ·+ x2
k) + g(xk+1, . . . , xn) +G(xk+1, . . . , xn, t1, . . . , tm),

where G ∈ mS,t◦OZ,z◦ is independent of x0, . . . , xk, and g ∈ OU,x◦ has at least cubic
terms in its Taylor’s series expansion at x = x◦ = 0. By definition the relative critical set
CF is defined by { ∂F∂x0

= · · · = ∂F
∂xn

= 0}. Recalling the implicit function theorem, we get

that it is sufficient to prove that the following matrix has maximal rank (i.e. rank n+ 1):

1 ∂2F
∂x0∂t1

(z◦) · · · ∂2F
∂x0∂tm

(z◦)

. . .
...

...

1 0 · · · 0 ∂2F
∂xk∂t1

(z◦) · · · ∂2F
∂xk∂tm

(z◦)

0 · · · 0 ∂2F
∂xk+1∂t1

(z◦) · · · ∂2F
∂xk+1∂tm

(z◦)

. . .
...

... · · ·
...

0 ∂2F
∂xn∂t1

(z◦) · · · ∂2F
∂xn∂tm

(z◦).


We claim that the minor formed by the partial derivatives ∂2F

∂xi∂ta
(z◦) (k+ 1 ≤ i ≤ n, 1 ≤

a ≤ m) has rank n − k. Since the Kodaira–Spencer map is an isomorphism, there are
vector fields

∑m
a=1 va,i(t)

∂
∂ta

(k + 1 ≤ i ≤ n), such that

(4.3)

m∑
a=1

va,i(t)
∂F

∂ta
= xi(mod JF ).

Note that all partial derivatives ∂2F
∂xi∂xj

(z◦) = 0 for all k + 1 ≤ i ≤ n and 0 ≤ j ≤ n,

because only the g-term in F contributes and g has at least cubic terms in z. Therefore,
∂φ
∂xi

(z◦) = 0 for all φ ∈ JF and k + 1 ≤ i ≤ n. Differentiating (4.3) with respect to xj

for k + 1 ≤ j ≤ n and substituting z = z◦, we get
∑m
a=1 va,i(z

◦) ∂2F
∂ta∂xj

(z◦) = δi,j . This

relation implies that the rows of our minor are linearly independent, so its rank must
be equal to the number of rows, that is n − k. Clearly the rank of the above matrix is
n+ 1. �

Proposition 4.9. If (F, p : Z → S) is a complete family, then the map

θ : CF → T ∗S, 〈θ(z), δ〉 := δ̂(F )(z)

is a closed embedding and the image LF := θ(CF ) is a Lagrangian submanifold.

Proof. In order to prove that θ is a closed embedding, it is sufficient to prove that
dθ is injective and that θ is one-to-one. Let us prove first the injectivity. Suppose that
z◦ ∈ CF is an arbitrary point. Let us fix a product open neighborhood U × V of z◦

in Z and coordinates x = (x0, . . . , xn) on U and t = (t1, . . . , tm) on V . Let us also fix
coordinates (t1, . . . , tm, p1, . . . , pm) on T ∗V = T ∗S|V , such that, the cotangent vectors in
T ∗t S take the form p1dt1 + · · ·+ pmdtm. The map θ takes the form

θ(x, t) =
(
t1, . . . , tm,

∂F
∂t1
, . . . , ∂F∂tm

)
.
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The tangent space Tz◦CF consists of all vectors v =
∑n
i=0 v

i∂/∂xi +
∑m
a=1 v

a+n∂/∂ta ∈
Tz◦Z, such that

n∑
i=0

vi
∂2F

∂xj∂xi
(z◦) +

m∑
a=1

vn+a ∂2F

∂xj∂ta
(z◦) = 0, 0 ≤ j ≤ n.

Therefore,

dθ(v) =

m∑
a=1

(
n∑
i=0

vi
∂2F

∂ta∂xi
(z◦) +

m∑
b=1

vn+b ∂2F

∂ta∂tb
(z◦)

)
∂

∂pa
+

m∑
b=1

vn+b ∂

∂tb
.

If we assume that dθ(v) = 0, then we get vn+b = 0 for 1 ≤ b ≤ m and

n∑
i=0

vi
∂2F

∂ta∂xi
(z◦) =

n∑
i=0

vi
∂2F

∂xj∂xi
(z◦) = 0, 1 ≤ a ≤ m, 0 ≤ j ≤ n.

Note that the above equalities are a system of m+n+1 linear equations for vi (0 ≤ i ≤ n).
The coefficient matrix is precisely the Jacobian of the map (at z = z◦)

U × V → Cn+1, z 7→
(
∂F
∂x0

, . . . , ∂F∂xn

)
.

The fiber of the above map over 0 is by definition CF ∩ U × V and since CF is a smooth
complex manifold, we get that the the Jacobian matrix has a maximal rank at all points
z◦ ∈ CF ∩ U × V , that is, the rank of the Jacobian matrix is n + 1, which implies that
vi = 0 for all 0 ≤ i ≤ n. This completes the proof of the injectivity of dθ.

Let us prove that θ is one-to-one. Suppose that θ(z′) = θ(z′′). Note that t = p(z′) =
p(z′′), so z′ and z′′ are critical points of ft : Zt → C. Let {ξ1, . . . , ξr} = CF ∩ Zt be
the set of all critical points of ft and suppose that ξi = z′, ξj = z′′ for some i 6= j. The
Kodaira–Spencer isomorphism induces an isomorphism between the fibers of the sheaves
TS and p∗OCF at t, that is

TtS = TS,t/mS,tTS,t
∼= // (p∗OCF )t/mS,t(p∗OCF )t =

r⊕
i=1

OCF ,ξi/mS,tOCF ,ξi ,

where to compute the stalks of p∗OCF at t we used that p|CF is a finite map. Since the
map OCF ,ξi/mS,tOCF ,ξi → OCF ,ξi/mCF ,ξiOCF ,ξi

∼= C is surjective, we get that the map

TtS → Cr,
∂

∂ta
7→
(
∂F

∂ta
(ξ1), . . . ,

∂F

∂ta
(ξr)

)
is surjective. Let us pick a tangent vector v ∈ TtS such that v(F )(ξi) = 1 and v(F )(ξj) =

0. Since ∂F
∂ta

(ξi) 6= ∂F
∂ta

(ξj) for some a, we get that θ(ξi) =
∑
a
∂F
∂ta

(ξi)dta 6=
∑
a
∂F
∂ta

(ξj)dta =

θ(ξj) – contradiction. This proves that θ is one-to-one.
Finally, in order to see that θ(CF ) is Lagrangian, we have to prove that the pullback

θ∗(ω) = 0, where ω is the standard symplectic form of T ∗S. The problem is local, so let
us work in local coordinates. Then ω = dα, where α =

∑m
a=1 padta is the so called action

1-form. However, recalling the definition of θ, we get that θ∗(α) = d(F |CF ) is an exact
form. Therefore, the pullback of the symplectic form is 0. �
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4.2.4. Morse families. Let us first prove the following fact: If (F, p : Z → S) is
a family of functions in the sense of Definition 4.1, such that CF is a reduced complex
space, then the map p|CF : CF → S is an analytic covering, i.e., there exists a thin subset
K of S, called critical locus of the covering, such that (p|CF )−1(K) is a thin subset of
CF and the restriction of p|CF is a local biholomorphism CF \ p−1(K) ∩ CF → S \ K.
For the proof, note first that p|CF is an open map, because we already proved that p|CF
is flat and every flat map is open. Alternatively, since CF is pure dimensional and S is
irreducible, we can recall the open mapping theorem (see [25], Chapter 5, Section 4.3) to
conclude that p|CF is open. The image p(CF ) is both an open and a closed subset of S, so
p(CF ) = S. Therefore, p|CF is an open finite surjection. Since S is a complex manifold,
we can recall the Covering Lemma from [25], Chapter 5, Section 2.2 to conclude that
p|CF is an analytic covering.

Since S is a connected complex manifold, the number of points in the fiber (p|CF )−1(t)
for t ∈ S \ K is a constant µ independent of t. Moreover, using the local description of
a proper finite map (see [25], Chapter 2, Section 3.2), we get that the restriction of p|CF
gives a regular covering CF \ p−1(K) ∩ CF → S \K of degree µ. Let us denote by Ω1

CF /S

the sheaf of relative differentials, defined by the following exact sequence:

JF /J 2
F

dZ/S // Ω1
Z/S

∣∣∣
CF

// Ω1
CF /S

// 0 ,

where JF is the ideal sheaf of CF and the map dZ/S is induced from the composition of
the relative de Rham differential and the restriction to CF . Note that all morphisms in
the above exact sequence are morphisms of OCF -modules. It is well known (and easy to
prove using the exactness of the Koszul complex) that if the stalks JF,ξ of the ideal sheaf
are generated by a regular sequence (F0, . . . , Fn), then JF,ξ/J 2

F,ξ is a free OCF ,ξ-module

of rank n+ 1. Therefore, in our case JF /J 2
F is a locally free sheaf of rank n+ 1.

Lemma 4.10. The map p|CF is a local biholomorphism at some point ξ ∈ CF if and
only if one of the following two equivalent conditions hold:

(i) ξ is a Morse critical point for ft, where t = p(ξ).
(ii) The stalk Ω1

CF /S,ξ
= 0.

Proof. Let us fix local coordinates (x, t) := (x0, . . . , xn, t1, . . . , tm) on Z near the
point ξ ∈ CF , such that, the map p takes the form of a projection (x, t) 7→ t. Put Fi = ∂F

∂xi
for brevity.

Let us first check that conditions (i) and (ii) are equivalent. Both stalks JF,ξ/J 2
F,ξ and

(Ω1
Z/S |CF )ξ are free OCF ,ξ-modules of rank n+1. The OCF ,ξ-bases are given respectively

by (F0, . . . , Fn) and dx0, . . . , dxn. Therefore, the map JF,ξ/J 2
F,ξ → (Ω1

Z/S |CF )ξ induced

by the relative de Rham differential is given by the Hessian matrix
(

∂2F
∂xi∂xj

)
0≤i,j≤n

.

Therefore, the stalk Ω1
CF /S,ξ

vanishes if and only the determinant of the Hessian matrix

is not 0 at ξ, that is, if and only if ξ is a Morse critical point.
If p|CF is a local bi-holomorphism at ξ, then CF must be non-singular at ξ. The

tangent space TξCF consists of all vectors v =
∑n
i=0 v

i∂/∂xi+
∑m
a=1 v

n+a∂/∂ta satisfying

(4.4)

n∑
i=0

vi
∂2F

∂xj∂xi
(ξ) +

m∑
a=1

vn+a ∂2F

∂xj∂ta
(ξ) = 0, 0 ≤ j ≤ n.
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If the Hessian matrix was degenerate, then we can find a non-zero tangent vector v ∈
TξCF , such that, all components vn+a = 0. However, such a vector v will be in the
kernel of the tangent map dξp – contradicting the assumption that p|CF is a local bi-
holomorphism. Therefore, the Hessian matrix is non-degenerate, that is, ξ is a Morse crit-
ical point. Conversely, if ξ is a Morse critical point, then the map defined by (F0, . . . , Fn)
has Jacobi matrix with maximal possible rank, because the Hessian matrix is a minor of
size (n+1)×(n+1). The implicit function theorem implies that CF is smooth in a neigh-
borhood of ξ. Given an arbitrary tangent vector

∑m
a=1 v

n+a∂/∂ta ∈ TtS, where t = p(ξ),
we can uniquely solve the euqation (4.4) for vi (0 ≤ i ≤ n), because the Hessian matrix
is non-degenerate. Therefore, the tangent map dξp : TξCF → TtS is an isomorphism.
Recalling again the implicit function theorem, we get that p|CF is a local biholomorphism
at ξ. �

Let us also point out an important corollary of the above proof. The support of
the sheaf Ω1

CF /S
is either empty or an analytic hypersurface in CF . Indeed, if ξ ∈

supp(Ω1
CF /S

), then locally in a neighborhood of ξ in Z, the determinant of the Hessian

matrix H(z) = det( ∂2F
∂xi∂xj

) defines a holomorphic function, which represents a non-zero

divisor in the local ring OCF ,ξ. Otherwise, if H represents a zero divisor, then H must
vanish identically on some irreducible component A of CF at ξ. This would imply that
A ⊂ p−1(K) ∩CF , because the points of A are not of Morse type (the Hessian vanishes),
so p|CF is not a local biholomorphism. However, this would imply that p(A) ⊂ K is not an
irreducible component of S, contradicting the fact that p|CF is an analytic covering (see
[25], Chapter 9, Section 3.3). The support of Ω1

CF /S
is locally given by {H = 0} and since

H is not a zero divisor, the support must be either empty or an analytic hypersurface.
Note that we can assume that K = p(supp(Ω1

CF /S
)), because the image of the support

is always contained in K, so it is a thin subset and if t is not in the image of supp(Ω1
CF /S

),

then Ω1
CF /S,ξ

= 0 for all ξ ∈ CF such that p(ξ) = t, therefore p|CF is a local biholomor-

phism at ξ. Therefore, the conditions in the definition of an analytic covering are satisfied
if we take p(supp(Ω1

CF /S
)) to be a critical locus. Moreover, if supp(Ω1

CF /S
) is not empty,

then the dimension of K must be m− 1 at all points. Indeed, K is an analytic subvariety
of S, so its dimension is < m and p|supp(Ω1

CF /S
) : supp(Ω1

CF /S
) → K is a proper finite

surjective map, so dim(K) ≥ m− 1.

Definition 4.11. A family of functions (F, p : Z → S) is said to be Morse, if the
relative critical set CF is a reduced complex space, that is, CF is an analytic variety.

If we have a Morse family then the subset K ⊂ S consisting of points t ∈ S, such
that, ft is not a Morse function is called bifurcation set or caustic. Our discussion from
above implies, that K is an analytic hypersurface in S and that p|CF : CF → S is a
branched analytic covering with critical locus K. Finally, the support supp(Ω1

CF /S
) is the

ramifictaion divisor, i.e., the points in CF at which p|CF is not a local biholomorphism.

4.2.5. Discriminant. Let (F, p : Z → S) be a family. Let us introduce the following
map:

Φ : Z → C× S, z 7→ (F (z), p(z)).
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We claim that Φ is open. Indeed, since Φ is a holomorphic map between complex mani-
folds, we need to check that the fibers

Φ−1(λ, t) = {z ∈ Zt | ft(z) = λ}
are either empty of equidimensional of dimension dim(Z)−dim(C×S) = n, which is clear.
It is also easy to see that Φ|CF is a proper finite map. Indeed, this follows from the fact
that the composition prS ◦(Φ|CF ) = p|CF is a proper finite map, where prS : C× S → S
is the projection.

Since Φ|CF is a proper map, its image DF := Φ(CF ) is an analytic subvariety of C×S.
Since CF is pure dimensional of dimension m and Φ|CF is a proper finite map, we get
that DF is also pure dimensional of dimension m, that is, DF is an analytic hypersurface
in C× S. There is an elegant way to describe an equation that defines DF . Let p∗F be
the OS-linear map p∗OCF → p∗OCF defined by multiplication by F . Since p∗OCF is a
locally free sheaf of rank µF , we can define

∆(λ, t) := det(λ id−(p∗F )t),

where (p∗F )t : (p∗OCF )t → (p∗OCF )t is the stalk of the map p∗F . Clearly, ∆ ∈ O(S)[λ],
that is, ∆ is a monic polynomial in λ of degree µF , whose coefficients are holomorphic
functions on S.

Proposition 4.12. The hypersurface {∆(λ, t) = 0} ⊂ C× S coincides with DF .

Proof. Suppose that t◦ ∈ S is an arbitrary point. We have to prove that (λ, t◦) ∈
DF if and only if ∆(λ, t◦) = 0. By definition ∆(λ, t◦) ∈ C[λ] is the determinant of the
following linear operator:⊕

z∈Crit(ft◦ )

OZt◦ ,z/
(
∂ft◦
∂x0

, . . . ∂ft◦∂xn

)
λ−ft◦ //

⊕
z∈Crit(ft◦ )

OZt◦ ,z/

(
∂ft◦

∂x0
, . . .

∂ft◦

∂xn

)
,

where Crit(ft◦) = Zt◦ ∩ CF are the critical points of ft◦ , for each z ∈ Crit(ft◦) we
choose local coordinates x = (x0, . . . , xn) on a neighborhood of z in Zt◦ in order to define

Mz := OZt◦ ,z/
(
∂ft◦
∂x0

, . . . ∂ft◦∂xn

)
, and λ − ft◦ is the map induced by multiplication. Each

Mz is a finite dimensional vector space over C of dimension µft◦ (z).
Suppose now that (λ, t◦) /∈ DF . Then λ 6= ft◦(z) for all z ∈ Crit(ft◦). We claim

that multiplication by λ − ft◦ induces an isomorphism Mz

∼= // Mz . Indeed, since

λ 6= ft◦(z) we get that λ − ft◦ is invertible in OZt◦ ,z, so it is invertible as a linear map
on the quotient Mz. Therefore, det(λ − ft◦) 6= 0. This proves that {∆ = 0} ⊆ DF .
Conversely, if (λ, t◦) ∈ DF , then there exists z ∈ Crit(ft◦), such that, λ = ft◦(z), that
is, λ − ft◦ ∈ m, where m = mZt◦ ,z is the maximal ideal of the local ring OZt◦ ,z. If
det(λ − ft◦) 6= 0, then Mz = (λ − ft◦)Mz ⊆ mMz ⊆ Mz. Therefore, Mz = mMz, so
by Nakayama’s lemma Mz = 0, which contradicts the fact that z is a critical point of
ft◦ . �

The analytic hypersurface DF equipped with the structure of a complex space with
structure sheaf ODF := OC×S/∆OC×S is called the discriminant of Φ.

4.3. Tame Families

Let (F, p : Z → S) be a family. Recall the map (see Section 4.2.5)

Φ : Z → S × C, z 7→ (p(z), F (z)).
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Motivated by Iritani’s work on mirror symmetry for toric orbifolds [34, 35], we would
like to introduce a certain class of families for which the map

(4.5) Φ|Z\Φ−1(DF ) : Z \ Φ−1(DF )→ S × C \DF

is a locally trivial fibration.

4.3.1. Relative Kähler structure. Suppose that gZ/S is a positive definite, sym-
metric, bilinear pairing on TR

Z/S , that is,

gZ/S : T R
Z/S ⊗ T R

Z/S → C∞Z ,

where C∞Z is the sheaf of smooth real-valued functions on Z and the following two condi-
tions hold:

(i) gZ/S(v1, v2) = gZ/S(v2, v1) for all v1, v2 ∈ T R
Z/S .

(ii) gZ/S(v, v) > 0 for all non-zero v ∈ T R
Z/S .

Let J ∈ End(TR
Z/S) be the relative complex structure. We say that gZ/S is a relative

Kähler metric if in addition the following two conditions hold:

(iii) J-invariance: gZ/S(Jv1, Jv2) = gZ/S(v1, v2) for all v1, v2 ∈ T R
Z/S .

(iv) Symplectic Structure: The two-form ωZ/S ∈ Γ(Z,∧2(TR
Z/S)∗) defined by

ωZ/S(v1, v2) := gZ/S(Jv1, v2), v1, v2 ∈ T R
Z/S

is closed, that is, dZ/S(ωZ/S) = 0.

Definition 4.13. The data (F, p : Z → S, gZ/S) is said to be a Kähler family if
(F, p : Z → S) is a family and gZ/S is a relative Kähler metric. �

Note that if (F, p : Z → S, gZ/S) is a Kähler family, then each fiber

Zt := p−1(t), gt := gZ/S |Zt , t ∈ S,

is a Kähler manifold.
From now on, until the end of this section, we fix a Kähler family (F, p : Z → S, gZ/S).

The relative gradient ∇f ∈ Γ(Z,T R
Z/S) of a smooth function f : Z → R is defined by the

following formula:

gZ/S(∇f, v) := 〈df, v〉 = v(f), ∀v ∈ T R
Z/S .

The length of the gradient is by definition ||∇f || := gZ/S(∇f,∇f)1/2. The following simple
lemma will play a key role in our discussion.

Lemma 4.14. Suppose that f : Z → C is a holomorphic function and put u := Re(f)
and v := Im(f). Then ||∇u|| = ||∇v|| and gZ/S(∇u,∇v) = 0.

Proof. Let J ∈ End(TR
Z/S) be the relative complex structure. The Cauchy–Riemann

equations for f yield the following identity:

〈du, ξ〉 = 〈dv, Jξ〉, ξ ∈ T R
Z/S .

Recalling the definition of the relative gradient, we get

gZ/S(∇u, ξ) = gZ/S(∇v, Jξ) = gZ/S(−J∇v, ξ),
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where we used the J-invariance of gZ/S and that J2 = −1. Since gZ/S is non-degenerate,
we get ∇u = −J∇v. Therefore, using the J-invariance again, we get

||∇u||2 = gZ/S(∇u,∇u) = gZ/S(J∇v, J∇v) = gZ/S(∇v,∇v) = ||∇v||2.
Similarly, using the symplectic condition, we get

gZ/S(∇u,∇v) = −gZ/S(J∇v,∇v) = −ωZ/S(∇v,∇v) = 0. �

4.3.2. Kähler-complete families. Note that the real tangent bundle

(4.6) TR
Z
∼= TR

Z/S ⊕ p
∗TR
S .

To see this, let us recall that Z is an open subset of X × S. Let us denote by prX :
X × S → X and prS : X × S → S the projection maps. Then

(4.7) TR
X×S

∼= pr∗X T
R
X ⊕ pr∗S T

R
S .

Clearly, TR
Z = TR

X×S |Z , p∗TR
S = pr∗S T

R
S |Z, and TR

Z/S
∼= pr∗X T

R
X |Z . Therefore, the splitting

(4.6) follows from (4.7) by restriction to Z.
Using the splitting (4.6), we construct a Riemannian metric gZ on Z as follows. Let

gS be a Riemannian metric on S. Then the pullback p∗gS defines a metric on p∗TR
S and

we define gZ = gZ/S ⊕ p∗gS , that is,

gZ(v1, v2) = gZ/S(π(v1), π(v2)) + gS(dp(v1), dp(v2)),

where vi ∈ TR
z Z, dp(vi) ∈ TR

p(z)S, and π(vi) is the projection of vi to the relative tangent

space corresponding to the splitting (4.6). The Riemannian metric gZ allows us to turn Z
into a metric space. If K ⊂ S is a compact subset, then put ZK := p−1(K). Let us equip
ZK with the metric induced from Z. Note that, since K is compact, the restrictions of
any two Riemannian metrics gS1 and gS2 to K are equivalent, that is, there are constants
C and c, such that

cgS1 (v, w) ≤ gS2 (v, w) ≤ CgS1 (v, w),

for all v, w ∈ TR
t S and for all t ∈ K. Therefore, the condition that ZK is a complete

metric space is independent of the choice of gS .

Definition 4.15. A Kähler family (F, p : Z → S, gZ/S) is said to be Kähler-complete
if for every compact subset K ⊂ S the metric space ZK = p−1(K) is complete, i.e., every
Cauchy sequence has a convergent subsequence.

Remark 4.16. If we have a family (F, p : Z → S) for which Z = X ×S, then we can
always choose a relative Kähler metric gZ/S , such that, the family (F, p : Z → S, gZ/S)
is Kähler-complete. Indeed, since X is a Stein manifold, it can be embedded as a closed
submanifold of CN for some N > 0. The standard Kähler metric on CN induces a
complete Kähler metric on X. If K ⊂ S is compact, then ZK = X ×K is a product of
complete metric spaces, so it must be complete. �

4.3.3. The relative gradient flow. Suppose that (F, p : Z → S, gZ/S) is a relative
Kähler family. For given an open subset V ⊂ S, smooth vector field ξ ∈ Γ(V,T R

S ), and a
complex number η ∈ C, let us define

Cη,ξ(V ) = {z ∈ p−1V | ||∇F (z)|| ≤ |η|+ |ξ̂(F )(z)|},

where ||∇F || :=
√
||∇Re(F )||2 + ||∇ Im(F )||2 and ξ̂ ∈ Γ(p−1V,T R

Z ) is the lift of the vector
field ξ defined via the splitting (4.6).
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Remark 4.17. If η = 0 and ξ = 0, then C0,0(V ) = CF ∩ p−1V is the relative critical
set. We think of Cη,ξ(V ) as a thickenning of the relative critical set. �

Definition 4.18. A Kähler family (F, p : Z → S, gZ/S) is said to be tame if for every
open subset V ⊂ S, smooth vector field ξ ∈ Γ(V,T R

S ), and a complex number η ∈ C, the
map

p|Cη,ξ(V ) : Cη,ξ(V )→ V

is proper. �

The main goal in this Section is to prove the following theorem.

Theorem 4.19. If (F, p : Z → S, gZ/S) is a tame Kähler-complete family, then the
map (4.5) is a locally trivial fibration.

The local trivializations will be constructed via the flows of certain systems of ordinary
differential equations, which we would like to define now. Let (t◦, λ◦) ∈ S×C \DF be an
arbitrary point. Let us fix local coordinates t = (t1, . . . , tm) in a neighborhood of t◦ ∈ S.
Let 0 < ε1 < ε2 be small positive numbers, such that, the polydisks

Vi := {t ∈ Cm | |tj − t◦j | < εi}, i = 1, 2,

are contained in the coordinate chart about t◦ and the polydisks

Di := Vi × {λ ∈ C | |λ− λ◦| < εi}
are contained in S×C\DF . We will prove that Φ−1(D1) is diffeomorphic to D1×Zt◦,λ◦ ,
where Zt,λ := Φ−1(t, λ).

Given η ∈ C and a smooth vector field ξ ∈ Γ(U2,T R
S ) we define the following real

smooth vector field on ZD2
:= Φ−1(D2):

(4.8) G := ξ̂ +
1

||∇u||2
(

Re(η − ξ̂(F ))∇u+ Im(η − ξ̂(F ))∇v
)
,

where u := Re(F ) and v := Im(F ). Let us view Φ : ZD2 → S × C as a smooth map
between real smooth manifolds. In particular, we identify C ∼= R2 in the standard way,
that is, λ = λ1 + iλ2 7→ (λ1, λ2). We claim that the vector field G ∈ Γ(Φ−1(D2),T R

Z ) is a

Φ-lift of ξ + Re(η) ∂
∂λ1

+ Im(η) ∂
∂λ2
∈ Γ(D2,T R

S×C). Indeed, we have

dΦ(ξ̂) = dp(ξ̂) + ξ̂(u) ∂
∂λ1

+ ξ̂(v) ∂
∂λ2

= ξ + ξ̂(u) ∂
∂λ1

+ ξ̂(v) ∂
∂λ2

,

where we used that by definition ξ̂ is a p-lift of ξ. Since ∇u is a relative tangent field,
dp(∇u) = 0 and we get

dΦ(∇u) = du(∇u) ∂
∂λ1

= ||∇u||2 ∂
∂λ1

,

where we used that dv(∇u) = gZ/S(∇v,∇u) = 0 according to Lemma 4.14. Similarly,

dΦ(∇v) = dv(∇v) ∂
∂λ2

= ||∇v||2 ∂
∂λ2

= ||∇u||2 ∂
∂λ2

.

The above 3 identities clearly imply that dΦ(G) = ξ + Re(η) ∂
∂λ1

+ Im(η) ∂
∂λ2

.

Let ψ(z, η, ξ; s) be the flow of the vector field G on the manifold ZD1
through the

point z ∈ ZD1
, that is, ψ(z, η, ξ; s) is a solution to the following system of ODEs

∂ψ

∂s
(z, η, ξ; s) = G(ψ(z, η, ξ; s)),

ψ(z, η, ξ; 0) = z.



154 4. ANALYTIC THEORY OF PRIMITIVE FORMS

Let (R−(z, η, ξ), R+(z, η, ξ)) be the maximal interval such that the solution ψ(z, η, ξ; s)
exists for all s ∈ (R−(z, η, ξ), R+(z, η, ξ)). Let us stress that the definition of R± depends
on the polydisk D1. We are interested in the flow lines of G inside the domain ZD1 . We
will actually prove that R+ (resp. R−) is the time that it takes for the positive (resp.
negative) time flow to reach the boundary of ZD1

.
Let Ξ(t, s) be the flow line of the vector field ξ on V2 through a point t ∈ V1, that is,

Ξ(t, s) is a solution to the following system of ODEs

∂Ξ

∂s
(t, s) = ξ(Ξ(t, s)),

Ξ(t, 0) = t.

We will be interested only in vector fields ξ, such that, the flow line Ξ(t, s) reaches the
boundary of V 1 in finite time for both the positive (s > 0) and the negative (s < 0) flow
of ξ. Note that the flow line in D2 of the vector field ξ+ Re(η) ∂

∂λ1
+ Im(η) ∂

∂λ2
through a

point (t, λ) ∈ D1 has the form γ(t, λ, s) := (Ξ(t, s), λ+ ηs). Let us denote by ρ+(t, λ, η, ξ)
the minimal value of s > 0 for which γ(t, λ, s) belong to the boundary of D1, that is, ρ+

is the time needed to reach the boundary of the domain D1. Similarly, let ρ−(t, λ, η, ξ)
be the maximal value of s < 0 for which γ(t, λ, s) belong to the boundary of D1.

Since dΦ(G) = ξ + Re(η) ∂
∂λ1

+ Im(η) ∂
∂λ2

, we get that

Φ(ψ(z, η, ξ; s)) = (Ξ(p(z), s), F (z) + ηs).

The above relation, since the LHS belongs to D1 for all s ∈ (R−, R+), implies that

ρ−(Φ(z), η, ξ) ≤ R−(z, η, ξ) < R+(z, η, ξ) ≤ ρ+(Φ(z), η, ξ).

The most difficult part in the proof of Theorem 4.19 is to prove that R± = ρ±.

Lemma 4.20. Under the above notation we have R±(z, η, ξ) = ρ±(Φ(z), η, ξ).

Assuming that Lemma 4.20 is established the proof of Theorem 4.19 can be completed
as follows. Assuming the notation from above and letting D := D1 for brevity. Let us
define

(4.9) Ψ : Zt◦,λ◦ ×D → Φ−1(D),

by the following formula

(4.10) Ψ(z, t′, λ′) := ψ(z, λ′ − λ◦, t′ − t◦; 1),

where t′ − t◦ is identified with the constant vector field ξ =
∑m
j=1(t′j − t◦j ) ∂

∂tj
. The flow

line of ξ through Φ(z) = (t◦, λ◦) is the straight line Ξ(t◦, s) = t◦ + s(t′ − t◦). Therefore,
the flow line

γ(t◦, λ◦, s) = (Ξ(t, s), λ+ ηs) = (t◦ + s(t′ − t◦), λ◦ + s(λ′ − λ◦)).

Since the point (t′, λ′) ∈ D is reached at time s = 1, we get that 1 ∈ (ρ−, ρ+). Therefore,
the RHS of (4.10) is well defined. The vector field G depends smoothly on the parameters
(z, t′, λ′), so the solution, i.e., the RHS of (4.10) depends also smoothly on the parameters
(z, t′, λ′). This proves that Ψ is a differentiable map.

In order to construct the inverse, first note that if z ∈ ZD and (t′, λ′) = Φ(z), then

ψ(ψ(z, λ◦ − λ′, t◦ − t′, 1), λ′ − λ◦, t′ − t◦, 1− s) = ψ(z, λ◦ − λ′, t◦ − t′, s).
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Indeed, both sides coincide for s = 1 and they satisfy the same differential equation with
respect to s. Setting s = 0 in the above formula, we get that the inverse of Ψ is given by
the following formula:

Ψ̃(z) :=
(
ψ(z, λ◦ − F (z), t◦ − p(z); 1),Φ(z)

)
.

4.3.4. Proof of Lemma 4.20. We have to prove the existence of the flow of a
certain perturbation of the relative gradient vector field. It turns out that the tameness
and the Kähler-completeness conditions are sufficient for the usual statements of Morse
theory to hold. More precisely, we will check that Palais’ argument in [49], proving the
existence of the flow of the gradient of a Morse function, applies in our settings.

Before we go into the details of the proof we need to recall two well known facts. The
first one is from the theory of ODEs. Suppose that M is a real smooth manifold, G is a
smooth vector field on M , and z ∈ M is an arbitrary point. Let ψ(z, s) be the flow line
of G through the point z, that is,

∂ψ
∂s (z, s) = G(ψ(z, s)),

ψ(z, 0) = z.

In general, the flow line exists only for s sufficiently close to 0. Let (R−(z), R+(z)) be
the maximal interval for which the flow line ψ(z, s) is defined for all s ∈ (R−(z), R+(z)).
If R+(z) < ∞, then given any sequence {sn}∞n=1 in (R−(z), R+(z)), such that, {sn}∞n=1

is convergent in R with limit R+(z), then the sequence {ψ(z, sn)}∞n=1 does not have a
convergent subsequence. Similarly, if R−(z) > −∞ and sn → R−(z), then the sequence
{ψ(z, sn)}∞n=1 does not have a convergent subsequence.

The second fact is from the theory of metric spaces. Suppose that M is a metric
space. If z ∈ M and r > 0 is a real number, then we denote by B(a, r) the open ball in
M with center at a and radius r. A subset A ⊂ M is said to be totally bounded if for
every δ > 0 there are finitely many points a1, . . . , ak of A, such that, the balls B(ai, δ)
(1 ≤ i ≤ k) cover A. Furthermore, a subset A ⊂ M is said to be relatively compact
if the closure of A in M is compact. If the metric space M is complete, then a subset
A is relatively compact if and only if A is totally bounded (see [65], Section 0.2). In
particular, if A is a totatlly bounded subset of a complete metric space M , then every
infinite sequence in A has a subsequence convergent in M .

Let us return to our settings. For brevity, let us drop the arguments and write R± :=
R±(z, η, ξ) and ρ± := ρ±(Φ(z), η, ξ). Suppose that R+ < ρ+. The image γ(Φ(z), s) =
Φ(ψ(z, η, ξ; s)) for s ∈ [0, R+) has a compact closure in D1. Indeed, γ(Φ(z), s) is the flow
line of a vector field on D2. By definition, γ(Φ(z), s) is defined and it belongs to D1 for
all s ∈ (ρ−, ρ+). Since R+ ∈ (ρ−, ρ+), we get that the closure that we mentioned above is
the smooth compact curve Γ ⊂ D1 parametrized by γ(Φ(z), s) 0 ≤ s ≤ R+. Let us choose
a compact neighborhood K of Γ, such that, Γ ⊂ K ⊂ D1. In particular, the smooth curve

Γ̂ := {ψ(z, η, ξ; s) | 0 ≤ s < R+} is contained in ZK := Φ−1(K).
Let us consider the following integral:

∫ R+

0

||∂sψ(z, η, ξ; s)||Zds ≤

(∫ R+

0

||∂sψ(z, η, ξ; s)||2Zds

)1/2

,
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where we fixed a metric on S and constructed a Riemannian metric gZ on Z as it was
explained before. The norm || ||Z is computed with respect to gZ . The integral com-

putes the length of the smooth curve Γ̂ and in principle could be ∞. However, we will

prove that Γ̂ is a totally bounded subset of ZK . We have gZ(ξ̂, ξ̂) = gS(ξ, ξ) =: ||ξ||2S ,

gZ(∇u,∇u) = gZ/S(∇u,∇u) = ||∇u||2, and similarly gZ(∇v,∇v) = gZ/S(∇v,∇v) =

||∇v||2. By definition, the vector field ξ̂ is orthogonal to ∇u and ∇v. Recalling Lemma
4.14, we get

||∂sψ(z, η, ξ; s)||2Z = ||ξ||2S +

(
|η − ξ̂(F )|
||∇u||

)2

≤ ||ξ||2S +

(
|η|+ |ξ̂(F )|
||∇u||

)2

.

Given a real number δ > 0, suppose that there exists a sequence sn → R+, sn < R+,
such that,

|η|+ |ξ̂(F )(ψ(z, η, ξ; sn))|
||∇u(ψ(z, η, ξ; sn))||

≥ δ.

Then

||∇u(ψ(z, η, ξ; sn))|| ≤ 1

δ
|η|+ 1

δ
|ξ̂(F )(ψ(z, η, ξ; sn))|.

Therefore, ψ(z, η, ξ; sn) ∈ C η
|δ| ,

1
δ ξ

(V1)∩ZK . The tameness condition implies that C η
|δ| ,

1
δ ξ

(V1)∩
ZK is a compact subset of ZD1

. Therefore, the sequence ψ(z, η, ξ; sn) has a convergent
subsequence – contradiction with the fact that the flow line ψ(z, η, ξ; s) does not extend
beyond s = R+. This contradiction proves that for every δ > 0, there exists r1 ∈ (0, R+)
sufficiently close to R+, such that,∫ R+

r1

||∂sψ(z, η, ξ; s)||Zds < δ.

Since, ||∂sψ(z, η, ξ; s)||Z is continuous, and hence uniformly continuous, for s ∈ [0, r0], we
can find finitely many numbers 0 = rk < rk−1 < · · · < r1 < r0 := R+, such that,∫ ri−1

ri

||∂sψ(z, η, ξ; s)||Zds < δ

for all i = 1, 2, . . . , k. This implies that the set Γ̂ is totally bounded. According to the

Kähler-complete condition, the metric space ZK is complete. Therefore, Γ̂ is relatively
compact. This however implies that if we choose an arbitrary sequence sn → R+, sn <
R+, then we will be able to choose a subsequence convergent in ZK , and hence in ZD1 as
well. This is again a contradiction with the fact that the flow line ψ(z, η, ξ; s) does not
extend beyond s = R+. This contradiction proves that R+ = ρ+. The argument that
R− = ρ− is completely analogous. This completes the proof of Lemma 4.20.

4.4. Modules of formal oscillatory integrals

Let (F, p : Z → S) be a family of functions in the sense of Definition 4.1. The main
goal of this section is to introduce and prove the basic properties of the twisted de Rham
complex. Let us denote by (Ω•Z/S , dZ/S) the relative holomorphic de Rham complex,

where

Ω0
Z/S := OZ , ΩiZ/S := ΩiZ/p

∗Ω1
S ∧ Ωi−1

Z (i ≥ 1)
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and dZ/S is the differential induced from the de Rham differential dZ on Z (see Section
4.1 for some overview of relative de Rham theory).

4.4.1. The de Rham lemma for dF∧. In order to avoid cumbersome notation we
would like to denote dF := dZ/SF . The wedge product operation dF∧ defines yet another
complex (Ω•Z/S , dF∧). We will prove that the cohomology of this complex is non-trivial

only in degree n+ 1. This fact follows from the generalized de Rham lemma in [52]. The
cohomology in degree n + 1 is ΩF := Ωn+1

Z/S/dF ∧ ΩnZ/S – this is a coherent sheaf on Z

whose support coinicdes with the relative critical set CF .

Lemma 4.21. The following sequence:

(4.11) 0 // OZ
dF∧ // Ω1

Z/S
dF∧ // · · · dF∧ // Ωn+1

Z/S
// ΩF // 0

is exact.

Proof. Suppose that z ∈ Z is an arbitrary point. Let us choose a direct product
open neighbohood U × V of z in Z and local coordinates x = (x0, . . . , xn) and t =
(t1, . . . , tm) on respectively U and V . Since ∂F

∂x0
, . . . , ∂F∂xn is a regular sequence in OZ,z

(see Corollary 4.3), the corresponding Koszul complex is exact, that is,

· · · // ∧i(On+1
Z,z )

δi // ∧i−1
(On+1

Z,z )
δi−1 // · · · // OZ

// OZ/
(
∂F
∂x0

, . . . , ∂F∂xn

)
// 0

is an exact sequence, wehere the differential

δi(ek1 ∧ · · · ∧ eki) =

i∑
s=1

(−1)s−1 ∂F
∂xs

ek1 ∧ · · · êks · · · ∧ eki .

We have an isomorphism of OZ,z-modules φ :
∧i

(On+1
Z,z )

∼= // Ωn+1−i
Z/S,z defined by

φ(ek1 ∧ · · · ∧ eki) = ι∂/∂xk1 ◦ · · · ◦ ι∂/∂xki ω

where ω = dx0 ∧ · · · ∧ dxn and ι∂/∂xi is the operation of contraction by the vector field
∂
∂xi

. Note that

φ(δi(ek1 ∧ · · · ∧ eki)) = dF ∧ φ(ek1 ∧ · · · ∧ eki).

Therefore, the isomorphism φ transforms the Koszul complex into the exact sequence
(4.11). �

4.4.2. Twisted de Rham cohomology. For any sheaf F we denote by F [[w]]w−k

the sheaf whose sections over some open subset V are given by Γ(V,F)[[w]]w−k. We leave
it to the reader to check that this construction produces a sheaf, i.e., the sheafification
is not necessary. The sheaves F [[w]]w−k (k ∈ Z) form a directed system. Let F((w)) :=
lim−→F [[w]]w−k be the directed limit. Let us define the twisted de Rham complexes

(4.12) (Ω•Z/S [[w]]w−k, dF ) (k ∈ Z) and (Ω•Z/S((w)), dF ),

where the differential dF := wdZ/S + dF∧. The main goal in this section is to prove that
the cohomologies of these complexes are concentrated in degree n+ 1.
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Proposition 4.22. a) The cohomology groups

Hi(Ω•Z/S [[w]]w−k, dF ) (k ∈ Z), Hi(Ω•Z/S((w)), dF )

vansih for i 6= n+1 and for i = n+1 they define sheaves on Z whose support is contained
in CF .

b) We have Hi(p∗Ω
•
Z/S [[w]]w−k, dF ) = p∗(H

i(Ω•Z/S [[w]]w−k, dF )) for all k, i ∈ Z.

c) The higher direct images

Rjp∗(Ω
i
Z/S [[w]]w−k) = 0

for all j > 0 and all i, k ∈ Z.

Proof. Put F kΩ̂• := Ω•Z/S [[w]]w−k. The idea of the proof is to compare the two

spectral sequences converging to the the hyperderived pushforward Rip∗(F kΩ̂•). Recall
that the later is by definition the cohomology Hi(Tot(p∗I

•,•)), where Ip,q (p, q ≥ 0) is

a Cartan–Eilenberg resolution of (F kΩ̂•, dF ) (see [62], Section 5.7.9). There are two

spectral sequences converging to Rip∗(F kΩ̂•, dF ). Their E2-pages are given by

′Ei,j2 :=Rjp∗(H
i(F kΩ̂•, dF ))

′′Ei,j2 :=Hi(Rjp∗F
kΩ̂•, dF ).

We will prove that both spectral sequences degenerate.
Let us prove that ′Ei,j2 = 0 for i 6= n+ 1. Suppose that z ∈ Z is an arbitrary point,

ω ∈ (F kΩ̂i)z, and dF (ω) = 0. Put ω =
∑
m≥−k ωmw

m, ωm ∈ ΩiZ/S,z. Let us compare

the coefficients in front of the powers of w in dF (ω) = 0. We get the following system of
equations:

dF ∧ ω−k = 0, (dF ∧ ωm + dZ/Sωm−1 = 0 (m > −k).

If i < n + 1, then the exactness of the sequence (4.11) implies that ω−k = dF ∧ η−k
for some η−k ∈ Ωi−1

Z/S,z. Substituting this in the equation with m = −k + 1, we get

dF ∧ (ω−k+1− dη−k) = 0. For the same reason, ω−k+1− dη−k = dF ∧ η−k+1. Continuing
in the same way, we get that ωm = dηm−1 + dF ∧ ηm for all m > −k, where ηm ∈ Ωi−1

Z/S,z.

Therefore, ω = dF

(∑
m≥−k ηmw

m
)

. This proves that Hi(Ω•Z/S,z[[w]]w−k, dF ) = 0 for all

i < n+ 1 and hence for all i 6= n+ 1, because the complex is concentrated only in degrees
from 0 to n+ 1.

Note that the above argument also proves that Hn+1(Ω•Z/S,z[[w]]w−k, dF ) = 0 if z /∈
supp(ΩF ) = CF . Therefore, the support of the sheaf

Hn+1(F kΩ̂•, dF ) = Ωn+1
Z/S [[w]]w−k

/
dF

(
ΩnZ/S [[w]]w−k

)
is contained in CF . Using this observation, we get

′En+1,j = Rj(p|CF )∗(H
n+1(F kΩ̂•, dF )).

Since p|CF is a proper map, the stalk of the sheaf on the RHS of the above equality at a
point t ∈ S is given by the cohomology group

Hj(CF ∩ Zt, Hn+1(F kΩ̂•, dF )).



4.4. MODULES OF FORMAL OSCILLATORY INTEGRALS 159

This cohomology group vanishes for j > 0, because CF ∩Zt is a finite set of points. This
proves that ′Ei,j2 = 0 for all (i, j) except for

′En+1,0
2 = p∗

(
Ωn+1
Z/S [[w]]w−k

/
dF

(
ΩnZ/S [[w]]w−k

))
.

Let us point out that the argument so far applies to the sheaf Ωn+1
Z/S((w)) too, i.e., at this

point part a) is proved.
Let us compute the second spectral sequence. Note that if 0→ F → I• is an injetcive

resolution of F , then 0→ F [[w]]w−k → I•[[w]]w−k is an injetcive resolution of F [[w]]w−k.
Therefore,

Hj(p−1V, F kΩ̂i) = Hj(p−1V,ΩiZ/S)[[w]]w−k.

Since ΩiZ/S is a coherent sheaf, we get that the above cohomology is 0 if V is an open Stein

neighborhood and j > 0. The higher direct image Rjp∗(F
kΩ̂i) is the sheaf associated to

the presheaf V 7→ Hj(p−1V, F kΩ̂i). Therefore, Rjp∗(F
kΩ̂i) = 0 for all j > 0 and for all

i. The terms in the second spectral sequence that could be non-vanishing are given by

′′Ei,02 = Hi(p∗Ω
•
Z/S [[w]]w−k, dF ), 0 ≤ i ≤ n+ 1.

Comparing with the first spectral sequence, we get that

Rip∗(F kΩ̂•, dF ) = Hi(p∗Ω
•
Z/S [[w]]w−k, dF ) = 0, i 6= n+ 1

and

Rn+1p∗(F
kΩ̂•, dF ) = p∗H

n+1(Ω•Z/S [[w]]w−k, dF ) = Hn+1(p∗Ω
•
Z/S [[w]]w−k, dF ). �

Let us introduce the following twisted de Rham cohomology groups:

(4.13) Ĥ(k)
F := p∗Ω

n+1
Z/S [[w]]w−k

/
dF

(
p∗Ω

n
Z/S [[w]]w−k

)
(k ∈ Z)

and

(4.14) ĤF := p∗Ω
n+1
Z/S((w))

/
dF

(
p∗Ω

n
Z/S((w))

)
,

where slightly abusing the notation we define p∗Ω
n+1
Z/S((w)) := (p∗Ω

n+1
Z/S)((w)).

Corollary 4.23. The hyperderived pushforward of the twisted de Rham complexes
are given by the following formulas:

Rip∗(Ω•Z/S [[w]]w−k, dF ) =

{
0 if i 6= n+ 1,

Ĥ(k)
F if i = n+ 1,

and

Rip∗(Ω•Z/S((w)), dF ) =

{
0 if i 6= n+ 1,

ĤF if i = n+ 1.

Proof. The first formula follows immediately from our argument in the proof of
Proposition 4.22. For the second formula, let us look again at the first spectral sequence.
We have

′En+1,0
2 = p∗

(
Hn+1(Ω•Z/S((w)), dF )

)
= (p|CF )∗

(
lim−→Hn+1(Ω•Z/S [[w]]w−k, dF )

)
.
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Since p|CF is proper and direct limits commute with proper pushforward, the above term
coincides with

lim−→ p∗

(
Hn+1(Ω•Z/S [[w]]w−k, dF )

)
.

According to part b) of Proposition 4.22, the pushforward p∗ commutes with Hn+1. The
direct limit also commutes with Hn+1, so we get

Hn+1
(

lim−→ p∗

(
Ω•Z/S [[w]]w−k

)
, dF

)
.

It remains only to use that p∗(F [[w]]w−k) = (p∗F)[[w]]w−k, that is, we get that the only
non-vanishing term on the second page of the spectral sequence is

′En+1,0
2 = Hn+1

(
(p∗Ω

•
Z/S)((w)), dF

)
. �

Proposition 4.24. Suppose that V ⊂ S is a contractible open Stein subset. Then
a) Γ(p−1V,ΩF ) is a free Γ(V,OS)-module of rank µF .
b) Let ωi ∈ Γ(p−1V,Ωn+1

Z/S) (1 ≤ i ≤ µF ) be a set of relative holomorphic forms that

project to a Γ(V,OS)-basis of Γ(p−1V,ΩF ). Then the map(
Γ(V,OS)[[w]]w−k

)µF
→ Hn+1

(
Γ(p−1V,Ω•Z/S)[[w]]w−k, dF

)
(φ1, . . . , φµF ) 7→

µF∑
i=1

φiωi

is an isomophism.

Proof. a) Since supp(ΩF ) = CF and p|CF is finite, the OS-module p∗ΩF = (p|CF )∗ΩF
is coherent and the stalks

(p∗ΩF )t =
⊕

z∈Crit(ft)

ΩF,z.

Using local coordinates, it is easy to prove that the stalk ΩF,z ∼= OCF ,z for all z ∈ CF .
Therefore, (p∗ΩF )t ∼= (p∗OCF )t ∼= OµF

S,t . Since p∗ΩF is a coherent sheaf and the stalks are
free modules of rank µF , we get that p∗ΩF is locally free, that is a holomorphic vector
bundle of rank µF . On the other hand, since V is Stein and contractible, the restriction
p∗ΩF |V must be a trivial bundle. The statement in part a) follows.

b) Let us prove that the map is injective. Suppose that
∑µF
i=1 φiωi = dF (η) for some

η ∈ Γ(p−1V,ΩnZ/S)[[w]]w−k. We will prove that φi = 0 for all i. Put φi =
∑
l≥−k φi,lw

l

and η =
∑
l≥−k ηi,lw

l. Comparing the coefficients in front of the powers of w we get

(4.15)

µF∑
i=1

φi,lωi = dF ∧ ηl + dηl−1.

Since η−k−1 = 0, the above identity for l = −k becomes
∑µF
i=1 φi,−kωi = dF ∧ η−k = 0

in Γ(p−1V,ΩF ). However, ωi represent a basis in Γ(p−1V,ΩF ), so φi,−k = 0 for all i.
Furthermore, p−1V is an open Stein subset of Z, because p is a Stein map by assumption.
Therefore, taking the sections over p−1V in an exact sequence of coherent sheaves yields
again an exact sequence. In particular, applying the functor Γ(p−1V, ) to the exact
sequence (4.11) gives an exact sequence. Therefore, from dF ∧ η−k = 0, we get η−k =
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dF ∧ ξ−k for some ξ−k ∈ Γ(p−1V,Ωn−1
Z/S). Substituting in the equation with l = −k+ 1 in

(4.15), we get

µF∑
i=1

φi,−k+1ωi = dF ∧ (η−k+1 − dξ−k).

Repeating the above argument, we will get φi,−k+1 = 0 and η−k+1 = dξ−k + dF ∧ η−k+1.
Clearly, the process can be continued and we will get φi,l = 0 and ηl = dξl−1 + dF ∧ ηl
for all l > −k. This complete the proof of the injectivity. The proof that the map is
surjective is similar and it will be left as an exercise. �

Let us prove that the map in part b) of Proposition 4.24 induces the following iso-
morphisms: (

OS [[w]]w−k
)µF |V ∼= Ĥ(k)

F |V , (OS((w)))
µF |V ∼= ĤF |V ,

where V is an open contractible Stein subset of S. By definition, the sheaf Ĥ(k)
F is the

sheafification of the presheaf F (k) defined by

F (k)(U) = Hn+1(Γ(p−1U,Ω•Z/S)[[w]]w−k, dF ),

for all open subsets U ⊂ S. If U is in addition Stein, contractible, and U ⊂ V , then we
have the following sequence:

Γ(U, (OS [[w]]w−k)µF )→ F (k)(U)→ Γ(U, Ĥ(k)
F ),

where the first map is the map from part b) of Proposition 4.24. Since the stalks of F (k)

and Ĥ(k)
F are the same, we get that the above map induces an isomorphism between the

stalks of (OS [[w]]w−k)µF and Ĥ(k)
F at all points t ∈ V , that is,

(OS [[w]]w−k)µF |V → Ĥ(k)
F |V

(φ1, . . . , φµF ) 7→
µF∑
i=1

[φiωi]

is an isomorphism of sheaves, where the square bracket stands for the cohomology class
of the corresponding holomorphic form. Note that our argument also implies that

Γ(V, Ĥ(k)
F ) = Hn+1(Γ(p−1V,Ω•Z/S)[[w]]w−k, dF )

for all open contractible Stein subsets V .

By definition, ĤF is a direct limit of Ĥ(k)
F . Since direct limits preserve isomorphisms,

we get that the map

(OS((w)))µF |V → ĤF |V

(φ1, . . . , φµF ) 7→
µF∑
i=1

[φiωi]
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is also an isomorphism. Let us summarize the above discussion into the following com-
mutative diagram

(OS [[w]]w−k)µF |V
∼= //

mult.byw

��

Ĥ(k)
F |V

mult.byw

��
(OS [[w]]w−k+1)µF |V

∼= //

��

Ĥ(k−1)
F |V

��
(OS((w)))µF |V

∼= // ĤF |V

Using the above diagram, we get that the following properties are satisfied:

(i) The inclusion Ω•Z/S [[w]]w−k ⊂ Ω•Z/S((w)) induces an inclusion Ĥ(k)
F ⊂ ĤF .

(ii) Multiplication by w induces an isomorphism Ĥ(k)
F
∼= Ĥ(k−1)

F .
(iii) If V ⊂ S is an open contractible Stein subset, then

Γ(V, ĤF ) =
⋃
k∈Z

Γ(V, Ĥ(k)
F ),

⋂
k∈Z

Γ(V, Ĥ(k)
F ) = {0}.

(iv) The following sequence:

0 // Ĥ(k−1)
F

w // Ĥ(k)
F

// p∗ΩF // 0

is an exact sequence of OS-modules.

4.4.3. Gauss–Manin connection. In this section, we would like to construct a set

of connection operators on Ĥ(k) of the following form:

∇ : Ĥ(k) → Ĥ(k+1) ⊗ Ω1
S [[w]]⊕ Ĥ(k+2) ⊗OS [[w]]dw.

We will refer to ∇ as the Gauss–Manin connection. The idea is to think of the sections of
Ĥ(k) as formal oscialltory integrals and define the connection by formally differentiating
the integral.

Let us first explain how to think of the sections of Ĥ(k) as formal oscillatory integrals.

If V ⊂ S is an open Stein subset, then the sections of Ĥ(k)
F over V can be represented

by a Laurent series ω =
∑
m≥−k ωmw

m, with coefficients ωm ∈ Γ(p−1V,Ωn+1
Z/S). Note

that the form ω is dF -exact if and only if eF/wω is dZ/S-exact. The cohomology class in

Γ(V, Ĥ(k)
F ) represented by ω will be denoted by [ω] or

∫
eF/wω.

We already discussed in Section 4.2.3 that there is a natural way to lift vector fields.
By definition, we have an exact sequence

(4.16) 0 // p∗Ω1
S ⊗ ΩnZ

∧ // Ωn+1
Z

rel // Ωn+1
Z/S

// 0 ,

where rel is the natural quotient map. On the other hand, the (n+ 1)-st exterior power
of the dual of the exact sequence (4.1) gives the exact sequence

0 // p∗T ∗S ⊗
∧n

(T ∗Z)
∧ // ∧n+1

(T ∗Z) // ∧n+1
(T ∗Z/S) // 0 .
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Comparing the corresponding exact sequence of sheaves of sections with (4.16), we get
that there is a natural identification

Ωn+1
Z/S

∼= //
(∧n+1

(TZ/S)
)∗

,

where the map is induced from the embedding TZ/S ⊂ TZ . Since the exact sequence
(4.1) splits, the exact sequence (4.16) also splits. In particular, every relative form ω ∈
Γ(U,Ωn+1

Z/S) can be lifted to an absolute form ω̂ ∈ Γ(U,Ωn+1
Z ), such that, rel(ω̂) = ω.

If v ∈ Γ(V,TS) and ω ∈ Γ(p−1V,Ωn+1
Z/S)[[w]]w−k, then let us define

w∇v(ω) =
[

rel ◦ιv̂ ((wdZ + dZF∧)ω̂)
]
.(4.17)

w2∇ ∂
∂w

(ω) =
[
− Fω + w2∂w(ω)

]
,(4.18)

where ιv̂ is the operation of contraction by the vector field v̂.

Lemma 4.25. The definitions (4.17) and (4.18) are independent of the choice of lifts
v̂ and ω̂ satisfying respectively dp(v̂) = v and rel(ω̂) = ω.

Proof. In order to prove the independence of the choice of the lift v̂, it is sufficient
to prove that if ξ ∈ Γ(p−1V,TZ/S), then rel ◦ιξ(wdZ + dZF∧)ω̂ = 0. To begin with, note

that (wdZ + dZF∧)ω̂ ∈ Γ(p−1V,Ωn+2
Z )[[w]]w−k and Ωn+2

Z = p∗Ω1
S ∧ Ωn+1

Z . If φ = p∗ψ is
a pullback of some form ψ ∈ Γ(V,Ω1

S), then ιξ(φ) = p∗(ιdp(ξ)(ψ)) = 0. Therefore, the

contraction ιξ(wdZ + dZF∧)ω̂ is a section of p∗Ω1
S ∧ ΩnZ , so rel ◦ιξ(wdZ + dZF∧)ω̂ = 0.

Let us prove the independence of the lift of ω. Suppose that ω̂′ is another lift such
that rel(ω̂′) = ω. Then ω̂′ − ω̂ ∈ Ker(rel), that is, the difference is a sum of terms of the
form φ ∧ η, where φ = p∗ψ is a pullback of a 1-form ψ ∈ Γ(V,Ω1

S) and η ∈ Γ(p−1V,ΩnZ).
We have

rel ◦ιv̂(dZφ) = rel(p∗dS(ιv(ψ))) = 0,

rel ◦ιv̂(−φ ∧ dZη) = − rel(p∗(ιv(ψ))dZη) = −dZ/S rel(p∗(ιv(ψ))η),

and

rel ◦ιv̂(dZF ∧ φ ∧ η) = −dZ/SF ∧ rel(p∗(ιv(ψ))η).

The above three formulas imply that

rel ◦ιv̂(wdZ + dZF∧)φ ∧ η = −dF (rel(p∗(ιv(ψ))η))

is a dF -exact form. In particular, the definitions (4.17) correspnding to the lifts ω̂ and ω̂′

coincide. �

Lemma 4.26. Suppose that ω ∈ Γ(p−1V,Ωn+1
Z/S)[[w]]w−k is dF -exact, then w∇v(ω) =

w2∇ ∂
∂w

(ω) = 0.

Proof. Suppose that ω = dF (η) for some η ∈ Γ(p−1V,ΩnZ/S)[[w]]w−k. It is easy to

check that

w2∇ ∂
∂w

(ω) =
[
dF (w2∂w(η) + (w − F )η)

]
= 0.

Let us check that the expression in the square brackets on the RHS in formula (4.17) is
dF -exact. Let us choose a lift η̂ ∈ Γ(p−1V,ΩnZ)[[w]]w−k, such that, rel(η̂) = η. Then

ω̂ − (wdZ + dZF∧)(η̂) ∈ Ker(rel) = Γ(p−1V, p∗Ω1
S ∧ ΩnZ),
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that is,

ω̂ − (wdZ + dZF∧)(η̂) =

k∑
i=1

φi ∧ ηi,

for some φi ∈ Γ(p−1V, p∗Ω1
S) and ηi ∈ Γ(p−1V,ΩnZ) (1 ≤ i ≤ k). Substituting the above

formula for ω̂ in the definition of w∇v(ω), we get

w∇v(ω) =

k∑
i=1

[
rel ◦ιv̂(wdZ(φiηi) + dZF ∧ φi ∧ ηi)

]
.

We may assume that φi = p∗ψi is a pullback of a 1-form ψi ∈ Γ(V,Ω1
S). The same

computation as in the proof of Lemma 4.25 yields

w∇v(ω) = −
k∑
i=1

[
dF (p∗(ιv(ψi))ηi)

]
. �

The Gauss–Manin connection can be defined as follows. Suppose that V ⊂ S is an

arbitrary open subset and ω ∈ Γ(V, Ĥk
F ) is any section. Let us choose an open covering

{Vi} of V , such that, Vi is an open Stein subset. Then ω|Vi can be represented by a
holomorphic form ωi ∈ Γ(p−1Vi,Ω

n+1
Z/S)[[w]]w−k. Moreover, since the intersections Vi ∩ Vj

are Stein and p is a Stein map, we have that ωi|Vi∩Vj − ωj |vi∩Vj is dF -exact, that is, the

difference is dF (ηij) for some ηij ∈ Γ(p−1(Vi ∩ Vj),ΩnZ/S)[[w]]w−k. Using Lemma 4.26,

we get that the cohomology classes w∇v(ωi) ∈ Γ(Vi, Ĥ
(k)
F ) can be glued to a section in

Γ(V, Ĥ(k)
F ). This section is by definition w∇v(ω). Lemma 4.25 implies that w∇v(ω) does

not depend on the choice of local representatives ωi. Similarly, we define w2∇ ∂
∂w

(ω) by

gluing w2∇ ∂
∂w

(ωi).

Proposition 4.27. The Gauss–Manin connection is flat.

Proof. The problem is local, so we may assume that ω ∈ Γ(V, Ĥ(k)
F ), where V ⊂ S

is an open Stein subset equipped with local coordinates (t1, . . . , tm). We need to prove
that [w∇∂/∂ta(ω), w∇∂/∂tb(ω)] = 0.

The cohomology class w∇∂/∂ta(ω) ∈ Γ(p−1V,Ωn+1
Z/S)[[w]]w−k/ Im(dF ) . Suppose that

U ⊂ p−1V is any open Stein subset. Since rel and the contraction ιv̂ are compatible with
the restriction maps, we get that

w∇v(ω)|U =
[

rel ◦ιv̂U (wdZ + dZF∧)(ω̂U )
]
∈ Γ(U,Ωn+1

Z/S)[[w]]w−k/ Im(dF ),

where v̂U and ω̂U are respectively the restrictions of v̂ and ω̂ to U . Using the same ar-
gument as in in the proof of Lemma 4.25, we get that the above formula is independent
of the choice of v̂U ∈ Γ(U,TZ) and ω̂U ∈ Γ(U,Ωn+1

Z )[[w]]w−k satisfying dp(v̂U ) = v|p(U)

and [rel(ω̂U )] = ω|U . In other words, in order to compute the restriction w∇v(ω)|U
we can use any lifts v̂U and ω̂U , not only the lifts obtained by restriction. Let us
choose U to be a coordinate neighborhood, such that the local coordinates have the
form (x0, x1, . . . , xn, t1, . . . , tm). Then we can choose ω̂U to be of the form g(x, t, w)dx0 ∧
· · · ∧ dxn. The formula for the Gauss–Manin connection takes the form

w∇∂/∂ta(ω)|U =
[
(w∂ta(g) + ∂ta(F )g)dx0 ∧ · · · ∧ dxn

]
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In order to check the flatness, we just need to prove that the differential operators w ∂
∂ta

+

∂ta(F ) and w ∂
∂tb

+ ∂tb(F ) commute, which is obvious. �

4.5. Higher-residue pairing

Let (F, p : Z → S) be a family of functions in the sense of Definition 4.1 and let ĤF

and Ĥ(k)
F be the associated modules of formal oscillatory integrals.

4.5.1. Sheaves as topological spaces. Let us recall an alternative way to define
a sheaf. Suppose that S is a sheaf of Abelian groups on a topological space X. Then
we associate to S the topological space |S| =

⊔
x∈X Sx, where the topology is defined as

follows: The points of |S| will be written as pairs (x, s), where x ∈ X and s ∈ Sx. The
basis of the topology of |S| at a point (x, s) is given by subsets of the form {(y, σy) | y ∈ U},
where U ⊂ X is an open subset containing x and σ ∈ Γ(U,S), such that, σx = s. We have
a natural projection π : S → X. The above topology turns π into a local homeomorphism.
The fibers π−1(x) = Sx are Abelian groups, s.t., the group operations addition and inverse
define continuous maps S × S → S and S → S. Conversely, every local homeomorphism
π : S → X whose fibers are Abelian groups, s.t., the group operations addition and taking
inverse are continuous will define a sheaf of Abelian groups with sections defined by

Γ(U,S) := {σ : U → S | σ is continuous , π ◦ σ = idU}.

The construction has an appropriate modification for sheaf of rings and sheaf of OX -
modules for a fixed sheaf of rings OX on X. A sheaf morphism φ : S ′ → S ′′ induces a
continuous map |φ| : |S ′| → |S ′′| compatible with the projections, that is, π′′ ◦ |φ| = π′.
Conversely, every continuous map ϕ : |S ′| → |S ′′| compatible with the projections has
the form ϕ = |φ| for some morphism of sheaves φ : S ′ → S ′′. The following lemma is very
useful for constructing morphisms of sheaves:

Lemma 4.28. Suppose that the map ϕ : |S ′| → |S ′′| satisfies the following condition:
for every p′ ∈ |S ′|, there exists an open set U ⊂ X and a section s ∈ Γ(U,S ′), such that
p′ = (x, sx) for some x ∈ U and ϕ ◦ s ∈ Γ(U,S ′′). Then ϕ is a sheaf morphism, i.e., it is
continuous and compatible with the projections.

The proof is straightforward, so it will be left as an exercise.

4.5.2. Classical residue pairing JF . Using multi-dimensional residues, we will
define a symmetric non-degenerate OS-bilinear pairing

JF : p∗ΩF × p∗OF → OS .

We refer to [28], Chapter 5, Section 1 (see also [30], Section 9) for some background
on multi-dimensional residues. Our strategy is to define first JF set theoretically as a
map between the corresponding topological spaces of germs. Then we will check that our
definition satisfies the condition of Lemma 4.28.

Suppose that t◦ ∈ S is any point. For each ξ◦ = (x◦, t◦) ∈ CF ∩ Zt◦ , let us denote
by Zξ◦ the germ of the complex manifold Z at the point ξ◦. Since Z ⊂ X × S, we can
represent Zξ◦ by a product open neighborhood Uξ◦ × Vξ◦ of ξ◦ in Z, such that, Uξ◦ and
Vξ◦ are coordinate charts with compact closures respectively on X and S with centers
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respectively x◦ and t◦. We may assume that the charts Vξ◦ are independent of ξ◦, that
is, they all coincide with some open neighborhood V ◦ of t◦ in S. Then

OZ,ξ◦

/( ∂F
∂x0

, . . . ,
∂F

∂xn

)
∼= ΩF,ξ◦ , φ(x, t) 7→ φ(x, t)dx0 ∧ · · · ∧ dxn,

where x = (x0, . . . , xn) are coordinates on Uξ◦ . Given two germs ωi ∈ ΩF,ξ◦ (i = 1, 2), let
us decrease the open neighborhood Uξ◦×V ◦ if necessary, so that we can find holomorphic
representatives φi(x, t)dx0 ∧ · · · ∧ dxn. Let us define (c.f. [30]) the residue symbol

ResZξ◦/CF

[
φ1φ2dx0 ∧ · · · ∧ dxn

∂F
∂x0

, . . . , ∂F∂xn

]
=

1

(2π
√
−1)n+1

∫
γ◦ε

φ1(x, t)φ2(x, t)dx0 ∧ · · · ∧ dxn
∂ft
∂x0
· · · ∂ft∂xn

,

where γ◦ε ∈ Hn+1(Uξ◦ \ {ξ◦},Z) is the cycle defined by |∂x0
ft◦ | = · · · = |∂xnft◦ | = ε.

Here ε > 0 and the open subset V ◦ are fixed to be so small that the following two
conditions hold: for all x ∈ ∂Uξ◦ we have |∂xift◦(x)| ≥ 2ε for some i and |∂xift(x)| ≥ ε/2
(0 ≤ i ≤ n) for all (x, t) ∈ γ◦ε ×V ◦. The first condition guarantees that the cycle γ◦ε ⊂ Uξ◦ .
The second condition guarantees that the critical points of ft are away from the cycle
γ◦ε . In particular, the residue symbol is holomorphic as a function in t ∈ V ◦. Recalling,
the transformation law for residues, we get that the residue symbol is independent of the
choice of local corrdinates (x0, . . . , xn).

Suppose now that ωi ∈ (p∗ΩF )t◦ (i = 1, 2). Since the support of the sheaf ΩF is CF
and p|CF is a finite map, we have (p∗ΩF )t◦ = ⊕ξ∈CF∩Zt◦ΩF,ξ. The sum of the residue
symbols

(4.19)
∑

ξ◦∈CF∩Zt◦

ResZξ◦/CF

[
φ1φ2dx0 ∧ · · · ∧ dxn

∂F
∂x0

, . . . , ∂F∂xn

]
.

defines a holomorphic function on V ◦, which is independent of the choice of holomorphic
representatives of ωi. We define JF,t◦(ω1, ω2) ∈ OS,t◦ to be the germ of (4.19) at t = t◦.

It remains to check that the pairing JF satisfies the condition of Lemma 4.28. Let
us denote by ρ(t) (t ∈ V ◦) the sum (4.19). By definition, ρ is a holomorphic function
representing the germ JF,t◦(ω1, ω2). We claim that for all ′t◦ ∈ V ◦ the germ of the
function ρ at ′t◦ coincides with JF,′t◦(ω1, ω2). The critical points of f′t◦ split into several
groups, such that, each group belongs to one of the open neighborhoods Uξ × V ◦, where
ξ is a critical point of ft◦ . Intuitively, if we vary the parameter t from t◦ to ′t◦, then
each critical points ξ of ft◦ will split into several critical points. If ε > 0 is sufficiently
small, then the equations |∂x0

f′t◦(x)| = · · · = |∂xnf′t◦(x)| = ε define a cycle ′γ◦ε in Uξ,
consisting of a disjoint union of toroidal cycles corresponding to the critical points of f′t◦

in Uξ. Therefore, the sum of the residue symbols corresponding to the critical points of
f′t◦ in Uξ is

1

(2π
√
−1)n+1

∫
′γ◦ε

φ1(x, t)φ2(x, t)dx0 ∧ · · · ∧ dxn
∂ft
∂x0
· · · ∂ft∂xn

.

On the other hand, the integration cycle ′γ◦ε is homotopic to γ◦ε , so the above integral
coincides with the residue symbol ResZξ/CF . Summing over all critical points ξ of ft◦ , we
get that JF,′t◦(ω1, ω2) coincides with the germ of ρ(t) at t = ′t◦.
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4.5.3. Formulation of higher residue pairing. Let us introduce the following
involution ∗ on P ∈ OS((w)):

P =
∑
k∈Z

pkw
k 7→ P ∗ :=

∑
k∈Z

pk(−w)k

A OS-bilinear pairing

KF : ĤF × ĤF → OS((w))

is said to be a higher residue pairing if the following properties are satisfied:

1. For all ω1, ω2 ∈ ĤF ,

KF (ω1, ω2) = (−1)n+1KF (ω2, ω1)∗.

2. For all P ∈ OS((w)) and for all ω1, ω2 ∈ ĤF ,

PKF (ω1, ω2) = KF (Pω1, ω2) = KF (ω1, P
∗ω2).

3. If ω1, ω2 ∈ Ĥ(0)
F , then

KF (ω1, ω2) ∈ OS [[w]]wn+1

and the following diagram is commutative

Ĥ(0)
F × Ĥ(0)

F

KF //

r(0)×r(0)

��

OS [[w]]wn+1

mod OS [[w]]wn+2

��
p∗ΩF × p∗ΩF

JF // OS

where r(0) : Ĥ(0)
F → Ĥ(0)

F /wĤ(0)
F = p∗ΩF is the natural quotient map.

4. The following version of the Leibnitz rule holds:

ξ(KF (ω1, ω2)) =KF (∇ξ(ω1), ω2) +KF (ω1,∇ξ(ω2)),

∂wKF (ω1, ω2) =KF (∇∂/∂w(ω1), ω2)−KF (ω1,∇∂/∂w(ω2)),

for all ω1, ω2 ∈ ĤF and all vector fields ξ ∈ TS .

Theorem 4.29. Suppose that (F, p : Z → S) is a family of functions in the sense of
Definition 4.1. Then

a) There exists a higher residue pairing.
b) If the family is also complete, then there exists a unique higher residue pairing.

4.5.4. Twisted double relative de Rham complex. Let (F, p : Z → S) be a
family of functions and V ⊂ S be an arbitrary open subset. Let us define the double
complex

Ap,qV := Γ(p−1V \ CF ,Ap,q
Z/S)[[w]].

with vertical differential d0,1
F := wd0,1

Z/S and horizontal differential d1,0
F := wd1,0

Z/S+dZ/SF∧.

Lemma 4.30. The horizontal rows of the complex Ap,qV are exact.
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Proof. We claim that the sequence (specializing the qth row at w = 0)

0 // Γ(p−1V \ CF ,A0,q
Z/S)

dF∧ // Γ(p−1V \ CF ,A1,q
Z/S,z)

dF∧ // · · ·

is exact. Since the sheaves Ap,q
Z/S are soft, it is sufficient to prove that the corresponding

sequences of sheaves on p−1V \ CF are exact, or equivalently the sequence of germs

0 // A0,q
Z/S,z

dF∧ // A1,q
Z/S,z

dF∧ // · · ·

is exact for all z ∈ Z \ CF . Suppose that η ∈ Ap,q
Z/S,z and dF ∧ η = 0. Since z is not

a relative critical point, there exists an i, such that ∂F
∂xi

(z) 6= 0. Let us write the form

η = dxi ∧ η′ + η′′, where η′′ is a (p, q)-form that does not involve dxi. Comparing the
wedge monomials that involve dxi in dF ∧ η = 0, we get that

∂F

∂xi
dxi ∧ η′′ +

∑
j 6=i

∂F

∂xj
dxj ∧ dxi ∧ η′ = 0.

Therefore, since the partial derivative ∂F
∂xi

does not vanish in a neighborhood of z, we can

solve for η′′. Expressing η′′ in terms of η′ we get

η =
1
∂F
∂xi

dF ∧ η′.

This completes the proof of the exactness claim.
Suppose now that ω ∈ Ap,qV and that d1,0

F (ω) = 0. Let us write ω =
∑
k≥0 ωkw

k.

Then d1,0
Z/S(ωk−1) + dF ∧ ωk = 0 for all k ≥ 0 (we assume ω−1 := 0). We have to prove

that ω = d1,0
F (η). Writing η =

∑
k≥0 ηkw

k, we get that our claim is equivalent to finding
ηk, such that

ωk = d1,0
Z/S(ηk−1) + dF ∧ ηk, ∀k ≥ 0.

Suppose that we have determined ηi for all i < k. Note that

dF ∧ (ωk − d1,0
Z/S(ηk−1)) = −d1,0

Z/S(ωk−1)− dF ∧ d1,0
Z/S(ηk−1) = 0,

because ωk−1 = d1,0
Z/S(ηk−2) + dF ∧ ηk−1 according to our inductive assumption. Using

the exactness of the wedge operation dF∧ we get that ηk exists. �
Let AmV := ⊕p+q=mAp,qV (m ≥ 0) be the total complex with differential dF = d1,0

F +

d0,1
F . The cohomology of (A•V , dF ) vanishes in all degrees. Indeed, for every first quadrant

double complex we can construct two spectral sequences converging to the cohomology
of the total complex (see [62]). One of the spectral sequences has Ep.q1 = Hp(A•,qV , d1,0

F ),
which according to the above Lemma vanishes in all degrees p, q ≥ 0. Therefore, the
cohomology of the total complex is also 0 in all degrees.

The key to the higher residue pairing is the OS-bilinear map

(4.20) Ĥ(0)
F × Ĥ(0)

F → (p|Z\CF )∗A2n+1
Z/S [[w]]/dZ/S(p|Z\CF )∗A2n

Z/S [[w]]

defined by the formula

([ω1], [ω2]) 7→ [d−1
F (ω1) ∧ ω∗2 ].

Let us explain how to make sense of the above formula. Suppose that V ⊂ S is an
open Stein subset, so that [ωi] (i = 1, 2) can be represented by holomorphic forms ωi ∈
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Γ(p−1V,Ωn+1
Z/S)[[w]]. The restriction of ωi to p−1V \ CF determines an element in An+1

V

satisfying dF (ωi) = 0. In particular, ω1 = dF (η1) for some η1 ∈ AnV . We define d−1
F (ω1) :=

η1. Let us check that the map does not depend on the choices involved. Suppose that
ω2 = dF (η2) for some η2 ∈ Γ(p−1V,ΩnZ/S)[[w]]. We have to prove that η1 ∧ (dF (η2))∗ is a

dZ/S-exact form. On the other hand,

wdZ/S(η1 ∧ η∗2) = wdZ/S(η1) ∧ η∗2 + (−1)nη1 ∧ (wdZ/S(η2)∗).

By definition wdZ/Sη1 = ω1 − dF ∧ η1. Note that since ω1 ∈ An+1,0
V and η2 ∈ An,0V , we

have ω1 ∧ η∗2 = 0. Therefore,

η1 ∧ (wdZ/S(η2)∗) = (−1)ndF ∧ η1 ∧ η∗2 + (−1)nwdZ/S(η1 ∧ η∗2).

Using the above formula we get that η1 ∧ ω∗2 is equal to

η1 ∧ (−wdZ/S + dF∧)(η∗2) = (−1)n+1dF ∧ η1 ∧ η∗2 + (−1)n+1wdZ/S(η1 ∧ η∗2) + η1 ∧ dF ∧ η∗2 .

The terms involvin dF cancel out, because η1∧dF = (−1)ndF∧η1, so the above expression
is exact. The independence of our definition on the choice of a holomorphic form ω1

representing [ω1] and on the choice η1 ∈ AnV satisfying dF η1 = ω1 is done in a similar
way.

4.5.5. Proof of Theorem 4.29 a. It sufficies to define the higher residue pairing

on Ĥ(0)
F and check that it satisfies the corresponding properties. If this is done, then it

is easy to check that the extension of the pairing to ĤF can be constructed uniquely and
that all properties will continue to hold.

We follow the same strategy as in the definition of the classical residue pairing.

Suppose that t◦ ∈ S is an arbitrary point and that [ωi] ∈ ĤF,t◦ (i = 1, 2) are two
germs. Let us choose a small open Stein neighborhood V of t◦ in S and represent the
cohomology classes [ωi] by holomorphic forms ωi ∈ Γ(p−1V,Ωn+1

Z/S)[[w]]. For each critical

point ξ◦ = (x◦, t◦) ∈ CF ∩ Zt◦ there exists a sufficiently small ball Uξ◦ in X with center
at x◦, such that, after decreasing V if necessary we can arrange that Uξ◦ × V ⊂ p−1V .
Put

(4.21) KF,t◦(ω1, ω2) = Cn
∑

ξ∈Crit(ft◦ )

∫
∂Uξ

w d−1
F (ω1) ∧ ω∗2 .

where Cn = (−1)n(n−1)/2 (2π
√
−1)−n−1 is a normalization constant. If t = (t1, . . . , tm)

is a holomorphic coordinate system on V , then dF commutes with ∂
∂ti

, so the integral in

(4.21) depends holomorphically on t ∈ V . Let us denote by ρ the RHS of (4.21). The
same argument that we used in the construction of the classical residue pairing alows us
to prove that the germ of ρ at any other point ′t◦ ∈ V coincides with KF,′t◦(ω1, ω2). This
implies that the condition of Lemma 4.28 is satsfied, so we have a map of sheaves

KF : Ĥ(0)
F × Ĥ(0)

F → OS [[w]].

Let us prove that KF satisfies properties 1–4 in the definition of a higher residue pairing
(see Section 4.5.3). Suppose that V ⊂ S is a small open Stein subset and that ωi ∈
Γ(p−1V,Ωn+1

Z/S)[[w]] (i = 1, 2) are two holomorphic forms representing twisted cohomology

classes in Γ(p−1V, Ĥ(0)
F ). There are smooth relative forms ηi ∈ Γ(p−1V \ CF ,An

Z/S)[[w]]
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(i = 1, 2), such that, ωi = dF (ηi). A straightforward computation yields

η1 ∧ ω∗2 + (−1)n+1(η2 ∧ ω∗1)∗ = (−1)n+1wdZ/S(η1 ∧ η∗2).

Multiplying both sides of the above formula by wCn, integrating over ∂Uξ, and summing
up over all critical points ξ (see formula (4.21)), we get

KF (ω1, ω2)− (−1)n+1KF (ω1, ω2)∗ = 0.

This completes the proof of the first property.
The second property is obvious. Let us check the third one. Let us decompose

η1 =
∑n
p=0 η

n−p,p
1 , where ηn−p,p1 ∈ An−p,pV . Since ω∗2 ∈ An+1,0

V , only the component

η0,n
1 contributes to the higher residue pairing (4.21). On the other hand, comparing the

(n+ 1− p, p)-components in dF (η1) = ω1, we get

(wd1,0
Z/S + dF∧)(ηn,01 ) = ω1, (wd1,0

Z/S + dF∧)(ηn−p,p1 ) = −wd0,1
Z/Sη

n+1−p,p−1
1 (1 ≤ p ≤ n).

Using induction on p, the above recursion implies immediately that ηn−p,p1 has order

O(wp) at w = 0. Therefore, the order of wd−1
F (ω1) ∧ ω∗2 = wη0,n

1 ∧ ω∗2 is O(wn+1). This
proves the first part of property 3.

For the second part, we need to compute the leading order term of η0,n
1 ∧ ω∗2 in the

expansion at w = 0. Since the definition of the higher residue pairing (4.21) involves

only the retsriction of η0,n
1 ∧ ω∗2 to each coordinate chart Zξ◦ := Uξ◦ × V , it is sufficient

to compute the leading order terms only locally on each Zξ◦ . For brevity put dx :=
dx0 ∧ · · · ∧ dxn. The holomorphic forms ωi = (φi(x, t) + O(w))dx (i = 1, 2), where

φi ∈ O(Uξ◦ × V ). Put ηn−p,p1 = ψpw
p + O(wp+1), where ψp ∈ Γ(p−1V \ CF ,An−p,p

Z/S ) is

the leading order term. Extracting the leading order terms in the recursion equations for
ηn−p,p1 we get

(4.22) dF ∧ ψ0 = φ1(x, t)dx, dF ∧ ψp = −d0,1
Z/S(ψp−1) (1 ≤ p ≤ n).

Let us introduce the following notation: If {ϕi}mi=1 is a set of 1-forms on some manifold
and 1 ≤ j1 < · · · < jk ≤ m is an increasing sequence, then

ϕ1 ∧ · · · ∧ ϕn
ϕj1 ∧ · · · ∧ ϕjk

:= sign

[
j1 . . . jk i1 . . . im−k
1 . . . k k + 1 . . . m

]
ϕi1 ∧ · · · ∧ ϕim−k ,

where i1 < · · · < im−k is the complement {i1, . . . , im−k} := {1, 2, . . . ,m} \ {j1, . . . , jk}.
For brevity, let us denote the partial derivatives of F by Fi := ∂F

∂xi
(0 ≤ i ≤ n). The open

Stein subsets Zξ◦,i := {Fi 6= 0} provide a covering of Zξ◦ \ CF . This covering admits a
set of functions that resemble a partition of unity (see [28], Chapter 5, Section 1)

ρi :=
|Fi|2

|F0|2 + · · ·+ |Fn|2
, 0 ≤ i ≤ n,

satisfying the following properties:

(i) ρi ∈ C∞(Zξ◦ \ CF ) (0 ≤ i ≤ n),
(ii) supp(ρi) ⊂ Zξ◦,i (0 ≤ i ≤ n),
(iii) ρ0 + · · ·+ ρn = 1.

We claim that the following forms

ψp =
∑

0≤i0<···<ip≤n

(−1)pp!

Fi0 · · ·Fip

(
p∑
s=0

ρis
∂ρi0 ∧ · · · ∧ ∂ρip

∂ρis

)
∧ ω1

dxi0 ∧ · · · ∧ dxip
,
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where ∂ := d0,1
Z/S , satisfy the recursion relation (4.22). The varification is straightforward,

so we leave it as an exercise. The formula for ψn can be simplified a little bit. We have

n∑
s=0

ρs
∂ρ0 ∧ · · · ∧ ∂ρn

∂ρs
= ρ0∂ρ1 ∧ · · · ∧ ∂ρn +

n∑
s=1

(−1)sρs∂ρ0 ∧ · · · ∂̂ρs ∧ · · · ∂ρn.

Since ∂ρ0 = −
∑n
i=1 ∂ρi, the summand on the RHS of the above formula is equal to

ρs∂ρ1∧· · ·∧∂ρn. Using
∑n
i=0 ρi = 1, we get that the RHS coincides with ∂ρ1∧· · ·∧∂ρn.

We get that the leading order term of η0,n
1 ∧ ω∗2 is given by

ηφ1φ2dx := (−1)n n! ∂ρ1 ∧ · · · ∧ ∂ρn ∧
φ1φ2dx

F0 · · ·Fn
.

The form φ1φ2dx
F0···Fn determines a Cech cohomology class in Hn({Zξ◦,i}ni=0,Ω

n+1
Z/S). The form

ηφ1φ2dx determines a Dolbeault cohomology class in the relative Dolbeault cohomology

group Hn+1,n

∂
(Zξ◦ \ CF ) := Hn(Γ(Zξ◦ \ CF ,An+1,•

Z/S ), ∂). Under the Dolbeault isomor-

phism the cohomology class corresponding to φ1φ2dx
F0···Fn coincides with the cohomology class

corresponding to the form Cnηφ1φ2dx, where Cn is a numerical constant depending only
on n. Moreover, we have the following formula for the residue symbol (see [28], Chapter
5, Section 1):

(4.23) ResZξ◦/CF

[
φ1φ2dx0 ∧ dxn
F0 . . . Fn

]
= Cn

∫
∂Uξ◦

ηφ1φ2dx.

Lemma 4.31. The constant Cn = (−1)n(n−1)/2(2πi)−n−1.

Proof. Since the constant is independent of F , it is sufficient to compare both sides
of (4.23) in the case when F (x) = x2

0 + · · ·+ x2
n and φ1 = φ2 = 1. The LHS becomes

1

(2πi)n+1

∫
|x0|=···=|xn|=ε

dx0 ∧ · · · ∧ dxn
(2x0) · · · (2xn)

= 2−n−1.

Note that ρi(x) = |xi|2/||x||2, where ||x||2 := |x0|2 + · · ·+ |xn|2 and that

∂ρi ∧ dx =
xi
||x||2

(
1− d||x||2

||x||2
∧ ιE

)
dxi ∧ dx =

xi
||x||2

(
ιE

d||x||2

||x||2
∧
)
dxi ∧ dx,

where E := x0∂x0
+ · · ·+ xn∂xn and ιE denotes the operation contraction by the vector

field E. The operation in the big brackets commutes with the wedging operations ∂ρj∧
for all j. Therefore,

∂ρ1 ∧ · · · ∧ ∂ρn ∧ dx =
x0x1 . . . xn
||x||2n+2

ιE(dx ∧ dx),

where dx := dx0 ∧ · · · ∧ dxn, and we get

ηdx = (−1)n 2−n−1 n! ||x||−2n−2ιE(dx ∧ dx).

Note that the form dιE(dx ∧ dx) = (n+ 1)dx ∧ dx coincides with

(n+ 1) (2i)n+1 (−1)n(n+1)/2 dRe(x0) ∧ d Im(x0) ∧ · · · ∧ dRe(xn) ∧ d Im(xn)

and that the form ∧ni=0dRe(xi) ∧ d Im(xi) defines the orientation of the unit ball in
Cn+1 induced from the complex manifold orientation of Cn+1. Using Stoke’s theorem and
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recalling that the volume of the unit ball in Cn+1 is πn+1/(n+ 1)! we get∫
S2n+1

ηdx = (−1)n2−n−1(n+ 1)! (2i)n+1 (−1)n(n+1)/2 πn+1

(n+ 1)!
= (−1)n(n−1)/2 (2πi)n+1 2−n−1.

Comparing the LHS and the RHS of (4.23) we get Cn = (−1)n(n−1)/2 (2πi)−n−1. �
Summing up formula (4.23) over all critical points ξ◦ of ft◦ and comapring with the

definitons of JF and KF , we get JF,t◦(φ1dx, φ2dx) = K
(0)
F,t◦(ω1, ω2). This completes the

proof of property 3.
It remains to prove property 4, that is, the Leibnitz rule with respect to the Gauss–

Manin connection. The problem is local, so we may assume that t◦ ∈ S is a given
point and that V ⊂ S is an open coordinate neighborhood of t◦ with local coordinates
t = (t1, . . . , tm). For brevity put ∂a := ∂

∂ta
. Let us check the Leibnitz rule for vector

fields of the form w∂a, that is,

(4.24) w∂aKF,t◦(ω1, ω2) = KF,t◦(w∇∂a(ω1), ω2)−KF,t◦(ω1, w∇∂a(ω2)).

Since KF,t◦ is defined by integrating cycles defined locally in a neighborhood of the critical
points of ft◦ , it is sufficient to compute w∇∂a(ωi)|Zξ , where Zξ = Uξ × V is a coordinate
neighborhoof of a relative critical point ξ ∈ Crit(ft◦). Note that here, slightly abusing

the notation, we think of Γ(V, Ĥ(0)
F ) as the sections of the sheaf Ωn+1

Z/S [[w]]/dFΩnZ/S [[w]] on

the open subset p−1V ⊂ Z. The restriction of the cohomology class ωi (i = 1, 2) to Zξ
can be represented by a relative holomorphic form φi(x, t, w)dx (i = 1, 2). By definition,
the restriction of the covariant derivative w∇∂a(ωi) to Zξ is represented by

(∂a(F )φi + w∂a(φi))dx.

Suppose that φ1(x, t, w)dx = dF (η1) for some η1 ∈ Γ(Zξ \CF ,A0,n
Z/S). Differentiating the

identity φ1dx = dF (η1) with respect to ta, after some short computation, we get that

(∂a(F )φ1 + w∂a(φ1))dx = dF (∂a(F )η1 + w∂a(η1)),

where ∂a(η1) = ι∂a ◦ dZ(η1) is the Lie derivative of η1. The residue pairing

KF,t◦(w∇∂a(ω1), ω2) = wCn
∑

ξ∈Crit(ft◦ )

∫
∂Uξ

(∂a(F )η1 + w∂a(η1)) ∧ ω∗2

while the residue pairing

KF,t◦(ω1, w∇∂a(ω2)) = wCn
∑

ξ∈Crit(ft◦ )

∫
∂Uξ

η1 ∧ (∂a(F )φ∗i − w∂a(φ∗i ))dx.

The difference of the two residue pairings, i.e., the RHS of (4.24) is

wCn
∑

ξ∈Crit(ft◦ )

∫
∂Uξ

(
w∂a(η1) ∧ ω∗2 + η1 ∧ w∂a(ω∗2)

)
.

The above integral is an integral on Uξ◦ (i.e. in the x-variables) depending on the param-
eters t. The usual Leibnitz rule applies, so we can write the above integral as

w2∂aCn
∑

ξ∈Crit(ft◦ )

∫
∂Uξ

η1 ∧ ω∗2 = w∂aKF,t◦(ω1, ω2).

The Leibnitz rule for the vector field w2∂/∂w is checked similarly.
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4.5.6. Proof of Theorem 4.29 b. Let us assume now that the family of functions
(F, p : Z → S) is complete. Then the relative critical set CF is a complex manifold. In
particular, the family (F, p : Z → S) is Morse. Let us fix a point t◦ ∈ S \K and an open
neighborhood V of t◦ in S, such that p−1(V )∩CF = V1 t · · · t Vµ and p|Vi : Vi → V is a
biholomorphism. We claim that µ = µF and that ui = F ◦ (p|Vi)−1 : V → C (1 ≤ i ≤ µ)
are holomorphic coordinates on V . Let {ξ◦i }

µ
i=1 be the critical points of ft◦ and let us fix

a direct product coordinate system (xi0, . . . , x
i
n, t1, . . . , tm) in a neighborhood of ξ◦i in Z

for each i (1 ≤ i ≤ µ). The Kodaira–Spencer map takes the form

TS,t◦ →(p∗OCF )t =

µ⊕
i=1

OCF ,ξi
∼=

µ⊕
i=1

OV,t◦(4.25)

∂

∂ta
7→
(
∂u1

∂ta
, . . . ,

∂uµ
∂ta

)
.

Since the Kodaira–Spencer map is an isomorphism and the rank of TS,t◦ is µF we get

that µ = µF and that det
(
∂ui
∂ta

)
6= 0.

The local coordinates u = (u1, . . . , uµ) constructed above are called canonical co-
ordinates. Let us equip the tangent sheaf TS with multiplication •, which under the
Kodaira–Spencer isomorphism coincides with the natural product of functions in the
sheaf p∗OCF . Note that the direct sum in the Kodaira–Spencer isomorphism (4.25) is
a direct sum of algebras and that the vector field ∂

∂ui
corresponds to the idempotent

(0, . . . , 1, . . . , 0), where only the ith entry is 1 and the rest are 0. Therefore, if t◦ ∈ S \K,
then the stalk TS,t◦ is a semi-simple algebra, that is,

TS,t◦ = OS,t◦
∂
∂u1
⊕ · · · ⊕OS,t◦

∂
∂uµ

, ∂
∂ui
• ∂
∂uj

= δi,j
∂
∂uj

.

After this preliminary remarks, we are in position to prove part b of Theorem 4.29. It
is sufficient to prove the uniqueness of the germ of the higher residue pairing KF,t◦ at a
point t◦ ∈ S \K. Let us fix a sufficiently small contractible Stein neighborhood V of t◦,
such that, we have canonical coordinates u = (u1, . . . , uµ). According to Proposition 4.24,

there exists a set of holomorphic forms ωi ∈ Γ(p−1V,Ωn+1
Z/S) (1 ≤ i ≤ µ) representing an

OV -basis of the sheaf p∗ΩF . Let ξ◦i (1 ≤ i ≤ µ) be the critical points of ft◦ . Using local
coordinates, it is easy to see that ΩF,ξ◦i is a free OCF ,ξ◦i

module of rank 1. Let θi ∈ ΩF,ξ◦i
be a generator. We have the following decomposition:

(p∗ΩF )t◦ =

µ⊕
i=1

ΩF,ξ◦i =

µ⊕
i=1

OCF ,ξ◦i
θi.

On the other hand, since p|CF is a local biholomorphism at ξ◦i , we have OCF ,ξ◦i
∼= OS,t◦ .

Let [ωj,ξ◦i ] ∈ ΩF,ξ◦i be the equivalence class of the germ of the form ωj at ξ◦i . Then
([ωj,ξ◦1 ], . . . , [ωj,ξ◦µ ]) ∈ (p∗ΩF )t◦ (1 ≤ i ≤ µ) and θj (1 ≤ j ≤ µ) are two OS,t◦ -bases of

(p∗ΩF )t◦ . After an appropriate OS,t◦ -linear change we may arrange that the two bases
coincide. Under the Kodaira–Spencer isomorphism p∗ΩF becomes a TS-module and the
forms ωi satisfy the following relations:

(4.26) ∂ui • [ωj ] = δi,j [ωj ], 1 ≤ i, j ≤ µ,

where ∂ui = ∂
∂ui

and [ωi] is the equivalence class of ωi in p∗ΩF .
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According to Proposition 4.24, the forms ωi (1 ≤ i ≤ µ) represent an OV [[w]]-basis of

Ĥ(0)
F |V . The Gauss–Manin connection takes the form

w∇∂i [ωj ] =

µ∑
k=1

Ckij(u,w)[ωk]

and

w2∇∂w [ωj ] =

µ∑
k=1

Ckj (u, z)[ωk],

where ∂w = ∂
∂w . Let us put the information about the Gauss–Manin connection and the

higher residue pairing into the set of µ + 2 size µ × µ matrices K(u,w) and Ca(u,w)
(0 ≤ a ≤ µ), whose (i, j)-entries are defined as follows:

Kij(u,w) :=KF ([ωi], [ωj ]),

(Ca(u,w))ij :=Ciaj(u,w), 1 ≤ a ≤ µ,
(C0(u,w))ij :=Cij(u,w), 1 ≤ a ≤ µ.

Let K(u,w) =
∑∞
p=0Kp(u)wp+n+1 and Ca(u,w) =

∑∞
p=0 Ca;p(u)wp be the corresponding

series expansions. Let Eij be the matrix with only one non-zero entry which is in position
(i, j) and it is equal to 1. Relations (4.26) imply that Ci;0 = Eii (1 ≤ i ≤ µ), while the
definition of the canonical coordinates implies that C0;0 = −

∑µ
i=1 uiEii. The Leibnitz

rule for the Gauss–Manin-connection implies that

w∂uiK(u,w) =Ci(u,w)TK(u,w)−K(u,w)Ci(u,−w),

w2∂wK(u,w) =C0(u,w)TK(u,w)−K(u,w)C0(u,−w).

Let us assume that we have two pairings K ′ and K ′′ satisfying the axioms of a higher
residue pairing. Then the matrix K(u,w) = K ′(u,w)K ′′(u,w)−1 satisfies the following
differential equations:

w∂uiK(u,w) =[Ci(u,w)T ,K(u,w)],

w2∂wK(u,w) =[C0(u,w)T ,K(u,w)].

Let us expand K(u,w) =
∑∞
p=0Kp(u)wp. Since the leading order term in the expansion

in the powers of w of a higher residue pairing is fixed to be the classical residue pairing, we
get that K0 = 1. We will prove by induction on p that Kp = 0 for all p > 0. Comparing
the coefficients in front of the powers of w, we get the following recursion relations:

[K0, Eii] = [K0, C0;0] = 0,

∂ui(Kp) = [Eii,Kp+1] +

p+1∑
q=1

[CTi;q,Kp+1−q], p ≥ 0, 1 ≤ i ≤ µ,

and

(p+ 1)Kp+1 = [C0;0,Kp+2] +

p+2∑
q=1

[CT0;q,Kp+2−q], p ≥ 1.
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The first set of equations is trivially satisfied, because K0 is the identity matrix. Suppose
thatK1 = K2 = · · · = Kp = 0. Using the second set of equations we get that [Eii,Kp+1] =
0 for all 1 ≤ i ≤ µ, which implies that Kp+1 is a diagonal matrix. Note that the matrices
C0;0 and Kp+2−q (1 ≤ q ≤ p + 2) in the last set of equations are diagonal. Comparing
the diagonal entries, we get Kp+1 = 0. �

4.6. Primitive forms and Frobenius structures

Suppose that (F, p : Z → S) is a complete family. Using the Kodaira–Spencer
isomorphism TS ∼= p∗OCF we define

(i) Frobenius multiplication • in TS corresponding to the natural multiplication in
the structure sheaf OCF .

(ii) Unit vector field e ∈ Γ(S,TS) corresponding to 1 ∈ p∗OCF .
(iii) Euler vector field E ∈ Γ(S,TS) corresponding to F |CF ∈ p∗OCF .

Let us recall the sheaves on S of formal oscillatory integrals ĤF and Ĥ(0)
F , the Gauss–

Manin connection ∇, and the higher residue pairing KF .

4.6.1. The idea of a primitive form. Let us recall the sheaf ΩF := p∗Ω
n+1
Z/S/dF ∧

p∗Ω
n
Z/S . According to the direct image theorem for finite maps we have the following

formula for the stalks of ΩF :

ΩF,t =
⊕

ξ∈CF∩p−1(t)

OCF ,ξ dx0 ∧ · · · ∧ dxn,

where x = (x0, . . . , xn) is a locall coordinate system on Zt = p−1(t) with center at ξ.
Every section ϕ ∈ Γ(S,ΩF ) can be represented locally near a point t ∈ S with a set of
holomorphic forms ϕξ(x, t) = gξ(x, t)dx0 ∧ · · · ∧dxn corresponding to the critical points ξ
of ft := F |Zt . We say that ϕ ∈ Γ(S,ΩF ) is a holomorphic volume form if gξ(0, t) 6= 0 for
all t and ξ, that is, gξ(x, t) is an invertible element of OCF ,ξ. More generally, we will say

that ω ∈ Γ(S, Ĥ(0)
F ) is a holomorphic volume form if the image of ω in ΩF = Ĥ(0)

F /wĤ(0)
F

under the natural quotient map is a holomorphic volume form in ΩF .

Suppose now that ω ∈ Γ(S, Ĥ(0)
F ) is a holomorphic volume form. Using Proposition

4.24 and the fact that the family is complete, we get that the map

(4.27) Π : TS [[w]]
∼= // Ĥ(0)

F v 7→ w∇vω

is an isomorphism of OS-modules. Let us fix a local coordinate system t = (t1, . . . , tm)
on S defined on an open neighborhood of a point t◦ ∈ S. Let us denote by ∂i := ∂/∂ti
(1 ≤ i ≤ m) the coordinate vetcor fields and by ∇i := ∇∂i the corresponding covariant
derivatives with respect to the Gauss–Manin connection. The period isomorphism implies

that the covariant derivatives w∇∂iω (1 ≤ i ≤ m) form a OS [[w]]-basis of Ĥ(0)
F . In

particular, the Gauss–Manin connection can be written as

w∇iw∇jω =

m∑
k=1

Γkij(t, w)w∇kω,(4.28)

w2∇ww∇iω =

m∑
k=1

Uki (t, w)w∇kω,(4.29)
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where ∇w := ∇∂/∂w, Γkij(t, w) =
∑∞
p=0 Γkij;p(t)w

p, and Uki (t, w) =
∑∞
p=0 U

k
i;p(t)w

p. We

will check later on that Γkij;0 are the structure constants of the Frobenius multiplication on

TS and that Γkij;1 are the Christophel symbols corresponding to the Levi–Civite connection

of the classical residue pairing on TS . Moreover, Uki;0 is the matrix of the linear operator

of Frobenius multiplication by −E and Uki;1 is the grading operator corresponding to

the Euler vector field. The remaining terms of the Gauss–Manin connection Γkij;p(t) and

Uki;p(t) (p ≥ 2) do not have a meaningful interpretation. The question that lead to the
discovery of the notion of a primitive form is whether we can choose the holomorphic
volume form ω in such a way that the remaining higher order terms of the Gauss–Manin
connection vanish.

Definition 4.32. A holomorphic volume form ω ∈ Γ(S, Ĥ(0)
F ) is said to be a primitive

form if the following conditions are satisfied:

(i) K
(p)
F (w∇iω,w∇jω) = 0 for all 1 ≤ i, j ≤ m and p ≥ 1.

(ii) K
(p)
F (w∇iw∇jω,w∇kω) = 0 for all 1 ≤ i, j, k ≤ m and p ≥ 2.

(iii) K
(p)
F (w2∇ww∇iω,w∇jω) = 0 for all 1 ≤ i, j ≤ m and p ≥ 2.

(iv) There exists a constant r ∈ C, such that(
w∇w +∇E

)
ω = rω.

(v) w∇eω = ω.

The number r in condition (iv) is said to be the homogeneous degree of the primitive form.

Theorem 4.33. If ω is a primitive form of homogeneous degree r, then

g(v′, v′′) := K
(0)
F (w∇v′ω,w∇v′′ω), v′, v′′ ∈ TS

is a non-degenerate bi-linear pairing on TS and the data (S, •, ( , ), E, e) is a Frobenius
structure of conformal dimension D := n+ 1− 2r.

Proof. It is sufficient to check that the axioms of a Frobenius manifold (see Def-
inition 1.1) are satisfied locally in a neighborhood of each point t◦ ∈ S. Let t =
(t1, . . . , tm) be a local coordinate system defined in a neighboprhood of t◦. Let gij(t) =

K
(0)
F (w∇iω,w∇jω) be the matrix of the residue pairing. The residue pairing is non-

degenerate, so (gij(t))1≤i,j≤m is an invertible matrix. Using axiom (i) in Definition 4.32
we get

KF (w∇iω,w∇jω) = gij(t)w
n+1, 1 ≤ i, j ≤ m,

KF (w∇i w∇jω,w∇kω) =

m∑
l=1

∞∑
p=0

Γlij;p(t)glk(t)wn+1+p,

and

KF (w2∇w w∇iω,w∇jω) =

m∑
k=1

∞∑
p=0

Uki;p(t)gkj(t)w
n+1+p.

Recalling axioms (ii) and (iii) from the definition of a primitive form we get that Γlij;p(t) =

0 and Uki;p(t) = 0 for all p ≥ 2.
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Let us express the coefficients Γkij;p(t) and Uki;p(t) for p = 0, 1 in terms of the residue

pairing gij(t) and the Frobenius multiplication •. To begin with, let Ckij(t) be the structure

constants of •, that is, ∂i • ∂j =:
∑m
k=1 C

k
ij(t)∂k. We claim that Γkij;0(t) = Ckij(t). To

prove this, let us represent ω by a holomorphic form in Γ(p−1V,Ωn+1
Z/S [[w]]). Let us choose

an open covering of p−1V consisting of open subsets of the form Uα := Uα × V ∩ p−1V
(α ∈ A), where Uα (α ∈ A) is a holomorphic atlas of X (recall that Z is an open subset
of X × S). Then ω|Uα = gα(x, t, w)dx, where we put for brevity dx := dx0 ∧ · · · ∧ dxn,
where x = (x0, . . . , xn) are the coordinates on Uα. By definition

(4.30) (w∇i w∇jω)|Uα =
(
∂iF ∂jF +O(w)

)
gα(x, t, w)dx (mod wd+ dF∧).

Recalling the definition of •, we get

∂iF ∂jF =

m∑
k=1

Ckij(t)∂kF +

n∑
a=0

φa(x, t)∂xaF.

Note that

φa(x, t)(∂xaF )gα(x, t, w)dx = −w∂φa(x, t)gα(x, t, w)

∂xa
(mod wd+ dF∧).

and that

Ckij(t)∂kFgα(x, t, w)dx = Ckij(t)w∇kω|Uα (mod wĤ(0)
F ).

Recalling (4.30) and the definition (4.28), we get Γkij;0(t) = Ckij(t).

Let us determine the coefficient Γkij;1(t). In order to do this, let us define a connection
on the tangent bundle TV by

∇̃∂i∂j =

m∑
k=1

Γkij;1(t)∂k.

We claim that ∇̃ is the Levi–Civita connection of the residue pairing gij . ∵ Recalling the

definition (4.28) we get that Γkij;1 = Γkji;1, that is, ∇̃ is Torsion free. We need only to
check the compatibility with the residue pairing. We have

(4.31) ∂igkl =
(
KF (w∇iw∇kω,w∇lω)−KF (w∇kω,w∇iw∇lω)

)
w−n−2,

where we used the Leibnitz rule for the higher residue pairing. On the other hand, we
have

w∇iw∇kω =

m∑
j=1

(
Cjik(t) + wΓjik;1(t)

)
w∇jω =

m∑
j=1

Cjik(t)w∇jω + w2∇∇̃i∂kω.

and similarly

w∇iw∇lω =

m∑
j=1

Cjil(t)w∇jω + w2∇∇̃i∂lω.

Let us substitute these formula in (4.31). The terms involving the structure constants

Cjik and Cjil cancel out. The remaining terms contribute(
KF (w2∇∇̃i∂kω,w∇lω)−KF (w∇kω,w2∇∇̃i∂lω)

)
w−n−2 = g(∇̃i∂k, ∂l) + g(∂k, ∇̃i∂l).
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This completes the proof that ∇̃ is the Levi–Civita connection, which we denote by ∇L.C.,
of the residue pairing.

Note that the formulas for Γkij;p(t) yield the following identity:

(4.32) w∇vw∇jω = w∇v•∂j+w∇L.C.
v (∂j)ω,

for all v ∈ TS .
The coefficients Uki;0(t) are the entries of the matrix of the linear operator of Frobenius

multiplication by −E, that is,

(4.33) E • ∂i = −
m∑
k=1

Uki;0(t) ∂k.

The proof of this fact is very similar to the proof that Γkij;0(t) = Ckij(t) and we leave it as

an exercise. Let us prove that the coefficients U ji;1(t) satisfy

(4.34) ∇L.C.
∂i E = (1 + r)∂i −

m∑
j=1

U ji;1(t) ∂j .

∵ Using the definition (4.29) we get

(4.35) KF (w2∇ww∇iω,w∇kω) =

m∑
j=1

(
U ji;0(t)gjk(t)wn+1 + U ji;1(t)gjk(t)wn+2

)
.

On the other hand, using the flatness of the Gauss–Manin connection, we have

w2∇w w∇i = w∇i w2∇w + w2∇i,

while the homogeneity of the primitive form yields w2∇wω = −w∇Eω + rwω. We get

(4.36) KF (w2∇ww∇iω,w∇kω) = wn+2(1 + r)gik(t)−KF (w∇iw∇Eω,w∇kω).

Using again the flatness of the Gauss–Manin connection we get

w∇i w∇Eω = w∇E w∇iω + w2∇[∂i,E]ω

= w∇E•∂i+w(∇L.C.E (∂i)+[∂i,E])ω

= w∇E•∂i+w∇L.C.∂i
(E)ω,

where for the 2nd equality we used formula (4.32) and for the third one we used the
torsion freeness of the Levi–Civita connection. Substituting the above formula in (4.36)
we get

KF (w2∇ww∇iω,w∇kω) = −g(E • ∂i, ∂k)wn+1 +
(

(1 + r)gik(t)−∇L.C.∂i (E)
)
wn+2

Comparing the above formula with (4.35) and recalling also (4.33), we get (4.34). This
completes our task to express the coefficients of the Gauss–Manin connection in terms of
the Frobenius multiplication and the residue pairing.

Next, let us show that E is an Euler vector field, that is,

Egkl = g([E, ∂k], ∂l) + g(∂k, [E, ∂l]) + (2−D)g(∂k, ∂l),
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where D := n + 1 − 2r. ∵ By definition gkl = KF (w∇kω,w∇lω)w−n−1. Recalling the
Leibnitz rule for the higher residue pairing and that

w∇Ew∇kω = w∇kw∇Eω + w2∇[E,∂k]ω

= w∇k
(
rw − w2∇w

)
ω + w2∇[E,∂k]ω

= −w2∇w w∇k ω + w2∇(r+1)∂k+[E,∂k]ω

we get

Egkl =
(
KF (−w2∇w w∇k ω + w2∇(r+1)∂k+[E,∂k]ω,w∇lω)−
KF (w∇kω,−w2∇w w∇l ω + w2∇(r+1)∂l+[E,∂l]ω)

)
w−n−2.

The terms involving the covariant derivative with respect to w contribute

w−n−2(−w2∂w)KF (w∇kω,w∇lω) = −w−n∂w
(
gklw

n+1
)

= −(n+ 1)gkl,

while the remaining terms contribute

g((r + 1)∂k + [E, ∂k], ∂l) + g(∂k, (r + 1)∂l + [E, ∂l]) = (2r + 2)gkl + g([E, ∂k], ∂l) + g(∂k, [E, ∂l]).

This completes the proof that E is an Euler vector field.
Now the proof can be completed as follows. Let

Π : TS [[w]]
∼= // Ĥ(0)

F , v 7→ w∇vω,

be the period isomorphism. The pullback Π∗∇ of the Gauss–Manin connection is defined
by

Π(wΠ∗∇∂i∂j) := w∇∂iΠ(∂j),

Π(w2Π∗∇∂w∂i) := w2∇∂wΠ(∂i).

Since

w∇∂iΠ(∂j) = w∇∂iw∇∂jω =

m∑
k=1

( ∞∑
p=0

Γkij;p(t)w
p
)
w∇kω.

We get

wΠ∗∇∂i∂j =

m∑
k=1

(
Γkij;0(t) + wΓkij;1(t)

)
∂k.

Similarly,

w2Π∗∇∂w∂i =

m∑
k=1

(
Uki;0(t) + wUki;1(t)

)
∂k.
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Recalling our formulas for Γkij;p and Uki;0 we get

m∑
k=1

Γkij;0(t)∂k = ∂i • ∂j ,

m∑
k=1

Γkij;1(t)∂k = ∇L.C.
∂i ∂j ,

m∑
k=1

Uki;0(t)∂k = −E • ∂i.

Let us recall that the grading operator θ : TS → TS is by definition

θ(∂i) = ∇L.C.
∂i E − (1−D/2)∂i = ∇L.C.

∂i E − (1 + r − (n+ 1)/2)∂i.

Therefore,
m∑
k=1

Uki;1(t)∂k = (1 + r)∂i −∇L.C.
∂i E =

(
− θ +

1

2
(n+ 1)

)
∂i.

Therefore, the pullback of the Gauss–Manin connection takes the following form:

Π∗∇∂i = ∇L.C.
∂i + w−1∂i•(4.37)

Π∗∇∂w = ∂w − w−1
(
θ − 1

2
(n+ 1)

)
− w−2E • .(4.38)

Up to changing w → −w and shifting θ by n+1
2 , we get that Π∗∇ coincides with the

Dubrovin’s connection (see Definition 1.1). The flatness of the Gauss–Manin connection
implies the flatness of the Dubrovin’s connection. In order complete the proof of the
theorem, it remains only to check that the unit vector field e is flat. Indeed, using
the flatness of the Gauss–Manin connection and the torsion freeness of the Levi–Civita
connection, we get

w∇v w∇j = w∇jw∇v + w2∇[v,∂j ]

and

w∇L.C.
v ∂j = w∇L.C.

∂j v + w[v, ∂j ]

for every vector field v ∈ TS . Therefore, formula (4.32) yields

w∇jw∇vω = w∇v•∂j+w∇L.C.
∂j

vω.

Let us substitute v = e and recall Axiom (v) of the primitive form. We get w∇∇L.C.
∂j

eω = 0,

that is, since the period map is an isomorphism, ∇L.C.
∂j

e = 0. �

Let us point out that under some further assumptions for the family of functions
(F, p : Z → S) the above proof gives also a method for constructing a solution to the
Dubrovin’s connection in terms of oscillatory integrals. For example, in most applications
we are interested in the homology groups

Lt,w := lim←−
M

Hn+1(Zt, {x ∈ Zt | Re(F (x)/w) < −M};Z),

where the inverese limit is taken over all positive real numbers. The goal of the extra
assumptions that one has to make is to arrange that the union L := ∪(t,w)∈S×C∗Lt,w
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has a structure of a local system on S × C∗ and that the primitive form and its covari-
ant derivatives have a moderate growth at inifinity. Then the corresponding oscillatory
integrals are convergent and we can define the following vector field JΓ(t, w) on S:

(JΓ(t, w), ∂i) := w∂i

(
(−2πw)−

n+1
2

∫
Γ

eF/wω

)
,

where ( , ) is the residue pairing. Formulas (4.37)–(4.38) yield

w∇L.C.
∂i JΓ(t, w) = ∂i • JΓ(t, w)

(w∂w +∇L.C.
E )JΓ(t, w) = θ JΓ(t, w).

In other words, JΓ(t, w) is a solution to the Dubrovin’s connection.

4.6.2. Opposite subspaces. The problem of proving the existence of a primitive
form for a given family of functions can be divided into two parts. First, let us fix an
arbitrary point t◦ ∈ S. Note that the definition of a primitve form makes sense also if we
replace S with the formal completion of the germ (S, t◦) of the complex manifold S at t◦.
In this case we say that the primitive form is formal. It turns out that formal primitive
forms can be constructed quite easily from the so called opposite subspaces. The latter
were introduced by Li-Li-Saito in [42], although the notion of an opposite subspace is
closely related to the notion of a good section in [53] and [54]. The 2nd part of the
problem is to determine whether the formal primitive form extends to an analytic one.
This is a very difficult problem and in principle one has to make some extra assumptions
for the family of functions.

The goal in this section is to explain the construction of a formal primitive form at
a given point t◦ ∈ S following the ideas of [42]. To begin with, let us fix the following
notation. Let us fix local coordinates t = (t1, . . . , tm) near t◦, such that, t◦ is identified

with the origin. Let Z0 := Zt◦ and f := F |Z0
. The fibers of the sheaves ĤF and Ĥ(0)

F

at t◦ will be denoted by respectively Ĥf and Ĥ(0)
f . The restriction of the higher residue

pairing to t = 0 will be denoted by Kf .

The vector space Ĥf has a natural symplectic structure, that is,

Ω(φ1, φ2) := Resz=0Kf (φ1, φ2)w−n−1dw,

where the residue is taken formally as the coefficient in front of w−1. The skew-symmetry
Ω(φ1, φ2) = −Ω(φ2, φ1) follows from property 1 of the higher residue pairing (see Section
4.5.3), while the non-degeneracy of Ω follows from the fact that the classical residue
pairing is non-degenerate. Note that property 3 of the higher residue pairing (see Section

4.5.3) implies that Ĥ(0)
f is a Lagrangian subspace of Ĥ(0)

f .

Definition 4.34. A Lagrangian subspace P ⊂ Ĥf is said to be an opposite subspace

if (i) Ĥf = Ĥ(0)
f

⊕
P and (ii) w−1P ⊂ P . �

Note that we have a natural isomorphism

Ĥ(0)
f /wĤ(0)

f
∼= Ωf := Γ(Z0,Ω

n+1
Z0

)/df ∧ Γ(Z0,Ω
n
Z0

).

The main properties of an opposite subspace can be stated as follows.

Proposition 4.35. If P ⊂ Ĥf is an opposite subspace, then
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a) The quotient map

Ĥ(0)
f → Ĥ(0)

f /wĤ(0)
f
∼= Ωf

induces an isomorphism Ĥ(0)
f ∩ wP ∼= Ωf . Let

σ : Ωf → Ĥ(0)
f ∩ wP ⊂ Ĥ(0)

f

be the corresponding inverse.

b) We have P = σ(Ωf )[w−1]w−1 and Ĥ(0)
f = σ(Ωf )[[w]].

c) Kf (φ1, φ2) ∈ Cwn+1 for all φ1, φ2 ∈ Ĥ(0)
f ∩ wP .

Proof. a) First, let us prove that the map is injective. Suppose that φ ∈ Ĥ(0)
f ∩wP

is mapped to 0 in Ωf , that is, φ ∈ wĤ(0)
f . It follows that φ ∈ w(Ĥ(0)

f ∩ P ) = 0. For the

surjectivity, we need to prove that for a given φ ∈ Ĥ(0)
f there exists ψ ∈ Ĥ(0)

f , such that,

φ+wψ ∈ Ĥ(0)
f ∩wP . Using condition (i) from the definition of an opposite subspace (see

Definition 4.34), we get that w−1φ = ψ1 +ψ2, for some ψ1 ∈ Ĥ(0)
f and ψ2 ∈ P . Note that

ψ = −ψ1 has the required property.
b) The inclusion σ(Ωf )[w−1]w−1 ⊂ P is obvious. Let us prove the opposie inclusion.

Note that if φ ∈ P then there exists k > 0, such that, wkφ ∈ Ĥ(0)
f . We argue by

induction on k that φ ∈ σ(Ωf )[w]w−1. If k = 1, then wφ ∈ Ĥ(0)
f ∩ wP = σ(Ωf ), that is,

φ ∈ w−1σ(Ωf ). If k > 1, then let us recall again condition (i) from Definition 4.34. We

have wφ = ψ1 +ψ2 for some ψ1 ∈ Ĥ(0)
f and ψ2 ∈ P . Note that wk−1ψ2 = wkφ−wk−1ψ1 ∈

Ĥ(0)
f . Therefore, using the inductive assumption, we get

φ ∈ w−1ψ1 + σ(Ωf )[w]w−1.

On the other hand, ψ1 = w(φ−w−1ψ2). Recalling condition (ii) from Definition 4.34, we

get w−1ψ2 ∈ P . Hence ψ1 ∈ Ĥ(0)
f ∩ wP = σ(Ωf ).

c) Suppose that φ1, φ2 ∈ Ĥ(0)
f ∩ wP . Let us expand

Kf (φ1, φ2) =

∞∑
l=0

K
(l)
f (φ1, φ2)wn+1+l.

We need to prove that K
(l)
f (φ1, φ2) = 0 for l > 0. Note that

K
(l)
f (φ1, φ2) = −Resw=0K

(l)
f (w−lφ1, w

−1φ2)w−n−1dw = −Ω(w−lφ1, w
−1φ2).

Since φ1, φ2 ∈ wP and w−1P ⊂ P , we get w−lφ1 ∈ P and w−1φ2 ∈ P . The vanishing
claim follows from the fact that P is a Lagrangian subspace. �

Definition 4.36. A subspace P ⊂ Ĥf is said to be homogeneous if w∇∂w(P ) ⊂
P. �

If P is a homogeneous opposite subspace, then there are two important linear op-
erators θP and ρP ∈ End(Ωf ) defined as follows. According to Proposition 4.35 the

isomorphism σ : Ωf → Ĥ
(0)
f ∩ wP extends C((w))-linearly to an isomorphism

σ̂P : Ωf ((w))→ Ĥf .
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Note that part c) of Proposition 4.35 can be stated equivalently as

Kf (σ̂P (ϕ1), σ̂P (ϕ2)) = Jf (ϕ1, ϕ
∗
2)wn+1, ϕ1, ϕ2 ∈ Ωf ((w)),

where ∗ is the involution of Ωf ((w)) induced by w 7→ −w and Jf is the classical residue
pairing on Ωf .

Lemma 4.37. If P is a homogeneous opposite subspace, then under the isomorphism
σ̂P the Gauss–Manin connection takes the form

∇∂w =
∂

∂w
− w−2ρ− w−1θP ,

for some linear endomorphisms θP and ρ ∈ End(Ωf ). Moreover, ρ is induced by multi-
plication by f , so in particular, it is independent of P .

Proof. We have to prove that if ω ∈ Ĥ(0)
f ∩ wP , then

w∇∂wω = w−1ω1 + ω2,

for some uniquely determined ω1, ω2 ∈ Ĥ(0)
f ∩ wP . If this is proved, then we can simply

set ρ(ω) := −ω1 and θP (ω) = −ω2. Let us prove our claim. Since P is w∇∂w -invariant.

We get that w∇∂wω ∈ wP . Using the decomposition Ĥf = Ĥ(0)
f

⊕
P , we can decompose

uniquely w∇∂wω = ω̃1 + ω̃2, where ω̃1 ∈ Ĥ(0)
f and ω̃2 ∈ P . Note that w−1P ⊂ P

implies that P ⊂ wP , so ω̃1 = w∇∂wω − ω̃2 ∈ wP , that is, ω̃1 ∈ Ĥ(0)
f ∩ wP . Note that

wω̃2 = w2∇∂wω − wω̃1 ∈ Ĥ(0)
f ∩ wP . Therefore, we can set ω1 := wω̃2 and ω2 := ω̃1.

The statement about the endormorphism ρ can be proved as follows. Suppose that

ω = σ(ϕ), then ω = ϕ (mod wĤ(0)
f ). Recalling the definition of the Gauss–Manin con-

nection, we get

−w−1ρ(ϕ)− θP (ϕ) = w∇∂wω = −w−1fϕ (mod Ĥ(0)
f ).

The above identity implies that ρ(ϕ) = fϕ (mod wĤ(0)
f ), which is exactly what we have

to prove. �

Let us introduce the notion of a formal primitive form. Let us define

F̂ ∈ Γ(Z0,OZ0)[[t1, . . . , tm]]

by taking the Taylor series expansion of F in the variables t1, . . . , tm. More precisely,
let {Uα} be an open covering of Z0, such that, for every α there exists a sufficiently
small open neighborhood Vα of t◦ in S, such that, Uα × Vα ⊂ Z and t1, . . . , tm are still
holomorphic coordinates on Vα. Then F |Uα×Vα is a holomorphic functions, so by taking
the Taylor series expansion in t1, . . . , tm for each fixed x ∈ Uα, we obtain an element

of Γ(Uα,OZ0
)[[t1, . . . , tm]]. Clearly, these local expansions glue and define an element F̂ .

Put

ĤF̂ := Hn+1
(

Γ(Z0,Ω
•
Z0

)((w))[[t1, . . . , tm]], wd+ dF̂∧
)

and

Ĥ(0)

F̂
:= Hn+1

(
Γ(Z0,Ω

•
Z0

)[[w, t1, . . . , tm]], wd+ dF̂∧
)
.
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Note that the above cohomology groups are obtained by applying our construction of

sheaves of formal oscillatory integrals to the case of a formal family of functions (F̂ , p̂ :

Ẑ → Ŝ), where the total space is

Ẑ := Z0, OẐ = OZ0 [[t1, . . . , tm]],

the base is

Ŝ := {t◦}, OŜ := C[[t1, . . . , tm]],

and the projection p̂ is just the contraction map Z0 → {t◦}. Furthermore, the definitions
of the Gauss–Manin connection and the higher-residue pairing apply also in the formal
settings, i.e., we have connection operators

∇ξ : ĤF̂ → ĤF̂ ,

where

ξ ∈ OŜ((w)) ∂
∂w + OŜ((w)) ∂

∂t1
+ · · ·OŜ((w)) ∂

∂tm
,

and higher-residue pairing

KF̂ : Ĥ(0)

F̂
× Ĥ(0)

F̂
→ OŜ [[w]]wn+1.

The notion of a primitive form ω ∈ Ĥ(0)

F̂
is defined as before. Theorem 4.33 implies that

if ω ∈ Ĥ(0)

F̂
is a primitive form of homogeneous degree r, then Ŝ is a formal Frobenius

manifold of conformal dimension D = n+ 1− 2r.
Suppose now that (P,ϕ) is a pair of a homogeneous opposite subspace P ⊂ Ĥf

and ϕ ∈ Ωf is a holomorphic volume form, such that, θP (ϕ) = −rϕ. We would like to

construct a primitive form ω ∈ Ĥ(0)

F̂
. The first step is to extend the opposite subspace P

to a formal family of opposite subspaces.

Lemma 4.38. a) The map ω 7→ e(F−f)/wω induces an isomorphism

ĤF̂
∼= Ĥf [[t1, . . . , tm]].

b) The isomorphism in a) is compatible with the higher-residue pairing, that is,

KF̂ (ω1, ω2) = Kf (e(F−f)/wω1, e
(F−f)/wω2).

c) The isomorphism in a) is compatible with the Gauss–Manin connection, that is,

w∇∂/∂w e(F−f)/w ω = e(F−f)/w w∇∂/∂w ω

w
∂

∂ta
e(F−f)/w ω = e(F−f)/w w∇∂/∂ta ω .

Proof. a) Multiplication by e(F−f)/w defines an isomorphism

Γ(Z0,Ω
•
Z0

)((w))[[t1, . . . , tm]]→ Γ(Z0,Ω
•
Z0

)((w))[[t1, . . . , tm]]

that intertwines the following two differentials:

(wd+ df∧) e(F−f)/w = e(F−f)/w (wd+ dF̂∧).

Passing to cohomology we get the isomorphism stated in part a).
b) By definition

(4.39) KF̂ (ω1, ω2) = Cn
∑

ξ∈Crit(f)

∫
∂Uξ

d−1

F̂
(ω1) ∧ ω∗2 ,
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where Uξ ⊂ Z0 is a sufficiently small ball in Z0 with center at ξ and Cn = (−1)n(2πi)−n−1.

On the other hand, if η1 = d−1

F̂
(ω1), that is, dF̂ (η1) = ω1, then

e(F−f)/wω1 = df

(
e(F−f)/wη1

)
and

(
e(F−f)/wω2

)∗
= e−(F−f)/wω∗2 .

Therefore,

d−1

F̂
(ω1) ∧ ω∗2 = d−1

f

(
e(F−f)/wω1

)
∧
(
e(F−f)/wω2

)∗
.

Substituting in formula (4.39) we get KF̂ (ω1, ω2) = Kf (e(F−f)/wω1, e
(F−f)/wω2).

c) The proof of part c) is straightforward and it will be omitted. �

Let ω◦ ∈ Γ(Z0,Ω
n+1
Z0

)[[w]] be a holomorphic form representing the cohomology class

σ(ϕ) ∈ Ĥ(0)
f ∩ wP . Note that the class of ω◦ in Ĥ(0)

F̂
is a holomorphic volume form

and hence the corresponding period map TŜ [[w]] → Ĥ(0)

F̂
is an isomorphism. Using that

Ĥ(0)
f = Ĥ(0)

F̂
/(t1, . . . , tm)Ĥ(0)

F̂
we get that there are uniquely determined ω◦i ∈ Ĥ(0)

f ∩ wP
(1 ≤ i ≤ m), such that,

(4.40)
∂F

∂ti
ω◦ = ω◦i (mod wĤ(0)

f , t1, . . . , tm),

where the LHS should be viewed as an element in Ĥ(0)

F̂
. Moreover, since ∂

∂ti
form a

C[[w]]-basis of TŜ [[w]] and the period map is an isomorphism, we get that ω◦i (1 ≤ i ≤ m)

form a C[[w]]-basis of Ĥ(0)
f and C((w))-basis of Ĥf . Therefore

e(F−f)/w ∂F

∂tj
ω◦ =

m∑
i=1

ω◦i Eij(t, w),

where the above identity should be viewed in Ĥf [[t1, . . . , tm]] (see Lemma 4.38, a)) and
Eij(t, w) ∈ C((w))[[t1, . . . , tm]]. Let E(t, w) be m ×m matrix whose entries are Eij(t, w).
Note that by construction E(0, w) = 1+O(w), therefore, the matrix E(t, w) has a Birkhof
factorization E(t, w) = T (t, w)A(t, w)−1, where T (t, w) = 1 + O(w−1) and A(t, w) =
A0(t) + A1(t)w + · · · , where A0(t) is an invertible matrix with entries in C[[t1, . . . , tm]].

Let us define ωj ∈ Ĥ(0)

F̂
to be the cohomology class of the form

(4.41)

m∑
i=1

∂F

∂ti
ω◦Aij(t, w),

where Aij(t, w) denotes the (i, j)-entry of the matrix A(t, w).

Remark 4.39. The notion of an opposite subspace P ⊂ Ĥf extends naturally to the

formal completion ĤF̂ . The forms ωj that we have just constructed span an opposite
subspace, that is,

m⊕
j=1

ωj OŜ [w−1]w−1 ⊂ ĤF̂

is an opposite subspace.
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Let us define the vector fields δj :=
∑m
i=1Aij(t, 0) ∂

∂ti
and let Ca(t) = (Caij(t))1≤i,j≤m

be the matrix of Frobenisu multiplication by ∂
∂ta

in the basis δj , that is,

∂
∂ta
• δj =

m∑
i=1

Caij(t)δi.

Lemma 4.40. Let ωj ∈ Ĥ(0)

F̂
be the cohomology classes constructed above from the

pair (P,ϕ). Then

w∇∂/∂taωj =

m∑
k=1

ωk Cakj(t),

(
w∇∂/∂w +∇E

)
ωj = −

m∑
k=1

ωkθkj ,

where θkj are the entries of the matrix of the linear operator θP , that is,

σ ◦ θP ◦ σ−1(ω◦j ) =

m∑
k=1

θkjω
◦
k.

Proof. Using Lemma 4.38, part c), we get

w
∂

∂ta
e(F−f)/w ωj = e(F−f)/ww∇∂/∂ta ωj = e(F−f)/w

( m∑
i=1

ωi Caij(t) + · · ·
)
,

where the dots stand for terms in wĤ(0)

F̂
. For the leading term in the expression after

the 2nd equality we used that modulo terms in wĤ(0)

F̂
, the form δj(F )ω◦ represents the

cohomology class ωj .

On the other hand, according to our construction e(F−f)/w ωj =
∑m
i=1 ω

◦
i Tij(t, w).

Therefore,

w
∂

∂ta
e(F−f)/w ωj = e(F−f)/w

m∑
i=1

ωi(T
−1w∂taT )ij .

Therefore, T (t, w)−1w∂taT (t, w) = Ca(t)+· · · , where the dots involve only positive powers
of w and hence they must vanish, because the LHS is a power series in w−1, that is,
w∂taT (t, w) = T (t, w)Ca(t). The first differential equation that we have to prove follows.

Let us prove the 2nd differential equation. Recallng again Lemma 4.38, part c), we
get(
w∇∂/∂w + E

)
e(F−f)/wωj = e(F−f)/w

(
w∇∂/∂w +∇E

)
ωj = e(F−f)/w

m∑
i=1

ωi Uij(t, w),

where Uij(t, w) ∈ C[[w, t1, . . . , tm]]. On the other hand, using again that e(F−f)/wωj =∑m
i=1 ω

◦
i Tij(t, w), we get

(4.42)
(
w∇∂/∂w + E

)
e(F−f)/wωj =

m∑
i=1

( (
w∇∂/∂wω◦i

)
Tij + ω◦i (w∂w + E)Tij

)
.
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Recalling Lemma 4.37, we get

w∇∂/∂wω◦i = −
m∑
k=1

ω◦k(ρkiw
−1 + θki),

where ρki are the entries of the matrix of the linear operator ρ with respect to the basis
of Ωf induced by ω◦i (1 ≤ i ≤ m). Substituting the above formula in (4.42) and using

that ω◦k = e(F−f)/w
∑m
j=1 ωj(T

−1)jk, we get

U(t, w) = −T (t, w)−1
(
ρw−1 + θ

)
T (t, w) + T (t, w)−1(w∂w + E)T (t, w)

Let us expand U(t, w) =
∑∞
k=0 Uk(t)wk and compare the coefficients in front of the powers

of w. Since T (t, w) = 1 +O(w−1) we get that U0(t) = −θ and Uk(t) = 0 for k > 0. �

Let us summarize our construction. Starting with a pair (P,ϕ) of a homogeneous

opposite subspace P ⊂ Ĥf and a holomorphic volume form ϕ ∈ Ωf , we have introduced
the following objects:

(i) A holomorphic form ω◦ ∈ Γ(Z0,Ω
n+1
Z0

)[[w]], such that, the cohomology class of

ω◦ in Ĥ(0)
f coincides with σ(ϕ).

(ii) Cohomology classes ω◦i ∈ Ĥ(0)
f ∩ wP (1 ≤ i ≤ m) uniquely determined by the

condition (4.40).

(iii) Cohomology classes ωj ∈ Ĥ(0)

F̂
(1 ≤ j ≤ m) and a matrix series T (t, w) =

1 +
∑∞
k=1 Tk(t)w−k, such that, T (0, w) = 1 and

e(F−f)/wωj =

m∑
i=1

ω◦i Tij(t, w).

Since ω◦i form a basis of Ĥ(0)
f ∩ wP , we have σ(ϕ) =:

∑m
i=1 ci ω

◦
i for some uniquely

determined constants ci ∈ C.

Theorem 4.41. Let (P,ϕ) be as above and θP (ϕ) = −rϕ. Then the cohomology class

ω :=
∑m
i=1 ciωi ∈ Ĥ(0)

F̂
is a primitive form of homogeneous degree r.

Proof. Since ω coincides with σ(ϕ) modulo terms in (t1, . . . , tm)Ĥ(0)

F̂
and ϕ is a

holomorphic volume form, we get that ω is a holomorphic volume form. Therefore, the
period map

TŜ [[w]]→ Ĥ(0)

F̂
, ∂/∂ti 7→ w∇∂/∂tiω

is an isomorphism. Both w∇∂/∂tiω (1 ≤ i ≤ m) and ωi (1 ≤ i ≤ m) are C[[w, t1, . . . , tm]]-

bases of Ĥ(0)

F̂
and modulo (t1, . . . , tm, w)Ĥ(0)

F̂
the two bases coincide. Using Lemma 4.40,

we get

w∇∂/∂tiω =

m∑
j=1

cjw∇∂/∂tiωj =

m∑
j,k=1

ωk Cikj(t) cj =:

m∑
k=1

ωkRki(t),

where Rki(t) :=
∑m
j=1 Cikj(t)cj . Let R(t) be the matrix with entries Rki(t). Note that

R(0) = 1, so R(t) is an invertible matrix. Therefore, in the case of ω, the first three axioms
of a primitive form in Definition 4.32 are equivalent to the following two conditions:

(4.43) K
(p)

F̂
(ωi, ωj) = 0 ∀p > 0
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and

(4.44) K
(p)

F̂
((w2∇∂/∂w + w∇E)ωi, ωj) = 0 ∀p > 1.

Condition (4.44) follow from condition (4.43) thanks to Lemma 4.40. In order to prove
(4.43), we first recall Lemma 4.38, part b) and we get

KF̂ (ωi, ωj) =

m∑
a,b

Kf (ω◦a, ω
◦
b )Tai(t, w)Tbj(t,−w).

However, recalling Proposition 4.35, part c) and using that T (t, w) = 1 +O(w−1), we get
that the RHS in the above equality has the form wn+1(Jf (ωi, ωj) + O(w−1)). On the
other hand, the LHS does not contain terms of type wn+1O(w−1), so these terms must
vanish, that is,

(4.45) KF̂ (ωi, ωj) = Jf (ω◦i , ω
◦
j )wn+1.

This proves (4.43). Let us prove that ω satisfies axiom (iv) in Definition 4.32. Recalling
Lemma 4.40 we get

(4.46) (w∇∂/∂w +∇E)ω = −
m∑

i,k=1

ωk θki ci.

Let us consider the image of the above identity under the quotient map

Ĥ(0)

F̂
→ Ĥ(0)

F̂
/(w, t1, . . . , tm)Ĥ(0)

F̂
.

The image of w∇∂/∂wω is −θP (ϕ)−ρ(ϕ)w−1, while the image of ∇Eω is ρ(ϕ). Therefore,
the image of the LHS is −θP (ϕ) = rϕ. Comparing with the image of the RHS we get

rϕ = −
m∑
k=1

ω◦k (θk1c1 + · · ·+ θkmcm) mod wĤ(0)
f .

Applying the section σ : Ωf → Ĥ(0)
f ∩ wP and recalling that σ(ϕ) =

∑m
k=1 ω

◦
kck, we

get
∑m
i=1 θkici = −rck, which together with (4.46) implies that ω satisfies axiom (iv).

The last axiom follows immediately from Lemma 4.40. Indeed, since e is the unit of the
Frobenius multiplication we have w∇eωj = ωj ⇒ w∇eω = ω. �



CHAPTER 5

Weighted homogeneous singularities

This chapter is an application of the theory developed in Chpater 4 to weighted
homogeneous singularities. Namely, we will classify the Frobenius structures on the space
of miniversal deformations of a weighted homogeneous singularity that can be constructed
via the theory of primitive forms. Furthermore, we will give a geometric interpretation
of the solutions of the 2nd structure connection in terms of period integrals.

5.1. Families of weighted homogeneous singularities

Let X = Cn+1 be the standard complex vector space with coordinates x0, x1, . . . , xn.
Let c = (c0, c1, . . . , cn) be a tupple of rational numbers, such that, 0 < ci ≤ 1

2 . By
assigning weight ci to each variable xi we turn the polynomial ring C[x0, x1, . . . , xn]
into a Q-graded algebra. More precisely, if κ = (k0, k1, . . . , kn) is a (n + 1)-tupple of

non-negative integers, then we define the monomial xκ := xk00 x
k1
1 · · ·xknn . The number

c · κ := c0k0 + c1k1 + · · ·+ cnkn is called the weight of xκ. Then we have

C[x0, x1, . . . , xn] =
⊕
d∈Q≥0

C[x0, x1, . . . , xn]d,

where C[x0, x1, . . . , xn]d is the subspace of polynomials spanned by monomials of weight
d. Equivalently, a polynomial f ∈ C[x0, x1, . . . , xn]d if and only if

f(λc0x0, λ
c1x1, . . . , λ

cnxn) = λdf(x0, x1, . . . , xn)

for every real λ > 0. The elements of C[x0, x1, . . . , xn]d are called weighted homogeneous
polynomials of weight d.

Suppose now that f is a weighted homogeneous polynomial of weight 1, such that, 0
is an isolated critical point of f . Slightly abusing the terminology, we will refer to such a
polynomial f as a weighted homogeneous singularity. The algebra

(5.1) Hf := C[x0, x1, . . . , xn]/(fx0 , fx1 , . . . , fxn), fxi :=
∂f

∂xi
,

is called the local algebra of f . The condition that 0 is an isolated critical point is
equivalent to the condition that the local algebra Hf is finite dimensional as a C-vector
space. The dimension µ of Hf is called the multiplicity of the critical point. Note that
since (fx0

, fx1
, . . . , fxn) is a homogeneous ideal, the Q-grading of C[x0, x1, . . . , xn] induces

a Q-grading of Hf . Let us fix a set of monomials xκ (κ ∈ B) that represent a basis of Hf .
Following physicists terminology, we split the basis B into 3 groups Brel, Bmar, and Birr

depending on whether the weight of the monomial xκ is respectively < 1, = 1, or > 1.
The monomials xκ with κ ∈ Brel are called relevant and the function

F (x, t) = f(x) +
∑
κ∈Brel

tκ x
κ

189
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is called a relevant deformation of f . Here the deformation parameters tκ are allowed to
be arbitrary complex numbers, that is, t = (tκ) is a point in Srel := CBrel . Our next goal
is to prove the following proposition.

Proposition 5.1. Let F be a relevant deformation of a weighted homogeneous sin-
gularity f . Put Zrel = X × Srel. Then (F, p : Zrel → Srel) is a family of functions in the
sense of Definition 4.1.

Proof. First, let us prove that p|CF : CF → Srel is a proper map. It is sufficient
to prove that if K ⊂ Srel is a bounded subset, then p−1(K) ∩ CF is bounded. Let
D = {x ∈ Cn+1 | |xi| ≤ 1 ∀i} be the compact polydisk. Given a critical point (ξ, t) ∈ CF ,
let us denot by r the maximal number in the set {|ξ0|1/c0 , |ξ1|1/c1 , . . . , |ξn|1/cn}. Let
dκ := c · κ be the weight of the monomial xκ. Then, since fxi is weighted homogeneous
of weight 1− ci, we have

rci−1Fxi(ξ, t) = fxi(y0, y1, . . . , yn) +
∑
κ∈Brel

kitκr
dκ−1(y0)k0 · · · yki−1

i−1 y
ki−1
i y

ki+1

i+1 · · · y
kn
n ,

where yi := r−ciξi (0 ≤ i ≤ n). The LHS must be 0, because (ξ, t) is a critical point.
Since t ∈ K and K is bounded, we get that

(5.2) |fxi(y0, y1, . . . , yn)| ≤ constK
∑
κ∈Brel

rdκ−1,

where the constant constK depends only on K and used that |yi| ≤ 1 for all i. Note
that according to our definition of r, we have |yi| = 1 for some i, that is, the point
y = (y0, y1, . . . , yn) belongs to the boundary ∂D. If the set p−1(K) ∩CF is not bounded,
then we will be able to find a sequence (ξ(l), t(l)) of points in it, such that, r(l) :=

max(|ξ(l)
i |1/ci) → ∞. Let y

(l)
i := (r(l))−ciξ

(l)
i . Then y(l) := (y

(l)
0 , . . . , y

(l)
n ) is a sequence

of points in the compact set ∂D. Passing to a subsequence if necessary, we may assume
that y(l) → y◦. Using the estimates (5.2) and the fact that dκ < 1 (∵ xκ is a relevant
monomial), we get that y◦ must be a critical point of f . But y◦ 6= 0, because y◦ is on the
boundary of the polydisk D. Using the homogeneity of f again we get that all points on
the complex line Cy◦ are critical points of f . This is a contradiction with the requirement
that 0 is an isolated critical point of f .

It remains to prove that if t◦ ∈ Srel is a fixed point, then the function ft◦ = F |X×{t◦}
has finitely many critical points. To begin with, let us prove that

(5.3) A := C[x0, x1, . . . , xn]/(∂x0
ft◦ , . . . , ∂xnft◦)

is a finite dimensional vector space. Suppose that xα is a monomial of weight c · α ≥ m,
where m is the maximal possible weight of a monomila xκ with κ ∈ B. Then we have

xα =
∑
κ∈B

aκx
κ +

n∑
i=0

gi(x)fxi ,

where aκ are complex numbers and gi are weighted homogeneous polynomials of weight
c · α − 1 + ci. Substituting fxi = Fxi −

∑
κ∈Brel

tκ∂xi(x
κ), we get that xα, modulo the

ideal (Fx0
, . . . , Fxn) coincides with∑

κ∈B

aκx
κ −

n∑
i=0

∑
κ∈Brel

tκgi(x)∂xi(x
κ).
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Note that gi(x)∂xi(x
κ) is homogeneous of weight c ·α−1+c ·κ and since κ ∈ Brel, c ·κ < 1,

so the weight of gi(x)xκ is smaller than the weight of xα. Repeating this procedure for
the monomials of gi(x)xκ whose weight is > m and so on we get that xα can be expressed
in the form ∑

β

aβ(t)xβ +

n∑
i=0

Gi(x, t)Fxi(x, t),

where the 1st sum is over all β whose weight c · β ≤ m. Specializing t = t◦ we get that
the set of monomials xβ of weight ≤ m represents a set of elements in the local algebra
A (see (5.3)) that span A as a C-vector space. This proves that A is a finite dimensional
vector space and hence it is an Artin algebra. On the other hand, the critical points of ft◦

correspond to the maximal ideals of A, so it remains only to recall that an Artin algebra
has finitely many maximal ideals. �

Our next goal is to construct tame deformations of f (see Definition 4.18). Put

Btame := {κ ∈ B | c · κ < 1− ci ∀i}.

Note that Btame ⊆ Brel. We will refer to Stame = CBtame ⊂ Srel as the space of tame
deformations. Let us equip Cn+1 with the standard Kähler metric g, that is, the com-
plexification of g is given by

g
( ∂

∂xi
,
∂

∂xj

)
= δi,j/2, g

( ∂

∂xi
,
∂

∂xj

)
= g
( ∂

∂xi
,
∂

∂xj

)
= 0.

Clearly g induces a relative Kähler metric on Ztame = X×Stame relative to Stame. Slightly
abusing the notation we will denote the relative Kähler metric by g too. After a short
computation we get the following formulas for the relative gradient of a holomorphic
function F : Ztame → C and its norm

∇(F ) = 2

n∑
i=0

Fxi
∂

∂xi
, ||∇(F )||2 = 2

n∑
i=0

|Fxi |2.

Proposition 5.2. The family (F, p : Ztame → Stame, g) is Kähler-complete and tame
(see Definitions 4.15 and 4.18).

Proof. The fact that the family is Kähler complete is clear (see Remark 4.16). The
proof that it is tame is very similar to the proof of the properness of the projection p|CF
in Proposition 5.1. Let us recall the definition of tame from Definition 4.18. It is sufficient
to check that the condition in the Definition is satisfied for ξ = ∂

∂tα
, where α ∈ Btame.

Furthermore, the main difficulty is to prove that the set Cη,ξ(V ) is bounded for every
bounded subset V ⊂ Stame. Let us concentrate on proving this and leave the rest of the
details as an exercise. Suppose that (x, t) ∈ Cη,ξ(V ). Since

√
2|Fxi | ≤ ||∇(F )||, we get

√
2
∣∣∣fxi(x) +

∑
κ∈Btame

tκkix
κ−ei

∣∣∣ ≤ η + |x|α,

where ki is the ith component of κ and ei is a multi-index whose components are all 0,
except for the ith one, which is 1. Using the triangle inequality, we get

|fxi(x)| ≤ η1 + η2|x|α + η3

∑
κ∈Btame

|x|κ−ei ,
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where η1 = η/
√

2, η2 = 1/
√

2, and η3 are constants whose value is not important – η3 is
chosen such that |kitκ| ≤ η3 for all t ∈ V . Let us write xi = rciyi, where y = (y0, . . . , yn)
is a point on the boundary of the polydisk D = {y ∈ Cn+1 | |yi| ≤ 1}. Using that fxi is
homogeneous of weight 1− ci, we get

|fxi(y)| ≤ rci−1η1 + rc·α+ci−1η2|y|α + η3

∑
κ∈Btame

rc·κ−1|y|κ−ei .

Since α and κ are tame all the powers of r in the above formula are negative. In particular,
the RHS converges to 0 when r → ∞. Just like in the proof of Proposition 5.1, if we
assume that Cη,ξ(V ) is not bounded, then we will be able to find a convergent sequence

of points y(l) on the boundary of the polydisk D, such that, the above inequality holds
for y = y(l) and r = r(l), where r(l) → ∞ as l → ∞. We get that the limit y◦ = lim y(l)

is a critical point of f on the boundary of D. Using that f is homogeneous, we get a
contradiction with the requirement that 0 is an isolated critical point of f . �

Our next goal is to determine the highest possible weight of a homogeneous element
in the local algebra Hf . Let us denote by Hessf (x) the determinant of the Hessian matrix

of f , that is, the matrix of size (n+ 1)× (n+ 1) whose (i, j) entry is ∂2f
∂xi∂xj

(0 ≤ i, j ≤ n).

The determinant Hessf (x) is also known as the Hessian of f . Note that Hessf (x) is a
weighted homogeneous polynomial of weight D :=

∑n
i=0(1−2ci). We would like to prove

the following proposition.

Proposition 5.3. a) The maximal possible weight of a homogeneous element in Hf

is D.
b) The subspace of Hf consisting of elements of weight D is one dimensional and the

class of Hessf (x) gives a basis.

The proof of the above proposition relies on constructing a Morse family deformation
of f and using the non-degeneracy of the classical residue pairing. Let us first construct
a Morse family. To begin with, let us assume that the weights ci are ordered in an
increasing order, that is, c0 ≤ c1 ≤ · · · ≤ cn. Let k be the unique integer number, such
that, ck−1 <

1
2 and ck = ck+1 = · · · = cn = 1

2 . Note that the weighted homogeneous
polynomial f has the form

(5.4) f(x) =
1

2

n∑
i,j=k

aijxixj +

n∑
i=k

f
(1)
i (x0, . . . , xk−1)xi + f (2)(x0, . . . , xk−1),

where f
(1)
i and f (2) are weighted homogeneous polynomials of weights respectively 1

2 and
1. The coefficients aij are constants independent of x satisfying aij = aji. Moreover,
the matrix whose (i, j) entry is aij must be non-degenerate, otherwise the function f has
non-isolated critical points of type (0, . . . , 0, ξk, . . . , ξn).

Remark 5.4. Note that after changing the coordinates of Cn+1 we can arrange

that all f
(1)
i = 0 and that (aij) is the identity matrix. In other words, every weighted

homogeneous singularity is R-equivalent to the direct sum of a Morse function and a
weighted homogeneous singularity for which all weights are strictly less than 1

2 .

Remark 5.5. The rank of the Hessian matrix of f at x = 0 is precisely n + 1 − k.
The number k is also known as the corank of f .

Lemma 5.6. The classes of the variables x0, . . . , xk−1 in Hf are linearly independent.
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Proof. Suppose that φ(x) :=
∑k−1
i=0 bixi is a linear function whose class in Hf is

0, that is, there exist weighted homogeneous polynomials gi(x) (0 ≤ i ≤ n), such that,
φ(x) =

∑n
i=0 gi(x)fxi . However, such an identity is impossible, because the weight of fxi

is 1− ci ≥ 1
2 , while φ(x) is a sum of linear functions of homogeneous weight < 1

2 . �

We claim that F (x, t) = f(x)+
∑k−1
i=0 tixi is a Morse family, where t = (t0, . . . , tk−1) ∈

Slin := Ck. Indeed, the critical set CF is by definition the complex subspace of Zlin :=
Cn+1 × Slin defined by

CF = {(x, t) ∈ Zlin | Fx0
= · · · = Fxn = 0}.

The first k equations, that is, Fxi = 0 (0 ≤ i ≤ k − 1) yield

ti = fxi =

n∑
j=k

∂xif
(1)
j (x0, . . . , xk−1)xj + ∂xif

(2)(x0, . . . , xk−1),

while the remaining n+ 1− k ones have the form
n∑
j=k

asjxj + f (1)
s (x0, . . . , xk−1) = 0, k ≤ s ≤ n.

The above equations can be solved uniquely for xj (k ≤ j ≤ n) and t in terms of
x0, . . . , xk−1. Therefore, the projection (x, t) 7→ (x0, . . . , xk−1) induces an isomorphism
of complex manifolds CF ∼= Ck. In particular, CF is a reduced complex space and hence
the corresponding family F is Morse (see Section 4.2.4). In other words, with respect to
x, F (x, t) is a Morse function for generic t ∈ Slin.

Let us prove Proposition 5.3. Recall that every family of functions is equipped with
a non-degenerate residue pairing. Let us consider the classical residue pairing JF for the
family (F, p : Zlin → Slin) (see Section 4.5.2). The residue pairing

(5.5) JF (dx,HessF dx) ∈ OSlin
,

where dx := dx0 ∧ · · · ∧ dxn, is easy to compute. Indeed, for generic t ∈ Slin, the function
F (x, t) is Morse as a function in x and the residue symbol

ResZξ/CF

[
Hessft(x)dx0 ∧ · · · ∧ dxn

∂ft
∂x0

, . . . , ∂ft∂xn

]
,

where ft(x) := F (x, t) and ξ is a critical point of ft, can be computed by switching to
Morse coordinates for ft. Let x = φ(y) be the change to Morse coordinates, that is,
f ◦ ϕ(y) = y2

0 + · · ·+ y2
n. The transformation law of the residue pairing implies that the

above residue symbol takes the form

(5.6)
1

(2πi)n+1

∫
|y0|=···=|yn|=ε

Hessft(ϕ(y)) det2(∂ϕ/∂y)
dy0 ∧ · · · ∧ dyn

2y0 · · · 2yn
.

Let us differentiate the identity f ◦ ϕ(y) = y2
0 + · · · + y2

n with respect to yk and yl and
substitute y = 0. Since ξ = ϕ(0) is a critical point of ft, we get

n∑
i,j=0

∂2ft
∂xi∂xj

(ϕ(0))
∂ϕi
∂yk

(0)
∂ϕj
∂yl

(0) = 2δk,l,

where ϕ(y) =: (ϕ0(y), . . . , ϕn(y)). Therefore, recalling the Cauchy residue theorem, we
get that the residue integral (5.6) is 1. The conclusion is that the value of the residue
pairing (5.5) at a generic point t is a constant equal to the number of critical points, i.e.,
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the Milnor number µ of f . Since the residue pairing is a holomorphic function in t, we
get that the pairing (5.5) must be µ for all values of t.

Now let us specialize our discussion to the value of the residue pairing at t = 0. Let
us identify Hf with the fiber of p∗ΩF at t = 0 by xκ 7→ xκdx. Then the residue pairing
induces a non-degenerate bilinear pairing Jf on Hf

Jf (xα, xβ) =
1

(2πi)n+1

∫
|fx0 |=···=|fxn |=ε

xα+βdx0 ∧ · · · ∧ dxn
fx0 · · · fxn

.

Let us chnage the coordinate inside the integral on the RHS by rescaling xi = λciyi,
where λ > 0 is a real number. Then the RHS is given by the same integral except that
the integrand is rescaled by λc·(α+β)−D. Therefore, the residue pairing is non-zero only
if the weights of xα and xβ add up to D. Part a) of Proposition 5.3 follows immediately,
for if there was a monomial xα representing an element of Hf of weight > D, then this
monomial would be orthogonal to Hf and since the residue pairing is non-degenerate
we get that xα must be 0 in the local algebra Hf . For part b), we already know that
Jf (1,Hessf (x)) = µ, so Hessf (x) can not be 0 in Hf . If ϕ is a 2nd element in Hf

of weight D, then ϕ − µ−1Jf (ϕ, 1) Hessf (x) is orthogonal to 1 and to all monomials of
weight > 0 (∵ it has weight D). Hence this linear combination is orthogonal to Hf and
by the non-degenerecy of Jf , we get that ϕ is proportional to Hessf (x).

Let us conclude this section with the following usefull corollary from the above dis-
cussion.

Corollary 5.7. The residue pairing Jf (xα, xβ) is non-zero only if c · α + c · β =
D. In the latter case, we have the following identity in the local algebra: µxαxβ =
Jf (xα, xβ) Hessf (x).

5.2. Frobenius structures for weighted homogeneous singularities

Let f(x0, . . . , xn) be a weighted homogeneous singularity of corank k, that is, the
weights of the variables x0, . . . , xk−1 are < 1

2 and the weights of xk, . . . , xn are 1
2 . We

have introduced 3 families of functions with bases respectively Slin ⊆ Stame ⊆ Srel. Fur-
thermore, note that for given an opposite subspace P ⊂ Hf and a holomorphic volume
form ϕ ∈ Ωf , by following the construction in Section 4.6.2, we can associate a formal

Frobenius manifold to the following formal family of functions (F̂ , p̂ : Ẑ → Ŝ), where

Ẑ = Cn+1, OẐ := OCn+1 [[tκ(κ ∈ B)]],

Ŝ = {0}, OẐ := C[[tκ(κ ∈ B)]],

and

F̂ (x, t) = f(x) +
∑
κ∈B

tκx
κ.

We are going to prove that the formal Frobenius manifold is in fact analytic, i.e., there
exists an open subset U ⊆ CB, such that, Srel = CBrel ⊂ U and a uniquely determined
Frobenius structure on U , such that, the formal germ of the Frobenius manifold U at 0
is isomorphic to the formal Frobenius manifold associated with the pair (P,ϕ). The idea
is to use the construction theorem of Hertling and Manin, which will be recalled next in
Section 5.2.1.



5.2. FROBENIUS STRUCTURES FOR WEIGHTED HOMOGENEOUS SINGULARITIES 195

5.2.1. The construction theorem of Hertling and Manin. Suppose that we
are given a data (M,K,∇r, C, θ,U , g), where

(i) M is a complex manifold.
(ii) K is a holomorphic vector bundle on M and ∇r is a flat connection on K.
(iii) C : TM → End(K) is a morphism of holomorphic vector bundles, that is, for

every holomorphic vector field X ∈ Γ(V, TM ) defined on some open subset V ⊂
M , we have an associated morphism CX : K|V → K|V of holomorphic vector
bundles.

(iv) θ and U : K → K are morphisms of holomorphic vector bundles, that is, θ and
U are global sections of End(K).

(v) g is a non-degenerate bi-linear pairing on K, such that,

g(CXa, b) = g(a,CXb),

g(Ua, b) = g(a,Ub),
g(θa, b) = −g(a, θb),

Xg(a, b) = g(∇rXa, b) + g(a,∇rXb).
for all X ∈ TM and a, b ∈ K.

Definition 5.8. The data (M,K,∇r, C, θ,U , g) is said to be a Frobenius type struc-
ture on M if the connection ∇ on the vector bundle C∗ ×K→ C∗ ×M defined by

∇X := ∇rX + w−1CX , X ∈ TM ,(5.7)

∇∂/∂w :=
∂

∂w
− w−1θ − w−2U(5.8)

is flat, where w is the standard coordinate function on C∗. �

The map C is usually called Higgs field, while θ is called grading operator.

Remark 5.9. If (M,K,∇r, C, θ,U , g) is a Frobenius type structure, then the set of
endomorphisms U and CX(X ∈ TM ) pairwise commute, while the endomorphism θ is
∇r-flat, that is,

∇rX(θ(a)) = θ(∇rX(a)), ∀X ∈ TM , a ∈ K. �

If t ∈ M , then we denote by Kt the fiber of K at t. Suppose that ζ ∈ K. We will
say that the fiber Kt is {CX(X ∈ TM ),U}-generated by ζ if every vector in Kt can be
written as a linear combination of vectors of the form CX1

◦CX2
◦ · · · ◦CXs ◦U l(ζ), where

X1, . . . , Xs ∈ TM,t are germs of holomorphic vector fields and l ≥ 0 is an integer. The
construction theorem of Hertling and Manin can be stated as follows.

Theorem 5.10 (Hertling-Manin construction). Suppose that (M,K,∇r, C, θ,U , g) is
a Frobenius type structure and that there exists a vector ζ ∈ Kt, such that,

(i) The map Cζ : TtM → Kt, X 7→ CX(ζ) is injective.
(ii) The fiber Kt is {CX(X ∈ TM ),U}-generated by ζ.

(iii) θ(ζ) = D
2 ζ for some complex number D.

Then the germ of the complex manifold M at t and the monomorphism Cζ can be ex-

tended uniquely to respectively a Frobenius manifold (M̃, ( , ), •, e, E) and an isomor-

phism TM̃ |M → K, such that, CX coincides with the Frobenius multiplication by X, U
with the Frobenius multiplication by the Euler vector field E, θ with the grading operator
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of the Frobenius manifold, ζ with the unit vector field e, and g with the Frobenius pairing
( , ). �

5.2.2. Opposite subspaces and Frobenius type structures. Suppose that (F, p :
Zrel → Srel) is the family of relevenat deformations of f , that is, Srel = CBrel , Zrel :=
Cn+1 × Srel, and

F (x, t) = f(x) +
∑
κ∈Brel

tκx
κ.

Due to the homogeneity of f , there is a natural degree operator deg : Ωf → Ωf , that is,

(5.9) deg(xκdx) := (c · κ+ c0 + · · ·+ cn)xκdx,

where dx := dx0 ∧ · · · ∧ dxn and the number appearing on the RHS in the brackets is
precisely the weight of the form xκdx.

Proposition 5.11. Let P ⊂ Ĥf be a homogeneous opposite subspace. Then the
corresponding degree operator (see Lemma 4.37) θP = −deg.

Proof. Let ω◦κ := σ(xκdx) be the lifts of the basis of Ωf represented by the forms

xκdx (κ ∈ B). The cohomology classes [xκdx] in Ĥ(0)
f form a C[[w]]-basis. Therefore,

(5.10) ω◦β =
∑
α

[xαdx]sαβ(w),

for some sαβ(w) ∈ C[[w]]. Note that the operator ρ = 0, because the class of f in Hf is 0.
Let θαβ be the entries of the operator θP with respect to the basis xαdx of Ωf . Then

w∇∂w(ω◦β) = −
∑
α

θαβω
◦
α.

On the other hand, note that (see also the proof of Lemma 6.3 below)

w∇∂w [xαdx] = dα [xαdx],

where dα := c · α + c0 + ·+ cn is the weight of xαdx. Let us apply w∇∂w to the RHS of
(5.10). We get ∑

α

[xαdx](dα + w∂w)sαβ(w),

Let s(w) be the matrix with entries sαβ(w) and δ – the diagonal matrix with entries dα.
Then the above formulas imply

−s(w) θP = δ s(w) + w∂ws(w).

Specializing w = 0 and using that s(0) is the identity matrix – by definition the forms ω◦α
and xαdx coincide modulo w – we get that θP = −δ. It remains only to use that δ is the
matrix of the degree operator deg in the basis xαdx. �

Let (P,ϕ) be a pair of a homogeneous opposite subspace P ⊂ Ĥf and a holomorphic
volume form ϕ ∈ Ωf , such that, θP (ϕ) = −rϕ (see Section 4.6.2). According to the
above proposition ϕ must be homogeneous of degree r, that is, ϕ can be represented by a
weighted homogeneous holomorphic volume form ψ(x)dx of weight r. On the other hand,
since ϕ is a holomorphic volume form, we must have ψ(0) 6= 0. Therefore, ψ must be
weighted homogeneous of weight 0. In other words, up to a constant ϕ coincides with the
class of the standard holomorphic volume form dx. In particular, the weight of the form
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ϕ must be r = c0 + · · ·+ cn. There is a natural candidate for a Frobenius type structure
in these settings, which we would like to present next.

Put M = Srel and let K be the vector bundle whose sheaf of sections is p∗ΩF –
here we used that p∗ΩF is a locally free sheaf (see Proposition 4.24). The Higgs field
C is defined by composing the Kodaira–Spencer map TM → p∗OCF and the map which
to a function ψ ∈ p∗OCF associates the endomorphism of p∗ΩF given by multiplication
by ψ. In other words, CX is the operator of multiplication by X(F ). Similarly, U is
the operator of multiplication by F . Furthermore, the grading operator θ is defined by
using the weighted-homogeneity of f . Namely, note that in order to define the grading
operator θ of a Frobenius type structure, it is sufficient to define it at a fixed point of
M . Indeed, since θ is ∇r-flat (see Remark 5.9) the values of θ at the remaining points
of M are uniquely determined. In our case, we choose t = 0. The fiber of K at t = 0 is
Ωf and we define θ := n+1

2 − deg. Furthermore, for pairing g, let us take the classical
residue pairing JF . Note that the skew-symmetry property of θ follows from Corollary
5.7, while the Frobenius properties of the Higgs fields CX and U are easy to varify from
the definition of JF . Finally, it remains to define the connection ∇r.

To begin with, let us recall the section σ : Ωf → Ĥ(0)
f constructed from the opposite

subspace P in Proposition 4.35. Let us redenote σ by σf and think of Ωf and Ĥ(0)
f as the

fibers of the vector bundles p∗ΩF and Ĥ(0)
F over t = 0. Following the construction before

Remark 4.39, let us extend σf to an embedding of vector bundles σF : p∗ΩF → Ĥ(0)
F .

Namely, let ω◦ ∈ Γ(Cn+1,Ωn+1
Cn+1)[[w]] be a holomorphic volume form representing the

cohomology class σf (ϕ). Put ω◦κ = σf (xκϕ). Since the cohomology classes ω◦α (α ∈ B)

form a C[[w]]-basis of Ĥf , we have

exp
( ∑
κ∈Brel

tκx
κ/w

)
[xβω◦] =

∑
α∈B

ω◦αEαβ(t, w),

where [ ] on the LHS denotes the cohomology class in ĤF . The above identity should

be viewed in Ĥf [[tκ(κ ∈ Brel)]] (see Lemma 4.38, a). The coefficients Eαβ(t, w) ∈
C((w))[[tκ(κ ∈ Brel]] defined by the above identity are the key to the entire construc-
tion. It is convenient to assign weight 1 − c · κ to each variable tκ and weight 1 to the
formal variable w. Then it is easy to check that Eαβ(t, w) must be homogeneous of
weight c · β − c · α. Since the weights of the variables tκ (κ ∈ Brel) are positive, the
coefficients in front of the powers of w in Eαβ(t, w) are polynomials in t. Let E(t, w)
be the matrix with entries Eαβ(t, w). Since E(0, w) = 1 + O(w), the matrix E(t, w) has
a Birkhoff factorization E(t, w) = T (t, w)A(t, w)−1, where T (t, w) = 1 + O(w−1) and
A(t, w) = A0(t) +A1(t)w + · · · , where Ak(t) are matrices with entries in C[[tκ(κ ∈ Brel)]]
with A0(t) being invertible. Moreover, the Birkhoff factorization is compatible with the
grading, i.e., the entries Tαβ(t, w) and Aαβ(t, w) are weighted homogeneous of weight
c ·β− c ·α. In particular, the entries of A(t, w) must be polyomials in t and w. Therefore,
the forms

ωβ :=
∑
α∈B

xαAαβ(t, w)ω◦

are analytic and represent cohomology classes [ωβ ] ∈ Ĥ(0)
F . According to Proposition 4.24,

the vector bundle p∗ΩF is trivial and the classes of the forms xαdx (α ∈ B) provide a

trivialization. Let us denot by [[ωβ ]] the image in Ĥ(0)
F /wĤ(0)

F = p∗ΩF of the cohomology
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class [ωβ ] under the natural quotient map, that is,

[[ωβ ]] =
∑
α∈B

xαAαβ(t, 0)[[ω◦]].

Since the matrix A(t, 0) is invertible, the classes [[ωβ ]] (β ∈ B) provide also a trivialization
of p∗ΩF . Let us define the map

(5.11) σF : p∗ΩF → Ĥ(0)
F , [[ωβ ]] 7→ [ωβ ].

Note that at t = 0, since A(0, w) = E(0, w)−1, we have ωβ |t=0 = ω◦β , that is, σF is an
extension of σf . The points t ∈ Srel for which σF induces an injective map between the
fibers at t is an open subset V of Srel containing 0. Moreover, the set V is invariant
under the rescaling t ∈7→ λ · t, where (λ · t)κ := λ1−c·κtκ and λ is a positive real number.
By definition of a relevant deformation 1 − c · κ > 0, so the rescaling invariance of V
forces V = Srel. We get that the map σF is an injective morphism of holomorphic vector
bundles. The connection ∇r on K = p∗ΩF is defined by requiring that [[ωβ ]] are flat
sections, that is, ∇rX [[ωβ ]] = 0 for all X ∈ TM .

Proposition 5.12. The data (M,K,∇r, C, θ,U , g) constructed above is a Frobenius
type structure.

Proof. The proof is essentially the same as the union of the proofs of Lemma 4.40
and Theorem 4.41. Let us just outline the main steps and leave it as an exercise to adjust
to the current settings the arguments from the proofs of Lemma 4.40 and Theorem 4.41.

Let us denote by Cκ(t) the matrix with entries Cκαβ(t) defined by

xκ[[ωβ ]] =
∑
α∈B

[[ωα]]Cκαβ(t), β ∈ B.

The Gauss-Manin connection takes the following form in the frame [ωβ ] (β ∈ B):

w∇∂/∂tκ [ωβ ] =
∑
α∈B

[ωα]Cκαβ(t),(5.12) (
w∇∂/∂w +∇E

)
[ωβ ] = (c · β + c0 + · · · cn) [ωβ ],(5.13)

where E =
∑
κ∈Brel

(1 − c · κ)tκ∂tκ is the Euler vector field. The proof of the above
differential equations is identical to the proof of Lemma 4.40. Let us also point out
the following important byproducts of the proof. The matrix series T (t, w) satisfies the
following differential equations

w∂tκT (t, w) = T (t, w)Cκ(t),

(w∂w + E)T (t, w) = [deg, T (t, w)],

where slightly abusing the notation we denoted by deg the diagonal matrix with entries
c · α + c0 + · · · + cn, that is, this is the matrix of the degree operator (5.9) in the basis
[[xαdx]] (α ∈ B). The 2nd differential equation implies that T (t, w)wdeg is a solution to
a differential equation in w that has only two singularities, i.e., a Fuchsian singularity at
w = ∞ and an irregular singularity at w = 0. Therefore, for each t ∈ Srel the operator
series T (t, w) is analytic for all |w| > 0. Moreover, since the matrices Cκ(t) are polynomial
and hence analytic in t, the operator series T (t, w) is holomorphic for all t ∈ Srel.

Let us extend the map (5.11) OM [[w]]-linearly to a map σ̂F : p∗ΩF [[w]] → Ĥ(0)
F .

According to Proposition 4.24 the map σ̂F is an isomorphism. The connection in the
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definition of a Frobenius type structure (see Definition 5.8) can be interpreted also as a
connection on K[[w]]. We claim that in the current settings this connection is a pullback
of the Gauss–Manin connection via σ̂F . Indeed, using (5.12) we get

(σ̂−1
F ∇∂tκ σ̂F )[[ωβ ]] = σ̂−1

F ∇∂tκ [ωβ ] =
∑
α∈B

[[ωα]]Cκαβ(t) = C∂tκ [[ωβ ]].

where we used that the Higgs field C∂tκ is the operator of multiplication by ∂tκ(F ) = xκ.

Since by definition ∇r∂tκ [[ωβ ]] = 0, the above formula implies that σ̂−1
F ∇X σ̂F coincides

with (5.7). Note that

(σ̂−1
F w∇E σ̂F )[ωβ ] = E(F )[[ωβ ]] = F [[ωβ ]],

where we used that F = E(F ) +
∑n
i=0 cixiFxi and the fact that the derivatives Fxi act

trivially on p∗ΩF . By definition, the operator of multiplication by F is U . Therefore, the
operator σ̂−1

F ∇E σ̂F = ∇rE + w−1U . Furthermore, using (5.13) we get

(σ̂−1
F w∇∂w σ̂F )[[ωβ ]] =

(
deg−w−1U

)
[[ωβ ]].

Comparing with (5.8) and recalling that θ = n+1
2 − deg, we get that the difference of the

connection operators σ̂−1
F ∇∂w σ̂F and (5.8) is the scalar matrix n+1

2 Id.
It remains only to prove that the residue pairing JF is ∇r-flat, that is, that for all

α, β ∈ B the pairings JF ([[ωα]], [[ωβ ]]) are constants independent of t. This follows from
the identity

KF ([ωα], [ωβ ]) = Jf (ω◦α, ω
◦
β)wn+1,

which can be proved in the same way as (4.45). Indeed, the above identity implies that

the higher residue pairings K
(p)
F ([ωα], [ωβ ]) = 0 for p > 0, while for p = 0 we get

JF ([ωα], [ωβ ]) = K
(0)
F ([ωα], [ωβ ]) = Jf (ω◦α, ω

◦
β). �

5.2.3. Extension of the Frobenius type structure. We would like to prove
that the Frobenius type structure from Proposition 5.12 can be extended to a Frobenius
structure defined in some open neighborhood of M = CBrel in CB. The existence of an
extension is guaranteed by the construction theorem of Hertling and Manin. Namely, it is
straightforward to check that the Frobenius type structure from Proposition 5.12 satisfies
conditions (i)–(iii) in Theorem 5.10. However, in our settings the proof of Theorem 5.10
simplifies significantly, so we would like to give a direct proof.

Let us assume that the weighted homogeneous singularity f has the form (5.4). Note
that in the local algebra Hf the classes of the variables xi with k ≤ i ≤ n can be expressed
in terms of the variables x0, . . . , xk−1. Therefore, we may assume that the multi-index
set B consists only of tupples β = (b0, . . . , bn), such that, bi = 0 for k ≤ i ≤ n. Let

us compare the formal Frobenius manifold (Ŝ := {0},OŜ = C[[tβ(β ∈ B)]]) constructed
from the pair (P,ϕ) (see Theorem 4.41) and the Frobenius type manifold constructed in
Proposition 5.12. The Frobenius type structure is encoded into the following connection
on p∗ΩF [[w]]

∇ = d+
∑
κ∈Brel

w−1Cκ(t)dtκ +
(
w−1 deg−w−2U(t)

)
,
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where we trivialized p∗ΩF via the frame [[ωβ ]] (β ∈ B), Cκ(t) is the matrix of the operator
of multiplication by xκ, and U is the matrix of the operator of multiplication by F , that
is,

xκ[[ωβ ]] =
∑
α

Cκαβ(t)[[ωα]],

F (x, t)[[ωβ ]] =
∑
α

Uαβ(t)[[ωα]].

Let us consider the miniversal deformation of f

F̂ (x, t, y) = F (x, t) +
∑

β∈BmartBirr

yβx
β ,

where we denoted by y the set of deformation parameters corresponding to deformations
that are not relevant. The formal Frobenius structure is encoded into the following
connection

∇̂ = d+ w−1
( ∑
κ∈Brel

Ĉκ(t, y)dtκ +
∑

β∈BmartBirr

Ĉβ(t, y)dyβ

)
+
(
w−1 deg−w−2Û(t, y)

)
,

where the notation is as follows. Firstly, this is a connection on the sheaf p∗ΩF̂ [[w]] written
in the trivializing frame [[ω̂β ]] (β ∈ B), where the forms ω̂β are constructed in the same way

as ωβ (see also (4.41)). The connection matrices Ĉβ(t, y) (β ∈ B) are just the matrices of

multiplication by xβ in p∗ΩF̂ in the basis {[[ω̂β ]]} and Û is the operator of multiplication

by F̂ . Note that the restriction of ∇̂ to y = 0 is precisely ∇.

We would like to prove that the connection ∇̂ is analytic. More precisely, the entries

of Ĉβ and Û are homogeneous functions in t and y. Since the weights of the t-variables
are positive, we get that the entries of the connection matrices are formal power series in
y whose coefficients are polynomial in t. Suppose that t◦ ∈ CBrel is an arbitrary point. We
would like to prove that there exists a positive real number r◦ (dependning on t◦), such

that, the connection matrices Ĉβ(t, y) and Û(t, y) are convergent for every (t, y) ∈ CB,
such that, |tκ − t◦κ| < r◦ ∀κ ∈ Brel and |yβ | < r◦ ∀β ∈ Bmar t Birr. To begin with, note

that it is sufficient to prove the convergence of Ĉi(t, y) := Ĉei(t, y) (0 ≤ i ≤ k− 1), where
ei ∈ B is the multi-index for which only the ith component is 1 and the remaining ones
are 0. Indeed, due to the homogeneity of f , we have

F̂ =
( n∑
i=0

cixi∂xi +
∑
κ∈Brel

(1− c · κ)tκ∂tκ +
∑

β∈BmartBirr

(1− c · β)yβ∂yβ

)
F̂ .

Therefore, the operator Û can be expressed in terms of the Higgs fields

Û =
∑
κ∈Brel

(1− c · κ)tκĈκ(t, y) +
∑

β∈BmartBirr

(1− c · β)yβĈβ(t, y).

Furthermore, if β = (b0, . . . , bk−1, 0, . . . , 0), then since Ĉβ is the operator of multiplication

by xβ and Ĉi is the operator of multiplication by xi, we get

Ĉβ(t, y) = Ĉ0(t, y)b0 · · · Ĉk−1(t, y)bk−1 .

In order to prove the convergence of Ĉi(t, y) we recall the Cauchy-Kowalevski theorem
(see [17], Theorem 1.41). We follow the notation of Hertling and Manin ([32], formulas
(2.42)–(2.43)):
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Theorem 5.13 (Cauchy-Kowalevski Theorem). Given a positive integer N , matrices

Ai ∈M(N ×N,C{t0, . . . , tk−1, y, x1, . . . , xN}) (0 ≤ i ≤ k − 1)

and
B ∈M(N × 1,C{t0, . . . , tk−1, y, x1, . . . , xN})

there exists a unique vector

Φ ∈M(N × 1,C{t0, . . . , tk−1, y})
with

∂Φ

∂y
=

k−1∑
i=0

Ai(t, y,Φ)
∂Φ

∂ti
+B(t, y,Φ),

Φ(t, 0) = 0,

where M(N ×K,R) denotes the ring of matrices of size N ×K whose entries belong to
R.

The Cauchy-Kowalevski theorem should be applied successively for each variable yβ
(β ∈ Bmar t Birr). Let us perform just the first step in this process. The remaining steps
are completely analogous. In other words, let us pick some non-relevant deformation
parameter yβ and set the remaining yα = 0 for α 6= β. For simplicity, we put y := yβ .

The flatness of ∇̂ implies that

(5.14)
∂Ĉi
∂y

=
∂Ĉβ
∂ti

= ∂ti

(
Ĉ0(t, y)b0 · · · Ĉk−1(t, y)bk−1

)
.

Let us denote by Φ the vector whose components Φiαγ are indexed by tripples (i, α, γ),
such that, 0 ≤ i ≤ k − 1 and α, γ ∈ B. Let Φi be the matrix of size B × B whose (α, γ)-

entry is Φiαγ . It is easy to see that under the substitution Φi(t, y) := Ĉi(t, y) − Ci(t)
the PDE (5.14) transforms into a PDE that has the form of the PDE in the Cauchy–
Kowalevski theorem. Indeed, let us denote by fαγ(t,Φ) the (α, γ)-entry of the matrix
(Φ0 + C0(t))b0 · · · (Φk−1 + Ck−1(t))bk−1 . Clearly, fαγ(t,Φ) is a polynomial in Φ and t
and in particular an element in C{t0 − t◦0, . . . , tk−1 − t◦k−1,Φ}. Using the chain rule it is

straightforward to verify that (5.14) is equivalent to saying that Φi(t, y) = Ĉi(t, y)−Ci(t)
is a solution to the following PDE

∂Φ

∂y
=

k−1∑
i=0

Ai(t,Φ)
∂Φ

∂ti
+B(t,Φ),

where Ai(t,Φ) is a matrix with entry (i′α′γ′, i′′α′′γ′′) given by

Ai,i′α′γ′,i′′α′′γ′′(t,Φ) := δi,i′
∂fα′γ′

∂Φi′′α′′γ′′
(t,Φ)

and B(t,Φ) is a vector column with iαγ-entry given by

Biαγ(t,Φ) :=
∂fαγ
∂ti

(t,Φ).

Note also that if we follow the algorithm used to define the two connections ∇̂ and ∇,

then we see immediately that the restriction of the connection ∇̂ to y = 0 coincides with

∇. In other words, Ĉi(t, 0) = Ci(t). It remains only to recall the Cauchy–Kowalevski
theorem.
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5.3. Homotopy type of the Milnor fiber

The goal of this section is to prove that the Milnor fiber of a weighted homogeneous
singularity has the homotopy type of a bouquet of spheres. In particular, we will introduce
the notion of vanishing cycles and Milnor lattice.

5.3.1. Morse theory for non-compact manifolds. We will make use of Palais’
generalization of Morse theory to non-compact Riemannian manifolds. Let us recall the
appropriate results from [49]. Suppose thatM is a complete smooth Riemannian manifold
and that φ : M → R is a Morse function. Let us denote by g the Riemannian metric
on M and by ∇φ the corresponding gradient vector field, that is, 〈dφ, v〉 = g(∇φ, v) for
every vector field v on M .

Definition 5.14 (Condition (C)). The function φ is said to satisfy condition (C) if
for any subset S ⊂M on which

(i) φ is bounded on S, that is, there exists a constant K, such that |f(s)| < K for
all s ∈ S,

(ii) ∇φ is not bounded away from 0, that is, for every ε > 0, there exists s ∈ S,
such that, ||∇φ(s)|| < ε,

then there is a critical point of φ adherent to S, that is, there exists a sequence {sn} in
S converging in M to a critical point of φ. �

If condition (C) is satisfied, then it is easy to see that φ has isolated critical values
and that for every critical value u of φ there are only finitely many critical points on the
critical level φ−1(u). Put Ma := φ−1(−∞, a]. It turns out that if condition (C) holds,
then the conclusions of Morse theory describing the change of the homotopy type of Ma

as a goes through a critical value u continue to hold. Let us give a slightly more precise
statement. Recall that the index (resp. co-index) of a Morse critical point ξ of a function
φ is the number counted with multiplicity of negative (resp. positive) eigenvalues of the
Hessian matrix of φ at the point ξ. Furthermore, let us denote by Dk the unit ball in Rk.
The product Dk × Dl is called a handle of type (k, l).

Definition 5.15. Let X be a smooth manifold with boundary and Y ⊂ X a closed
submanifold with boundary. We say that X is obtained from Y by the disjoint attach-
ments of handles of type ((k1, l1), . . . , (ks, ls)) if there exist pairwise disjoint closed subsets
h1, . . . , hs ⊂ X and homeomorphisms ψi : Dki × Dli → hi (1 ≤ i ≤ s), such that,

(i) X = Y ∪ h1 ∪ · · · ∪ hs.
(ii) The restriction of ψi induces a smooth isomorphism Ski−1 × Dli ∼= hi ∩ ∂Y ,

where Ski−1 is the boundary of Dki .
(iii) The restriction of tiψi induces a smooth isomorphism⊔

i

Int(Dki)× Dli ∼= X \ Y,

where Int(S) denotes the interior of S.

The pairs (ψi,Dki × Dli) will be called handles of Y and if the above conditions holds,
then we will write X = Y ∪si=1 ∪ψiDki × Dli . �

Suppose that φ is a Morse function satisfying condition (C). Let u be a critical
value of φ and let ξ1, . . . , ξs be the critical points of φ on the level φ−1(u). Let ki
and li be respetcively the index and the co-index of φ at ξi. For given ε > 0, let us
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define W = φ−1(u − 2ε,+∞). For each a > u − 2ε, put Wa := φ−1(u − 2ε, a] and

W̃a := φ̃−1(u− 2ε, a].

Theorem 5.16 (Palais). If ε > 0 is sufficiently small, then there exists a smooth

function φ̃ : W → R with the following properties:

(i) The support of φ̃ − φ|W is a disjoint union of open subsets Vi (1 ≤ i ≤ s) and
each Vi is contained in a compact neighborhood of the critical point ξi.

(ii) W̃u+ε = Wu+ε and W̃u−ε is obtained from Wu−ε by disjointly attaching handles
of type ((k1, l1), . . . , (ks, ls)).

(iii) The flow of the vector field ∇φ
∇φ(φ̃)

defines a deformation retract W̃u+ε → W̃u−ε.

Note that since Dli are contractible, conditions (ii) and (iii) imply that Mu+ε =
M−2ε ∪Wu+ε is homotopic to a topological space obtained from Mu−ε = M−2ε ∪Wu−ε
by attaching cells Dki of dimension ki.

For the sake of completeness, let us also recall the definition of φ̃. First, let λ : R→ R
be a smooth monotone decreasing function, such that,

λ(x) =


1 if x ≤ 1

2 ,

0 if x ≥ 1,

∈ (0, 1) if 1
2 < x < 1.

Remark 5.17. The region in R2 defined by

x2 − y2 − 3

2
ε λ
(x2

ε

)
≤ −ε,

where ε > 0 is a positive number, is obtained from the region x2 − y2 ≤ −ε by attaching
a handle of type (1, 1). In the special case when M = R2 and φ(x, y) = x2 − y2, the
function

φ̃(x, y) := x2 − y2 − 3

2
ε λ
(x2

ε

)
. �

Let ϕi : Ui →M be a Morse coordinate chart on M , that is, Ui is an open neighbor-
hood of 0 ∈ Rn, ϕi(0) = ξi, and

φ ◦ ϕi(x) = u+ x2
1 + · · ·+ x2

l − x2
l+1 − · · · − x2

n.

Let 〈 , 〉 be a positive definite symmetric bi-linear pairing on Rn, where n = dimR(M).
The linear structure of Rn induces a trivialization of the tangent bundle TUi ∼= Ui ×Rn.
In order to make a distinction between points in Ui and tangent vectors to Ui, let us agree
to represent the points by vector-rows and the tangent vectors by vector-columns. Using
this trivialization, we identify 〈 , 〉 with a flat Riemannian metric on Ui. Note that in
the local chart Ui, the Riemannian metric g on M has the form

gϕi(x)(dϕi(u), dϕi(v)) = 〈Gi(x)u, v〉, u, v ∈ Rn,
where Gi(x) is a n × n matrix depending smoothly on x ∈ Ui. If x = (x1, . . . , xn) ∈ Ui,
then let us denote by xT the vector column with entries x1, . . . , xn. The map x 7→ xT

should be viewed as a vector field on Ui. Then we have

φ ◦ ϕi(x) = u+ 〈PixT , xT 〉 − 〈(1− Pi)xT , xT 〉,
where Pi is a uniquely determined n× n matrix, self-adjoint with respect to the pairing
〈 , 〉. It can be proved that Pi is a projection matrix, that is, P 2

i = Pi. There exists a
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choice of the pairing 〈 , 〉, such that, the operators Pi and Gi(0) commute. Let us fix such
a choice 〈 , 〉i and denote by Dni (0, r) = {x ∈ Rn | 〈xT , xT 〉i ≤ r2} the corresponding ball
in Rn with radius r and center 0. First, let us choose δ > 0 so small that Dni (0, 2δ) ⊂ Ui
for all 1 ≤ i ≤ s and then let us pick ε < δ2. Put

φ̃(p) = φ(p)− 3ε

2
λ(〈Piϕ−1

i (p)T , ϕ−1
i (p)T 〉/ε),

where p ∈ ϕ(Dni (0, 2δ)) ∩W . Let Vi be the set of points p ∈ ϕ(Dni (0, 2δ)) ∩W for which

φ̃(p) 6= φ(p). If p ∈ Vi, then we must have 〈PxT , xT 〉 < ε, where x = ϕ−1(p). Since
p ∈W , we also have

u− 2ε ≤ φ(p) = u+ 〈PixT , xT 〉i − 〈(1− Pi)xT , xT 〉i < u+ ε− 〈(1− Pi)xT , xT 〉i.

Therefore, 〈(1− Pi)xT , xT 〉i < 3ε and

〈xT , xT 〉i = 〈PixT , xT 〉i + 〈(1− Pi)xT , xT 〉i < 4ε < 4δ2.

This proves that Vi ⊂ Dni (0, 2
√
ε) ⊂ Int(Dni (0, 2δ)) and hence we can extend the definition

of φ̃(p) for all p ∈W by defining φ̃(p) = φ(p) for all p /∈ Dni (0, 2
√
ε) ∩W .

Let us point out that after introducing the above notation the proof of Palais’ theorem
is not so hard. In fact, parts (i) and (ii) are straightforward to verify. In order to prove
(iii), one has first to prove that by decreasing ε if necessary, we can arrange that the

function ∇φ(φ̃) is positive in the domain φ̃−1(u− 5ε/4, u+ 5ε/4). This is a local problem
in which the requirement that Pi and Gi(0) commute plays an essential role (see [49],
Section 12, Proposition (1)). Then the rest of the proof amounts to proving that both

the negative and the positive time flow lines of the vector field ∇φ
∇φ(φ̃)

through a point of

the domain φ̃−1[u − ε, u + ε] exits the domain in a finite time. The proof of this fact is
identical to the proof of Lemma 4.20.

5.3.2. Homotopy type of the Milnor fiber. Let us return back to the settings
where f ∈ C[x0, . . . , xn] is a weighted homogeneous singularity. Let k be the co-rank
of f and suppose that the variables xi are enumerated in such a way that their weights
c0 ≤ · · · ≤ ck−1 < ck = · · · = cn = 1

2 . In this section we will be interested in the family

(F, p : Zlin → Slin) of linear deformations of f , that is, Zlin = Cn+1 × Ck, Slin = Ck, and

F (x, t) := f(x) + t0x0 + · · ·+ tk−1xk−1,

where t = (t0, . . . , tk−1). According to Proposition 5.2, the above family is Kähler com-
plete and tame. Therefore, according to Theorem 4.19, the map

Φ : Cn+1 × Ck → C× Ck, (x, t) 7→ (F (x, t), t)

induces a locally trivial smooth fibration

(5.15) Cn+1 × Ck \ Φ−1(DF )→ C× Ck \DF ,

where DF = Φ(CF ) is the discriminant of Φ (see Section 4.2.5). The fiber of Φ over a
point (λ, t) is the complex hypersurface Zλ,t := {x ∈ Cn+1 | F (x, t) = λ}. Note that
this is a non-singular hypersurface if and only if (λ, t) /∈ DF . The fibration (5.15) will be
called the Milnor fibration of F .

Remark 5.18. We restricted ourselves to linear deformations only, but the construc-
tions in this section work for tame deformations as well.
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We would like to prove that the non-singular fibers Zλ,t have the homotopy type of
a bouquet of spheres ∨µi=1Sn. The idea of the proof is due to Milnor – [48], Theorem 6.5
(see also [6]). Moreover, we would like to introduce the notion of a vanishing cycle and
to construct a Z-basis of Hn(Zλ,t,Z) consisting of vanishing cycles.

Since (5.15) is a locally trivial fibration the homotopy types of all non-singular fibers
Zλ,t are the same. Moreover, the disjoint unions

(5.16) Hn :=
⋃

(λ,t)/∈DF

Hn(Zλ,t,C) and Hn :=
⋃

(λ,t)/∈DF

Hn(Zλ,t,C)

have a natural structure of holomorphic vector bundles on C × Ck \ DF equipped with
flat connections. We will refer to these bundles as respectively the vanishing cohomology
and the vansihing homology bundles and to the corresponding flat connection as a Gauss–
Manin connection. In order to solve the problems stated above we may choose any
non-singular fiber that we wish.

Lemma 5.19. There exists t◦ ∈ Ck, such that, F (x, t◦) is a Morse function whose
critical values have pairwise distinct imaginary parts.

Proof. We already know that the family (F, p : Zlin → Slin) is Morse – see Section
5.1. Therefore, the projection map p induces an analytic covering p|CF : CF → Ck
whose branching locus consists of t ∈ Ck, such that, F (x, t) is not a Morse function – see
Lemma 4.10. Let t ∈ Ck be a non-branching point and let V ⊂ Ck be a sufficiently small
open neighborhood, such that, p−1(V ) ∩ CF = tµi=1Vi, where each Vi is biholomorphic

to V , that is, p|Vi : Vi → V is a biholomorphism. Let ξ(i) be the inverse of p|Vi , then

ξ(i)(t) = (ξ
(i)
0 (t), . . . , ξ

(i)
n (t)) (1 ≤ i ≤ µ, t ∈ V ) are the critical points of F (x, t) and

ui(t) = F (ξ(i)(t), t) are the corresponding critical values. Differentiating with respect to

ta and using that ξ(i)(t) is a critical point, we get ∂ui
∂ta

= ξ
(i)
a (t) for all 0 ≤ a ≤ k − 1.

Note that the first k coordinates of ξ(i)(t) uniquely determine the remaining n + 1 − k
ones. Since the critical points are pairwise distinct, we get that if i 6= j, then ui and uj
are different holomorphic functions on V and hence Im(ui) and Im(uj) are different real
analytic functions. For t◦ we can choose any point in the complement of the real analytic
hypersurface in V defined by

∏
1≤i<j≤µ(Imui(t)− Imuj(t)) = 0. �

Let us choose t◦ as in Lemma 5.19, that is, F (x, t◦) is a Morse function and its critical
values u◦i (1 ≤ i ≤ µ) have pairiwise distinct imaginary parts. Let λ◦ be a positive real
number, such that, −λ◦ < Re(u◦i ) < λ◦ for all 1 ≤ i ≤ µ. Let us apply Morse theory to
M = Cn+1 and φ(x) := −ReF (x, t◦).

Lemma 5.20. The function φ satisfies condition (C).

Proof. Suppose that S ⊂ Ck is a subset, such that, ||∇φ(x)|| < K for all x ∈ S for
some constant K and that ∇φ is not bounded away from 0, that is, there exists a sequence
sn ∈ S, such that, ||∇φ(sn)|| → 0 as n → ∞. On the other hand, linear deformations

are tame – see Proposition 5.2 and ||∇F (x)|| =
√

2||∇φ(x)||. Therefore, the set {x ∈
Cn | ||∇φ(x)|| ≤ K} is a compact subset of Ck containing S and hence the sequence {sn}.
However, in a compact subset every sequence has a convergent subsequence. Therefore,
the sequence {sn} has a convergent subsequence, which clearly converges to a critical
point of F (x, t◦). It remains only to note that for a holomorphic function F the critical
points of F and Re(F ) are the same. �
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It is an easy exercise to prove that all critical points of φ have index n + 1 and
co-index n + 1. If λ ∈ C, then let us denote by Mλ := φ−1(−∞,Re(λ)]. Recalling
Theorem 5.16, we get that for every critical value u◦i there exists an ε > 0 and a handle
ψi : Dn+1×Dn+1 →M−u◦i+ε, such that, the boundary Sn×Dn+1 is attached to M−u◦i−ε.

Let Dn+1(0, R) be the ball in Rn+1 with center 0 and radius R. We claim that for every
R ≥ 1, by choosing ε sufficiently small so that all handles are mapped in a sufficiently
small neighborhood of the corresponding critical point, we can extend ψi to a handle

ψ̃i : Dn+1(0, R)× Dn+1 →M−u◦i+ε,

such that, the boundary ∂Dn+1(0, R) × Dn+1 is attached to M−u◦i−ε−R+1. Indeed, let

G(x, t) denotes the time-t flow line of the vector field − ∇φ
∇φ(φ) starting at the point x, that

is, G(x, 0) = x. Since ∂t(F (G(x, t))) = 1 we have F (G(x, t)) = F (x) + t. Let us define

ψ̃i(x, y) = G(ψi(x/r, y), r − 1), r := ||x|| ≥ 1, y ∈ Dn+1.

We have

F (G(ψi(x/r, y), r − 1)) = F (ψi(x/r, y)) + r − 1.

Since we can arrange that F (ψi(x/r, y)) is in a sufficiently small neighborhood of u◦i and
all critical values u◦j have pairwise different imaginary parts we get that the flow lines used

to define the extension ψ̃i can not converge to a critical value, that is, they are defined
for all r ≥ 1. Since (x/r, y) ∈ ∂Dn+1 × Dn+1 the point ψi(x/r, y) ∈ ∂M−u◦i−ε, that is,

φ(G(ψi(x/r, y), r − 1)) = −Reu◦i − ε− r + 1.

Let us choose the radius R for the extension ψ̃i to be Ri = 1 + λ◦ −Reu◦i − ε. Then the

boundary Sn(0, Ri)× Dn+1 of the handle ψ̃i is attached to M−λ◦ .

Proposition 5.21. The fibers of the Milnor fibration (5.15) have the homotopy type
of a bouquet of µ spheres, where µ is the Milnor number of f .

Proof. It is sufficient to prove the proposition for Zλ◦,t◦ , where λ◦ and t◦ are chosen
as above. We will assume that n ≥ 2 and leave the case n = 1 as an exercise. Note that

M−λ◦ = {x ∈ Cn+1 | ReF (x, t◦) ≥ λ◦}
is the total space of the restriction of the Milnor fibration to {Reλ ≥ λ◦}×{t◦} ⊂ C×Ck.
Since λ◦ is a deformation retract of {Reλ ≥ λ◦} and smooth fibrations have the homotopy
lifting property, the fiber Zλ◦,t◦ is also a deformation retract of M−λ◦ . For a similar
reason, Mλ◦ is a deformation retract of Cn+1. Finally, according to Theorem 5.16

Mλ◦ = M−λ◦ ∪µi=1 ∪ψ̃iD
n+1(0, Ri)× Dn+1.

Attaching cells of dimension n + 1 does not change the homotopy groups πi with 0 ≤
i ≤ n − 1. Therefore, πi(M−λ◦) = πi(Mλ◦) = 0 for all 0 ≤ i ≤ n − 1. By the Hurewicz
theorem (here we have to use that n ≥ 2!), the natural map πn(M−λ◦)→ Hn(M−λ◦ ,Z) is
an isomorphism. We claim that the homology classes of the spheres Sn(0, Ri), embedded

in M−λ◦ via ψ̃i form a Z-basis of Hn(M−λ◦ ,Z). If this is proved, then the proof can be
completed as follows. Let us construct a map

(5.17) (Sn ∨ · · · ∨ Sn,base point)→ (M−λ◦ ,base point)

where the number of spheres in the bouquet is µ and the base point of M−λ◦ is chosen
arbitrary. The ith copy of Sn in the bouquet is homotopic to I ∨ Sn, where I = [0, 1] is
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an interval. We choose an isomorphism between Sn ∼= ψ̃i(Sn(0, Ri)) and extend it to a
map I ∨ Sn → M−λ◦ in such a way that the interval I is mapped to a path connecting

the sphere ψ̃i(Sn(0, Ri)) with the base point. The map (5.17) induces an isomorphism
between the homotopy groups. Recalling the Whitehead’s theorem, we get that (5.17) is
a homotopy equivalence.

It remains only to proove our claim about Hn(M−λ◦ ,Z). Let us consider the long
exact sequence in homology for the pair (Mλ◦ ,M−λ◦)

0 = Hn+1(Mλ◦) // Hn+1(Mλ◦ ,M−λ◦)
∂ // Hn(M−λ◦) // Hn(Mλ◦) = 0

where all homology groups are with coefficients in Z and the homology of Mλ◦ vanishes be-
cause Mλ◦ is homotopic to Cn+1. We get that the boundary morphism in the longe exact
sequence gives an isomorphism Hn+1(Mλ◦ ,M−λ◦) ∼= Hn(M−λ◦). The pair (Mλ◦ ,M−λ◦)
has the homotopy extension property. Therefore

Hn+1(Mλ◦ ,M−λ◦) = H̃n+1(Mλ◦/M−λ◦) = H̃n+1(
∨
i

Dn+1/∂Dn+1) =

µ⊕
i=1

H̃n+1(Sn+1).

This proves that the relative homology group Hn+1(Mλ◦ ,M−λ◦) ∼= Zµ and that a Z-basis

is given by the homology classes of the handles ψ̃i. �

5.3.3. Picard–Lefschetz formula. Let us recall some basic terminology from the
so-called Picard–Lefschetz theory. We refer to Chapter 2 in [6] for more details. Let us
consider the homology group Hn(Zλ◦,t◦ ,Z) where (λ◦, t◦) are as in the above discussion.
The Milnor fiber Zλ◦,t◦ is a smooth complex manifold of dimension 2n. By Poincare
duality for non-compact manifolds the cap product with the fundamental class of Zλ◦,t◦

gives an isomorphism

PD : Hn
cpt(Zλ◦,t◦ ,Z)→ Hn(Zλ◦,t◦ ,Z),

where H•cpt denotes cohomology with compact support. Using this isomorphism and the
natural pairing between cohomology and homology we define the intersection pairing

α ◦ β := 〈PD−1(α), β〉.
The homology group Hn(Zλ◦,t◦ ,Z) equipped with the intersection pairing is called the
Milnor lattice. Parallel transport with respect to the Gauss–Manin connection defines a
representation

π1(C× Slin \DF , (λ
◦, t◦))→ End(Hn(Zλ◦,t◦ ,Z))

known as the monodromy representation. The image W of the monodromy representation
is called the monodromy group of f .

The Milnor fiber Zλ◦,t◦ is homotopy equivalent to M−λ◦ . The spheres Sn(0, Ri) ⊂
M−λ◦ contained in the boundary of the handle ψ̃i form a Z-basis of Hn(M−λ◦ ,Z) ∼=
Hn(Zλ◦,t◦ ,Z). These spheres have the property that under the gradient flow of −ReF
they flow to a critical point of F , that is, they vanish. The smallest W -invariant subset
of Hn(Zλ◦,t◦ ,Z) containing the homology classes of the spheres Sn(0, Ri) is called the
set of vanishing cycles. By definition, for each vanishing cycle α there exists a path
C approaching a generic point on the discriminant DF , such that, under the parallel
transport along C the cycle α vanishes. Given a vanishing cycle α and a corresponding
path C, let us construct a simple loop by approaching the discriminant along C, just
before hitting the discirminant DF we make a small counterclockwise loop around DF ,
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and then return to the reference point (λ◦, t◦) again along C. Slightly abusing the notation
we denote the simple loop by C and refere to α as the vanishing cycle corresponding to
the simple loop C.

Proposition 5.22. a) If α is a vanishing cycle, then the self-intersection number
α ◦ α = (−1)n(n−1)/2(1 + (−1)n).

b) If C is a simple loop around the discriminant, then there exists a vanishing cycle α,
such that, α is a vanishing cycle corresponding to the loop C. Moreover, the monodromy
transformation representing the simple loop C is given by the following formula:

x 7→ x+ (−1)(n+1)(n+2)/2(x ◦ α)α, ∀x ∈ Hn(Zλ◦,t◦ ,Z).

Part a) of the above proposition is an elementary local computation (see [6], Lemma
1.4). The proof of part b) is more difficult – one has to investigate the properties of the
so-called variation operators. We refer to [6], Section 1.3 for further details. Let us point
out that the formula in part b) is known as the Picard–Lefschetz formula.

5.4. Hodge theory on orbfiolds

Let us recall the notion of an orbifold. For more systematic study of this subject
we refer to [4, 3] and the references there in. There are various points of view. We
would like to outline the theory in such a way that one can easily extend results for
complex manifolds to complex orbifolds. More precisely, we will need the orbifold version
of primitive cohomology, Hodge theory, and Poincare residue.

5.4.1. Complex orbifolds. Let G be a small category and let G0 and G1 be respec-
tively the set of objects and the set of morphisms of G.

Definition 5.23. The category G is said to be a complex orbifold groupoid if G0
and G1 are equipped with the structure of complex manifolds, such that, the following
conditions are satisfied:

(i) All morphisms in G are isomorphisms and the inverse map ι : G1 → G1, g 7→ g−1

is holomorphic.
(ii) The source and the target maps s, t : G1 → G0 are local bi-holomorphisms.
(iii) The map id : G0 → G1 which to an object x assigns the identity morphism x→ x

in G is holomorphic.
(iv) Note that the fiber product

G2 := G1s ×t G1 = {(h, g) ∈ G1 × G1 | s(h) = t(g)}
is a smooth manifold, because s is a submersion. Then composition of mor-
phisms induces a holomorphic map

G1s ×t G1 → G1, (h, g) 7→ h ◦ g.
(v) The map (s, t) : G1 → G0 × G0 is proper. �

Let us point out that if we relax condition (ii) by requiring that the source and the
target maps s and t are submersions, then the resulting groupoid is called a complex Lie
groupoid. If G is a complex Lie groupoid, then the orbit space |G| of G is defined to be the
quotient G0/ ∼, where the equivalence relation is defined by x ∼ y if there exists h ∈ G1,
such that, s(h) = x and t(h) = y. Let π : G0 → |G| be the quotient map. We equip |G|
with the quotient topology, i.e., a subset V ⊂ |G| is open iff U := π−1V is open in G0.
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Note that in addition U = π−1V is G-invariant, that is, s−1(U) = t−1(U). We say that a
function f : U → C is G-invariant if f ◦ s = f ◦ t on s−1(U) = t−1(U). Let us denote by
O|G| the sheaf on |G| whose sections over an open subset V are given by the holomorphic

G-invariant functions on U := π−1V .

Theorem 5.24. If G is a complex orbifold groupoid, then (|G|,O|G|) is a reduced
normal complex space, i.e., the orbit space |G| is a normal analytic variety.

An analytic variety X is said to be an orbifold if there exists a complex orbifold
groupoid G, such that, X ∼= |G|. The proof of Theorem 5.24 is non-trivial. The interested
reader is refered to Grauert‘s paper [26] and to the refernces there in. The algebraic
version of Theorem 5.24 is equivalent to the well known fact that if G is a finite group
acting on a finite dimensional vector space, then the ring of G-invariant polynomials is
finitely generated (e.g. see [4]). One can obtain the analytic result from the algebraic
one.

The main example of a complex Lie groupoid is the following. Suppose that U is a
complex manifold and that G is a complex Lie group acting holomorphically on U . Put
G0 := U and G1 := G× U . The structure maps are defined by

s(g, x) := x, t(g, x) := g · x, id(x) := (1, x), ι(g, x) = (g−1, x),

where g ∈ G and x ∈ U . The resulting complex Lie groupoid is called translation groupoid
and it will be denoted by [U/G]. If the group G is finite then [U/G] is a complex orbifold
groupoid.

Definition 5.25. Suppose that G is a complex Lie groupoid, X is a complex manifold,
and G is a finite group acting on X. We say that the translation groupoid [X/G] is
equivalent to G if there are embeddings of complex manifolds φ0 : X → G0 and φ1 :
G×X → G1, such that,

(i) The pair of maps (φ0, φ1) define a groupoid homorphism [X/G] → G, that is,
the two maps are compatible with the structure maps of the two groupoids.

(ii) The following diagram

G×X
φ1 //

(s,t)

��

G1

(s,t)

��
X ×X

(φ0,φ0)// G0 × G0

is Cartesian.
(iii) The map

G1s ×φ0
X → G0, (h, x) 7→ t(h)

is a principal G-bundle, where G acts on the fiber product by

g · (h, x) := (h ◦ φ1(g, x)−1, g · x). �

Let us point out that the fiber product in condition (iii) consists of pairs (h, x) ∈
G1 ×X, such that s(h) = φ0(x). Since s is a submersion, the fiber product is a smooth
submanifold of G1 × X. Condition (ii) implies that φ1 defines an isomorphism between
the stabilizer subgroup Gx := {g ∈ G | g · x = x} and the isotropy group Aut(y) :=
s−1(y) ∩ t−1(y), where x ∈ X and y = φ0(x). This fact implies that the action of G on
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G1s ×φ0
X is free. Finally, condition (ii) implies also that φ0 induces a homeomorphism

between the orbit spaces |G| ∼= X/G.
We would like to explain a method that would alow us to construct an orbifold

groupoid by gluing translation groupoids Xi := [Xi/Gi], where Xi is a complex manifold
and Gi is a finite group. Suppose that G is a complex Lie groupoid and let X := |G| be
its orbit space. If U ⊂ G0 is an open subset, then we can define the restriction G|U as
the complex Lie groupoid whose objects are (G|U )0 := U and (G|U )1 := s−1(U)∩ t−1(U).
Suppose that {Ui} is a covering of X satisfying the following conditions:

(i) There exists an open subset G0i ⊂ G0, such that, the restriction Gi of G to
G0i is equivalent to an orbifold translation groupoid [Xi/Gi] with Gi a finite
group, that is, there exists a groupoids homomorphism [Xi/Gi] → Gi which is
equivalence in the sense of Definition 5.25

(ii) Ui = |Gi| ∼= Xi/Gi.
(iii) Put

Xij := {(xi, h, yj) ∈ Xi × G1 ×Xj | xi = s(h), yj = t(h)}.
Then the two projections

πij,i : Xij → Xi, (xi, h, yj) 7→ xi

and

πij,j : Xij → Xj , (xi, h, yj) 7→ yj

are local biholomorphisms.

We refer to Xi as orbifold charts and to any coordinate system xi on Xi as orbifold
coordinates. Note that Xij coincides with the objects of the orbifold groupoid fibre
product [Xi/Gi]×G [Xj/Gj ]. For that reason Xij is called the orbifold intersection of Xi

and Xj . The functions πij,i and πij,j are the orbifold version of transition functions. If
conditions (i)–(iii) are satisfied, then we can construct an orbifold groupoid X as follows.
Put

X0 := tiXi, X1 := ti,jXij ,

where in the 2nd disjoint union we allow i = j: then Xii
∼= Gi ×Xi. The structure maps

of X are defined as follows:

s(xi, h, yj) := xi, t(xi, h, yj) := yj , ι(xi, h, yj) := (yj , h−1, xi), id(xi) := (xi, idxi , x
i),

where (xi, h, yj) ∈ Xij . The composition is defined by

(yj , h, zk) ◦ (xi, g, yj) := (xi, h ◦ g, zk),

where (xi, g, yj) ∈ Xij and (yj , h, zk) ∈ Xjk. It is straightforward to check that X is a
complex orbifold groupoid and that its orbit space |X | = X.

5.4.2. Orbifold de Rham theory. Let us assume that we are in the settings of
the above section: X is an analytic variety that can be identified with the orbit space of
a complex Lie groupoid G and there exists an open covering Ui of X that can be lifted
to an orbifold groupoid X . Let us recall that an obrifold vector bundle on X is a vector
bundle E → X0 and an isomorphism a : s∗E → t∗E satisfying the following cocycle
condition. If h ∈ X1, then let ah be the isomorophism between (s∗E)h = Es(h) and
(t∗E)h = Et(h), then for any two composable morphisms h1 and h2, that is, s(h1) = t(h2)
we have ah1

◦ ah2
= ah1◦h2

. In terms of the orbifold charts, an orbifold vector bundle is
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determined by Ei := E|Xi and isomorphisms aij : π∗ij,iEi
∼= π∗ij,jEj satisfying the cocylce

condition

p∗ikaik = p∗jkajk ◦ p∗ijπij ,
where pab are the projections to Xab from the orbifold tripple intersection

Xijk := {(xi, h, yj , g, zk) | s(h) = xi, t(h) = yj = s(g), t(g) = zk}
defined by

pij(x
i, h, yj , g, zk) := (xi, h, yj),

pjk(xi, h, yj , g, zk) := (yj , g, zk),

pik(xi, h, yj , g, zk) := (xi, g ◦ h, zk).

Finally, a section s of E consists of sections si ∈ Γ(Xi, Ei), such that, aij(π
∗
ij,isi) = π∗ij,jsj .

Slightly abusing the terminology we will refer to si as the restriction of s to Xi. The space
of sections of E will be denoted by Γ(X,E). Note that by specializing i = j, we get that
Ei is a Gi-equivariant vector bundle on Xi and that each si is a Gi-invariant section.

The real tangent bundles TRXi define naturally an orbifold vector bundle TR
X on

X. Indeed, the pullbacks π∗ij,iT
RXi and π∗ij,jT

RXj are naturally identified by aij :=

dπij,j ◦ dπ−1
ij,i and the latter satisfy the cocycle condition because p∗ijπij,j = p∗jkπjk,j .

The vector bundle TR
X is called the real orbifold tangent bundle. Similarly, we can define

the complexified orbifold tangent bundle TC
X , the holomorphic orbifold tangent bundle

TX := T
(1,0)
X and the anti-holomorphic orbifold tangent bundle TX := T

(0,1)
X .

Now it is straightforward to extend the definition of the de Rham and the Dolbeault
complexes to orbifolds. Let An(X) be the vector space of global smooth sections of

∧n(TC
X )∗ and Ap,q(X) be the space of global smooth sections of ∧p(T ∗X ) ⊗ ∧q(T ∗X ). The

vector space An(X) admits a real structure defined by TR
X , that is, a form ω ∈ An(X) is

said to be real if the sequence of contractions ιv1 ◦ · · · ◦ ιvn(ω) yield a real valued function
for any sequence v1, . . . , vn ∈ TR

X of real vector fields. Let An(X,R) be the space of
real forms, then An(X) = An(X,R) + iAn(X,R) and we have complex conjugation: if
ω = ω1 + iω2 with ω1, ω2 ∈ An(X,R), then ω := ω1 − iω2. Furthermore, note that

Ar(X) =
⊕
p+q=r

Ap,q(X), Ap,q(X) = Aq,p(X).

and that the de Rham differential d : Ar(X)→ Ar+1(X) decomposes as d = ∂+∂, where
∂ : Ap,q(X) → Ap+1,q(X), ∂ : Ap,q(X) → Ap,q+1(X). The de Rham and the Dolbeault
cohomology groups are defined by

Hr
dR(X,C) := Hr(A•(X), d), Hp,q(X) := Hq(Ap,•(X), ∂).

According to Satake [55], the de Rham cohomology group Hr
dR(X,C) ∼= Hr(X,C).

From now on we denote the de Rham cohomology group simply by Hr(X,C). Let
us point out that the de Rham differential preserves the real structure, that is, d :
Ar(X,R) → Ar+1(X,R). Therefore, the real de Rham cohomology group Hr

dR(X,R) :=
Hr(A•(X,R), d) defines a real structure in Hr

dR(X,C). Again, we have an isomorphism
Hr

dR(X,R) ∼= Hr(X,R), so we denote the real de Rham cohomology group simply by
Hr(X,R).

Suppose that X is compact. Then we can integrate differential forms as follows.
Let ρi be a partition of unity subordinate to the open covering Ui of X. The quotient
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map Xi → Xi/Gi ∼= Ui is a finite proper map. Therefore, the pullback ρ̃i of ρi to Xi

is a smooth function with compact support. If ω ∈ Ar(X), then orbifold integration is
defined by ∫

X

ω :=
∑
i

1

|Gi|

∫
Xi

ρ̃iωi,

where ωi is the restriction of ω to Xi and the above integral makes sense because Xi is
a manifold and ρ̃i has compact support. Note that the integral is non-zero only if the
degree r of ω coincides with the real dimension of X. Finally, orbifold integration induces
a C-bilinear pairing on H•(X,C)

(φ1, φ2) :=

∫
X

φ1 ∧ φ2, φ1, φ2 ∈ H•(X,C),

which will be called the orbifold Poincare pairing.
Finally, let us define the orbifold version of a Poincare residue (see [27]). Suppose that

Y is an orbifold hypersurface in X, that is, there exists an open covering Ui of X with
corresponding orbifold charts Xi, such that, the orbifold intersection Yi := Xi ∩ Y :=
Xi ×X Y is a smooth analytic hypersurface in Xi. By choosing a finer covering Ui if
necessary we can arrange that the ideal sheaf of Yi in Xi is generated by a holomorphic
function fi ∈ O(Xi). We say that a smooth form ω ∈ Ar(X \ Y ) has a logarithmic
pole along Y if the restrictions ωi ∈ Ar(Xi \ Yi) of ω to the orbifold charts Xi satisfy
fiωi ∈ Ar(Xi) and dfi ∧ ωi ∈ Ar+1(Xi) , that is, fiωi and dfi ∧ ωi extend to smooth
forms on Xi for all i. Since in a neighborhood of Yi we can find a holomorphic coordinate
system on Xi, such that, one of the coordinates is fi, we have the following decomposition

ωi = αi ∧
dfi
fi

+ βi,

where αi and βi are smooth forms on Xi and βi does not contain monomials divisible by
dfi. Put

ResY ωi := αi|Yi ∈ Ar−1(Yi).

The forms ResY ωi are local representatives of an orbifold differential form in Ar−1(Y ),
which will be denoted by ResY ω and will be called the residue of ω along Y .

5.4.3. Hodge theory on compact Kähler orbifolds. With the above definitions
at hands it is a routine exercise to extend the harmonic theory of differential forms (e.g.
see [63]) to orbifolds. Let us just state the results relevant for our purposes. In order for
the harmonic theory to work smoothly, just like in the manifold case, let us assume that X
is compact and Kähler. The latter means that there exists a real (1, 1)-form ω ∈ A1,1(X),
which is closed and positive definite. If we fix orbifold coordinates xi = (xi1, . . . , x

i
n) on

the orbifold chart Xi, then

ωi =
i

2

n∑
a,b=1

hiabdx
i
a ∧ dxib,

where ωi is the restriction of ω to Xi and the matrix hi with entries hiab is a positive
definite Hermitian matrix. Let

L : Ap,q(X)→ Ap+1,q+1(X), L(φ) := ω ∧ φ,
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be the so-called Lefschetz operator. Since ω is a real form, the Lefschetz operator is real,
i.e., it preserves the real structure A•(X,R). We have the following primitive cohomology
groups:

P r(X, k) := {ξ ∈ Hr(X, k) | Ln−r+1ξ = 0}, k = R,C,

and

P p,q(X) := {ξ ∈ Hp,q(X) | Ln−p−q+1ξ = 0},

where we used that the operator L commutes with both d and ∂ and therefore it induces
a linear operator in both the de Rham and the Dolbeault cohomologies. By definition,
P r(X, k) = 0 for r > n and P p,q(X) = 0 for p+ q > n. The following theorem is known
as the Lefschetz decomposition theorem.

Theorem 5.26. If X is a compact Kähler orbifold, then

Hr(X, k) =

[r/2]⊕
s=(r−n)+

LsP r−2s(X, k), k = R,C,

where if x is a real number, then we denote by x+ := max(x, 0) and by [x] the integer
part of x. �

For a proof we refer to [63], Corollary 3.12. The next theorem is known as the Hodge
decomposition theorem.

Theorem 5.27. If X is a compact Kähler orbifold, then

Hr(X,C) =
⊕
p+q=r

Hp,q(X), Hp,q(X) = Hq,p(X)

and

P r(X,C) =
⊕
p+q=r

P p,q(X), P p,q(X) = P q,p(X). �

For a proof we refer to [63], Theorem 4.1. Finally, let us recall also the so-called
Hodge–Riemann bilinear relations. Let us define the following bilinear form on P r(X,C)

(5.18) S(ξ, η) :=

∫
X

Ln−rξ ∧ η =

∫
X

ωn−r ∧ ξ ∧ η, ξ, η ∈ P r(X,C).

Note that S is a real pairing, i.e., if ξ, η ∈ P r(X,R), then S(ξ, η) ∈ R.

Theorem 5.28. If X is a compact Kähler orbifold, then
a) the Hodge decomposition of P r(X,C) is orthogonal with respect to the Hermitian

pairing

〈ξ, η〉 := ir
2

S(ξ, η), ξ, η ∈ P r(X,C),

that is, 〈ξ, η〉 = 0 for all ξ ∈ P p,q and η ∈ P p′,q′ with (p, q) 6= (p′, q′).
b) The restriction of the above Hermitian pairing to P p,q(X) is positive definite for

even q and negative definite for odd q. �

For a proof we refer to [63], Theorem 5.3. It is common to reformulate the Hodge
decomposition theorem and the Hodge–Riemann bilinear relations as follows.
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Definition 5.29. Suppose that H is a complex vector space equipped with a real
structure HR. A Polarized Hodge Structure on H of weight r is the data of a decreasing
filtration F p (p ∈ Z) of H

F p = 0 for p� 0, F p+1 ⊆ F p, F p = H for p� 0

and a real (−1)r-symmetric form S, that is, S(x, y) = (−1)rS(y, x), such that,

(i) H = F p ⊕ F r−p+1 for all p ∈ Z,
(ii) S(F p, F r−p+1) = 0, for all p,

(iii) ir
2+2r−2pS(x, x) > 0 for all x ∈ F p ∩ F r−p \ {0}. �

The Hodge decomposition theorem and the Hodge–Riemann bilinear relations can be
reformulated by saying that F p := P p,r−p(X,C)⊕ · · · ⊕P r,0(X,C) and the bilinear form
(5.18) define a Polarized Hodge Structure of weight r on P r(X,C) with real structure
P r(X,R).

5.4.4. Weighted-projective orbifolds. Let d0, d1, . . . , dn+1 be a sequence of posi-
tive integers. The weighted-projective space is by definition the quotient space Pd0,d1,...,dn+1 :=
(Cn+2 \ 0)/C∗, where the action of C∗ is defined by

t · (Z0, . . . , Zn+1) = (td0Z0, . . . , t
dn+1Zn+1).

Note that the stabilizer subgroups of the C∗-action are finite. It is a general fact that
if a reductive complex Lie group acts on a complex manifold with finite stabilizers then
the corresponding quotient space has a natural orbifold structure. Let us construct a
complex orbifold groupoid X , such that, |X | = Pd0,d1,...,dn+1 . To begin with, let us fix
the open covering Ui := {Zi 6= 0} ⊂ Pd0,d1,...,dn+1 . Put Xi := Cn+1 and let us denote by
xi := (xi0, . . . , x

i
i−1, x

i
i+1, . . . , x

i
n+1) the standard coordinates on Xi. Note that the map

πi : Xi → Ui, xi 7→ [xi0, . . . , x
i
i−1, 1, x

i
i+1, . . . , x

i
n+1],

induces an isomorphism Ui ∼= Xi/µdi , where µdi is the multiplicative group of order di
acting on Xi by

(η · xi)s := η−dsxis, s ∈ {0, 1, . . . , n+ 1} \ {i}.

The relation between the coordinates xi and xj of respectively Xi and Xj is given by

[xi0, . . . , x
i
i−1, 1, x

i
i+1, . . . , x

i
n+1] = [xj0, . . . , x

j
j−1, 1, x

j
j+1, . . . , x

j
n+1].

Therefore, there exists a non-zero complex number t ∈ C∗, such that,

xjs = t−dsxis (s 6= i, j),(5.19)

xji = t−di ,(5.20)

xij = tdj .(5.21)

We would like to think of xi and xj as objects and of the solutions t of the above
equations for fixed xi and xj as the morphisms from xi to xj . In other words, we define
X0 := tn+1

i=0 Xi and X1 := tn+1
i,j=0Xij , where Xii := µdi × Xi and Xij for i 6= j is the

subvariety of Xi × Xj × C∗ defined by the equations (5.19)–(5.21). Note that if we set
yijs := xis for s 6= i, j and tij := t, then the projection map

Xij → Cn × C∗, (xi, xj , t) 7→ (yij , tij)
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is an isomorphisms. This shows that Xij is a complex manifold. The source map s :
Xij → Xi and the target map t : Xij → Xj are defined by

s(xi, xj , t) := xi, t(xi, xj , t) := xj

for the case when i 6= j and by

s(η, xi) := xi, t(η, xi) := η · xi,
where the action of µdi on Xi is as defined above, that is, (η ·xi)s = η−dsxis. Furthermore,
the identity map Xi → Xii is defined by xi 7→ (1, xi) and the inverse Xij → Xji by
(xi, xj , t) 7→ (xj , xi, t−1). Finally, if h = (xj , xk, tjk) ∈ Xjk and g = (xi, xj , tij) ∈ Xij

then the composition h ◦ g := (xi, xk, tik) ∈ Xik, where tik = tijtjk. It is straightforward
to check that all conditions in the definition of a complex orbifold groupoid are satisfied,
that is, X is a complex orbifold groupoid. Moreover, the orbit space |X | ∼= Pd0,...,dn+1 .

We say that M is a weighted-projective orbifold if M is an analytic subvariety of
Pd0,d1,...,dn+1 , such that, π−1

i (M ∩ Ui) is a smooth analytic subvariety of Xi for all i =
0, 1, . . . , n+ 1.

5.5. Hodge structure on the Milnor fiber

Let us return to the settings of singularity theory, i.e., let f ∈ C[x0, . . . , xn] be a
weighted homogeneous singularity. We would like to prove that the middle cohomology
group Hn(f−1(1),C) carries a polarized Hodge structure. This result is due to Steenbrink
and Hertling. Namely, Steenbrink proved the existense of a mixed Hodge structure on
the middle cohomology group for any singularity, while Hertling proved that the higher
residue pairing of K. Saito induces a polarizing form. The proof relies on a very deep
result of Schmidt, known as the nilpotent orbit theorem. However, in the case of weighted
homogeneous singularities we will give an elementary proof.

5.5.1. Compactification of the Milnor fiber. As usual the arguments for the
cases n = 0 and 1 need a modification, so let us assume that n > 1 and leave the
remaining two cases as an exercise. Let us write the weights of the variables xi as ci = di

d ,
where di, d ∈ Z and gcd(d0, . . . , dn) = 1. Following Steenbrink [58], we compactify the
Milnor fiber by embedding it in the weighted projective space Pd0,...,dn+1 , where dn+1 := 1.
Note that the chart Un+1 = Cn+1. Let us embed the Milnor fiber V := f−1(1) in Un+1

in the obvious way xn+1
i = xi (0 ≤ i ≤ n). The Zariski closure of V in Pd0,...,dn+1 is given

by

V = {Z ∈ Pd0,...,dn+1 | f(Z0, . . . , Zn)− Zdn+1 = 0}.

Set theoretically V = V t V∞, where

V∞ = V ∩ {Zn+1 = 0} = {Z ∈ Pd0,...,dn | f(Z0, . . . , Zn) = 0}.
Using that the only critical point of f is at x = 0, it is easy to prove that both V and V∞
are suborbifolds of Pd0,...,dn+1 (see also [58], Lemma 1). Let us examine the cohomological
long exact sequence of the pair (V , V \ V∞):

0 // Hn(V , V \ V∞) // Hn(V ) // Hn(V ) //

// Hn+1(V , V \ V∞) // Hn+1(V ) // 0
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where all cohomology groups are taken with coefficients in k = R or C and we used that
Hi(V ) = 0 for i = n − 1 and n + 1. The Thom isomorphism theorem generalizes to
orbifold vector bundles. Therefore, by excision and the Thom isomorphism theorem for
the orbifold normal bundle to V∞ in V we get

Hn−2(V∞) ∼= Hn(V , V \ V∞),

Hn−1(V∞) ∼= Hn+1(V , V \ V∞).

where both isomorphisms are constructed as follows. Let θ ∈ H2(N,N \ V∞) be the
Thom class of the normal orbibundle N to V∞ in V . By excision, we may assume that
N is a tubular neighborhood of V∞ in V . Let p : N → V∞ be the projection. Then
the above isomorphisms have the form α 7→ p∗α ∧ θ. Since θ has a support in N , the
form i∗(α) := p∗α ∧ θ extends naturally to a closed differential form in V , which is also
known as the pushforward of α along i. Here i : V∞ → V is the inclusion map. The exact
sequence from above yields

(5.22) 0 // Cok(in−2
∗ ) // Hn(V ) // Ker(in−1

∗ ) // 0 ,

where ik∗ : Hk(V∞)→ Hk+2(V ) denotes the pushforward in degree k. On the other hand,
just like in the case of ordinary projective space, it can be proved that the Thom class
of the suborbifold {Zn+1 = 0} can be represented by a Kähler form on Pd0,...,dn+1 . The
restriction of the Kähler form to V and V∞ is still a Kähler form, so we have the notion
of primitive cohomology. We have the following isomorphisms:

(5.23) Pn(V ,C) ∼= Cok(in−2
∗ ), Ker(in−1

∗ ) = Pn−1(V∞,C),

where the first isomorphism is induced from the quotient map Hn(V ,C) → Cok(in−2
∗ ).

Here, the first isomorphism in (5.23) is a consequence of the Lefschetz decomposition the-
orem (see Theorem 5.26) and the second one is by the definition of primitive cohomology.

Let us describe the maps in the exact sequence (5.22). The first map is induced from
the retriction Hn(V )→ Hn(V ), while the 2nd one is induced from the composition

(5.24) Hn(V ) // Hn+1(V , V \ V∞)
∼= // Hn−1(V∞)

where the first map is the boundary morphism in the long exact sequence of the pair
(V , V \ V∞) and the 2nd one is the Thom isomorphism, i.e., integration along the fiber.
Let N be an orbifold tubular neighborhood of V∞ in V , such that, N is an orbifold disk
bundle over V∞. If φ is a closed differential form representing a cohomology class in
Hn(V ) and γ ⊂ V∞ is a cycle representing a homology class in Hn−1(V∞), then let us
define

T∨ : Hn(V )→ Hn−1(V∞), T∨(φ)(γ) :=

∫
∂N |γ

φ,

where the orientation of the boundary ∂N |γ is the orientation induced from the complex
orbifold orientation of N . Recalling the definitions of the boundary morphism and the
operation of integration along the fiber, we get that the composition of the morphisms
(5.24) coincides with the map φ 7→ T∨(φ). The boundary ∂N is an orbifold S1-bundle
over V∞ and if we put T (γ) := ∂N |γ , then we obtain a map T : Hn−1(V∞) → Hn(V )
known as the tube mapping (see [27]). Therefore, we can also say that the composition



5.5. HODGE STRUCTURE ON THE MILNOR FIBER 217

(5.24) is the dual of the tube mapping. Finally, let us point out that up to a factor of
±2πi the map T∨ coincides with the so-called residue map

(5.25) Res : Hn(V )→ Hn−1(V∞), Res(φ)(γ) :=
(−1)n−1

2πi

∫
T (γ)

φ.

The exact sequence (5.22) takes the form

0 // Pn(V ,C) // Hn(V,C)
2πiRes// Pn−1(V∞,C) // 0.

The above sequence splits in a natural way. Namely, let us consider the restriction of the
vanishing cohomology bundle to C∗ × {0} ⊂ C × Ck \ DF . It is a vector bundle whose
total space is

⋃
λ∈C∗ H

n(f−1(λ),C). Parallel transport with respect to the Gauss–Manin
connection along the circle |λ| = 1 defines a linear operator M : Hn(V,C) → Hn(V,C)
known as the classical monodromy operator. Let Hn(V,C) 6=1 be the direct sum of all
generalized eigensubspaces of M whose eigenvalue is 6= 1 and Hn(V,C)1 be the generalized
eigensubspace with eigenvalue 1.

Proposition 5.30. a) The restriction map Hn(V ) → Hn(V ) induces an isomor-
phism Pn(V , k) ∼= Hn(V, k)6=1, where k = R or C.

b) The dual of the tube mapping T∨ = 2πi Res induces an isomorphism Hn(V, k)1
∼=

Pn−1(V∞, k), where k = R, or C.

The proof of Proposition 5.30 is based on an explicit computation due to Steenbrink.
Let us recall the relevant results. We assume the notation from Section 5.1. Put

ωα =
xα

(f(x)− 1)dl(α)e dx (α ∈ B)

where dx = dx0 ∧ · · · ∧ dxn, l(α) :=
∑n
i=0 ci(αi + 1) is the weight of the form xαdx, and

dle denotes the ceil of l. The forms ωα extend to rational differential forms on Pd0,...,dn+1 .
Changing the orbifold coordinates xa = xn+1

a = (xin+1)−daxia (a 6= i) and xi = (xin+1)−di

and using that f is weighted homogeneous, we get that

ωα = (−1)n−i+1 (xi0)α0 · · · (xii−1)αi−1(xii+1)αi+1 · · · (xin)αn

(f(xi0, . . . , x
i
i−1, 1, x

i
i+1, . . . , x

i
n)− (xin+1)d)−dl(α)e

dxi

(xin+1)1−(dl(α)e−l(α))d
,

where dxi := dxi0 ∧ · · · ∧ dxii−1 ∧ dxii+1 ∧ · · · ∧ dxin+1. The above formula proves that if

l(α) is not an integer, then ωα is a rational form on Pd0,...,dn+1 with a pole along the
hypersurface V . Moreover, the restriction of ωα to {Zn+1 = 0} is 0. If l(α) ∈ Z, then
ωα has a pole of order 1 at {Zn+1 = 0}. Let us denote by ηα := ResZn+1=0(ωα) for

l(α) ∈ Z. Then ηα is a rational form on Pd0,...,dn with a pole along the hypersurface
V∞. By extending Griffith’s theory of rational integrals (see [27]) to orbifolds, Steenbrink
proved the following proposition (see [58], Lemma 4 and Lemma 5).

Proposition 5.31. a) The forms ResV (ωα) (l(α) /∈ Z) give a basis of Pn(V ,C) and

the subset of forms, such that, l(α) < p+ 1 form a basis of Fn−pPn(V ,C).
b) The forms ResV∞(ηα) (l(α) ∈ Z) give a basis of Pn−1(V∞,C) and the subset of

forms, such that, l(α) ≤ p form a basis of Fn−pPn−1(V∞,C). �

Given a holomorphic form ω ∈ Ωn+1(Cn+1) let us recall the so-called geometric
sections of the vanishing cohomology bundle

(5.26) s(ω, λ) :=

∫
ω

df
∈ Hn(f−1(λ),C),
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where ω/df denotes a holomorphic n-form η defined in a tubular neighborhood of f−1(λ),
such that, ω = df∧η. The choice of η is not unique, but its restriction to f−1(λ) is uniquely
determined. Put ϕα := xαdx/df |V . Due to the homogeneity of xαdx and f , we have

ResV (ωα) =
(−1)n

2πi

∫
|λ−1|=ε

λl(α)−1dλ

(λ− 1)dl(α)eϕα = (−1)n
(
l(α)− 1

dl(α)e − 1

)
ϕα.

Proof of Proposition 5.30. It is sufficient to prove the proposition only for k = C, because
both maps in part a) and b) preserve the real structure. Recalling Proposition 5.31 we get
that the holomorphic forms ϕα with l(α) /∈ Z form a basis for the image of Pn(V ,C), while
the forms ϕα with l(α) ∈ Z map via the residue map Res to the basis ηα of Pn−1(V∞,C).
On the other hand, the number of the forms ϕα coincides with the Milnor number of
the singularity f and hence with the dimension of Hn(V,C). Therefore, the forms ϕα
represent a basis of Hn(V,C). Note that by homogeneity

s(xαdx, λ) = λl(α)−1

∫
ϕα,

where the LHS is interpreted as a global holomorphic section of the vanishing cohomology
bundle, while on the RHS

∫
ϕα ∈ Hn(V,C) is interpreted as a multi-valued flat section.

The formula shows that the cohomology class represented by ϕα is an eigenvector of M
with eigenvalue e−2πil(α). In particular, the classical monodromy operator is diagonaliz-
able and the forms ϕα with l(α) /∈ Z represent a basis of Hn(V,C)6=1, while ϕα with
(l(α) ∈ Z) represent a bais of Hn(V,C)1. �

The Hodge structure in primitive cohomology allows us to equip the cohomology
group Hn(V,C) with a Hodge structure. Namely, following Steenbrink, we define

F pHn(V,C) := {A ∈ Hn(V,C) | A = s(ω, 1) for some ω such that deg(ω) ≤ n+ 1− p}.
Note that the above filtration is M -invariant and therefore Proposition 5.30 implies that
the above filtration induces Polarized Hodge Structures on Hn(V,C) 6=1 and Hn(V,C)1 of
weights respectively n and n+ 1.

5.5.2. Polarizing form and the higher residue pairing. The problem that we
would like to solve now is to find explicit formula for the bilinear form on Hn(V,C)
corresponding to the polarizing forms of Pn(V ,C) and Pn−1(V∞,C) via the isomorphisms
in Proposition 5.30. As a byproduct we get a proof of Hertling’s result in the case of
weighted homogeneous singularity, that is, the higher residue pairing provides a polarizing
form for Steenbrink’s Hodge structure on vanishing cohomology.

Let us define positive even integers ai, bi (0 ≤ i ≤ n), a, and b, such that,

1

ci
=
bi
b
, gcd(b0, . . . , bn) = 2

and
1

1− ci
=
ai
a
, gcd(a0, . . . , an) = 2.

Put

||x||b :=
(
|x0|b0 + · · ·+ |xn|bn

)1/b
,

where x = (x0, . . . , xn) ∈ Cn+1 and

Sb := {x ∈ Cn+1 | ||x||b = 1}.



5.5. HODGE STRUCTURE ON THE MILNOR FIBER 219

It is straightforward to check that Sb is a smooth manifold diffeomorphic to the standard

unit sphere S2n+1. Suppose that ωi = xβ
(i)

dx (i = 1, 2) are two weighted homogeneous
forms with weights

wt(ωi) :=

n∑
s=0

(β(i)
s + 1)cs.

There are differential forms ψ
(i)
k ∈

⊕
p+q=nA

p,q(Cn+1 \ {0}), such that, ωi = (wd +

df∧)(ψ
(i)
0 + ψ

(i)
1 w + · · · ) – see Section 4.5.4. In other words, the forms ψ

(i)
s satisfy the

following recursion relations:

ωi = df ∧ ψ(i)
0 , dψ

(i)
s−1 = −df ∧ ψ(i)

s (s > 0).

Let us give an explicit algorithm for constructing such forms. Put

ρi(x) =
|fi(x)|ai−2fi(x)∑n

j=0 |fj(x)|aj
,

where fi := ∂f
∂xi

. Note that ρi are smooth functions on Cn+1 \ {0} satisfying

n∑
i=0

ρi(x)
∂f

∂xi
(x) = 1.

In order to state the remaining properties of ρi(x), let us equip Cn+1 with the R+-action

t · (x0, . . . , xn) := (tc0x0, . . . , t
cnxn), t ∈ R+

and the S1-action

λ · (x0, . . . , xn) := (λd0x0, . . . , λ
dnxn), λ ∈ S1.

Lemma 5.32. a) We have ρi(t · x) = tci−1ρi(x) for all t ∈ R+.
b) We have ρi(λ · x) = λdi−dρi(x) for all λ ∈ S1.
c) We have E(ρi) = 0, where

E :=

n∑
i=0

cixi
∂

xi
.

The proof of the above lemma is straightforward, so we leave it as an exercise.

Lemma 5.33. Suppose that ω ∈ Ap(Cn+1\{0}) is an arbitrary form satisfying df∧ω =
0. Then the form

ψ :=

n∑
i=0

ρi(x)ι∂/∂xi(ω)

satisfies the following properties.
a) ω = df ∧ ψ.
b) If ιE(ω) = 0, then ιE(ψ) = 0.
c) If LEω = 0, then LE(ψ) = 0, where LX := d ◦ ιX + ιX ◦ d is the Lie derivative in

the direction of the vector field X.
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Proof. Parts b) and c) follow immediately from Lemma 5.32, c). Let us prove a).
We have

df ∧ ψ =

n∑
i=0

ρi(x)
(

(df∧) ◦ ι∂/∂xi + ι∂/∂xi ◦ (df∧)
)
ω.

On the other hand, since (dxi∧) ◦ ι∂/∂xj + ι∂/∂xj ◦ (dxi∧) = δi,j , we have

(df∧) ◦ ι∂/∂xi + ι∂/∂xi ◦ (df∧) =
∂f

∂xi
.

It remains only to recall that
∑n
i=0 ρi(x)fi(x) = 1. �

Suppose that ω = xβdx is a weighted homogeneous form. Put

ψ0 :=

n∑
i=0

ρi(x)ι∂/∂xi(ω),(5.27)

ψs+1 := −
n∑
i=0

ρi(x)ι∂/∂xi(dψs).(5.28)

Lemma 5.33 implies that the sequence ψs (s ≥ 0) satisfies the following properties:

(i) ω = df ∧ ψ0 and dψs = −df ∧ ψs+1.
(ii) The forms ψs are weighted homogeneous of weight wt(ω)− s− 1, that is, under

the rescaling xi 7→ tcixi the form ψs 7→ twt(ω)−s−1ψs.
(iii) ιE(ψs) = 0 for all s ≥ 0.

Let us apply the above construction to β = β(i) and define the sequences ψ
(i)
s , s ≥ 0.

Lemma 5.34. If the higher residue pairing Kf (ω1, ω2) is non-zero, then

wt(ω1) + wt(ω2) = k + 1, k ∈ Z

and the following formula holds:

(−1)n(n+1)/2Kf (ω1, ω2) =
(−1)k2

(2πi)n+1
wk+1

∫
Sb
ψ

(1)
k1
∧ ψ(2)

k2
∧ df,

where (k1, k2) is any pair of non-negative integers, such that, k1 + k2 = k.

Proof. By definition

(−1)n(n+1)/2Kf (ω1, ω2) = (−1)n(2πi)−n−1w

∫
Sb

(ψ
(1)
0 + ψ

(1)
1 w + · · · ) ∧ ω2.

Let us change the integration variables via xi = e2πiθciyi, where θ ∈ R is any real number.

Note that the term ψ
(1)
s ∧ ω2 is rescaled by

exp
(

2πiθ(wt(ω1) + wt(ω2)− s− 1)
)
.

In order for the integral to be non-zero, the above scalar must be 1 for all θ. This proves
that the weights of ω1 and ω2 add up to an integer, which we denote by k + 1, and the
pairing takes the form

(−1)n(n+1)/2Kf (ω1, ω2) = (−1)n(2πi)−n−1wk+1

∫
Sb
ψ

(1)
k ∧ ω2.
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The rest of the lemma follows easily by integration by parts. Indeed, since ω2 = df ∧ψ(2)
0 ,

the above formula is precisely the case k1 = k and k2 = 0. Suppose that the formula is
proved for some k1 > 0 and k2 = k − k1. We have

ψ
(1)
k1
∧ df = (−1)ndf ∧ ψ(1)

k1
= −(−1)ndψ

(1)
k1−1

and

−(−1)ndψ
(1)
k1−1 ∧ ψ

(2)
k2

= d
(
− (−1)nψ

(1)
k1−1 ∧ ψ

(2)
k2

)
+ ψ

(1)
k1−1 ∧ dψ

(2)
k2
.

It remains only to recall that dψ
(2)
k2

= −df ∧ dψ(2)
k2+1. �

Let us fix ε > 0 and define

Kε := {x ∈ Sb | |f(x)| < ε}

and

Vε := {y ∈ Cn+1 | f(y) = 1, ||y||b ≤ ε−1}.

Lemma 5.35. The map

ϕ : S1 × Vε → Sb \Kε, (λ, y) 7→ λ · ||y||−1
b · y

is a regular covering of degree d.

Proof. Given x ∈ Sb \ Kε let us find all (λ, y) ∈ S1 × Vε, such that, ϕ(λ, y) = x.
Since

f(x) = λd||y||−1
b f(y) = λd||y||−1

b

we must have ||y||b = |f(x)|−1 and λd = f(x)/|f(x)|. We get that (λ, y) are given by

(5.29) λ = η(f(x)/|f(x)|)−1/d, yi = λ−di |f(x)|−cixi,

where η ∈ µd is a d-th root of 1. Note that if λ and y are defined by (5.29), then

f(y) = λ−d|f(x)|−1f(x) = 1

and

||y||b =
( n∑
i=0

|xi|bi |f(x)|−cibi
)1/b

= ||x||b |f(x)|−1 = |f(x)|−1 ≤ ε,

that is, (λ, y) ∈ S1 × Vε. Finally, it remains only to notice that formulas (5.29) provide a
local inverse for ϕ. �

Proposition 5.36. Let us assume the notation in Lemma 5.34. The following for-
mula holds:

(−1)n(n+1)/2Kf (ω1, ω2) =
(−1)k2

(2πi)n
wk+1 lim

ε→0

∫
Vε

ψ
(1)
k1
∧ ψ(2)

k2

where (k1, k2) is any pair of non-negative integers, such that,

k1 + k2 = k := wt(ω1) + wt(ω2)− 1.
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Proof. Put ω := ψ
(1)
k1
∧ ψ(2)

k2
. We have to compute∫

Sb
ω ∧ df = lim

ε→0

∫
Sb\Kε

ω ∧ df =
1

d
lim
ε→0

∫
S1×Vε

ϕ∗(ω ∧ df),

where for the last equality we used Lemma 5.35. Let us compute ϕ∗(ω ∧ df). Suppose
that x = (x0, . . . , xn) and y = (y0, . . . , yn) are two copies of the standard holomorphic
coordinates of Cn+1 and λ ∈ S1. The map x = ϕ(λ, y) written in components takes the
form xi = λdi ||y||−cib yi (0 ≤ i ≤ n). Using that f is weighted homogeneous, we get

ϕ∗f = f(λ · ||y||−1
b · y) = λd||y||−1

b f(y) = λd||y||−1
b ,

where we used that f(y) = 1 for y ∈ Vε. Let us compute the pullback of ω. Recalling

the definition of ψ
(i)
s (see the text just before Lemma 5.34) we get that ω is a smooth

2n-form on Cn+1 \ {0} satisfying the following properties:

(i) ω is weighted homogeneous of weight −1, that is, under the rescaling xi 7→ tcixi,
the form ω 7→ t−1ω.

(ii) We have ιE(ω) = 0.
(iii) We have LE(ω) = 0.

Property (iii) implies that if we view ω as a rational form in xi and xi (0 ≤ i ≤ n), then
ω is weighted homogeneous of weight 0 with respect to the variables xi. Therefore, if
λ ∈ S1, then under the rescaling xi 7→ λdixi (0 ≤ i ≤ n) the form ω 7→ λ−dω.

Let us write

ω =:
∑
I,J

ωI,J(x)dxI ∧ dxJ ,

where the coefficients ωI,J(x) are smooth functions on Cn+1 \ {0}, I and J are subse-
quences of 0, 1, . . . , n, and dxI = ∧i∈Idxi and dxJ = ∧j∈Jdxj . The coefficients ωI,J(x)
have the following homogeneity properties:

ωI,J(λ · x) = λ−d−dI+dJωI,J(x), λ ∈ S1,

where dI :=
∑
i∈I di and dJ :=

∑
j∈J dj , and

ωI,J(t · x) = t−1−cI−cJωI,J(x), t ∈ R+,

where cI :=
∑
i∈I ci and cJ :=

∑
j∈J cj . Therefore, the pullback that we would like to

compute takes the form

ϕ∗(ω ∧ df) =
∑
I,J

ωI,J(y)
d(ϕ∗f)

ϕ∗f
∧

∧
i∈I

λ−di ||y||cib d
(
λdi ||y||−cib yi

) ∧
j∈J

λdj ||y||cjb d
(
λ−dj ||y||−cjb yj

)
.

Note that

λ−di ||y||cib d
(
λdi ||y||−cib yi

)
= dyi + ciyi

d(ϕ∗f)

ϕ∗f

and

λdj ||y||cjb d
(
λ−dj ||y||−cjb yj

)
= dyj + cjyj

d(ϕ∗f)

ϕ∗f
.
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Therefore,

ϕ∗(ω ∧ df) =
d(ϕ∗f)

ϕ∗f
∧
(
ω +

d(ϕ∗f)

ϕ∗f
∧ ιE(ω)

)
=
d(ϕ∗f)

ϕ∗f
∧ ω,

where we used that ιE(ω) = 0. Furthermore,

d(ϕ∗f)

ϕ∗f
∧ ω = d

dλ

λ
∧ ω − d||y||b

||y||b
∧ ω = d

dλ

λ
∧ ω,

where we used that ω is a 2n-form, i.e., top degree form on Vε, so d||y||b
||y||b ∧ ω = 0 on Vε.

Finally, we get that

1

d

∫
S1×Vε

ϕ∗(ω ∧ df) = 2πi

∫
Vε

ω.

Now the formula that we have to prove follows easily from Lemma 5.34. �

5.5.3. Polarizing form on Hn(V,C) 6=1. Let us examine more carefully the iso-

morphism Pn(V ,C) ∼= Hn(V,C)6=1. Suppose that ω = xαdx is a weighted homogeneous
form whose weight is not an integer. Then (ω/df)|V is a holomorphic n-form on V which
determines a cohomology class [ω/df ] in Hn(V,C)6=1. Let ψs (s ≥ 0) be the sequence of
smooth n-forms defined by (5.27)–(5.28).

Lemma 5.37. Suppose that k < wt(ω) < k + 1.
a) The differential form ψk extends to a smooth differential form on V vanishing at

V∞. In particular, ψk represents a primitive cohomology class [ψk] ∈ Pn(V ,C).
b) Under the isomorphism Pn(V ,C) ∼= Hn(V,C)6=1 (see part a) of Proposition 5.30)

the class [ψk] is mapped to

(−1)k(wt(ω)− 1) · · · (wt(ω)− k) [ω/df ] .

Proof. We already know that ψk is a smooth form on V = Un+1∩V , where Un+1 =
{Zn+1 6= 0} is one of the orbifold charts of Pd0,...,dn+1 (see Section 5.5.1). Let us check
that ψk is smooth in the remaining coordinate charts Ui (0 ≤ i ≤ n). Let us consider the
case when i = 0. The remaining cases are similar. To avoid cumbersome notation, let us
denote the orbifold coordinates x0

i by yi (1 ≤ i ≤ n + 1). The coordinate change takes
the form

x0 = y−d0n+1, xi = y−din+1yi (1 ≤ i ≤ n).

The holomorphic form ω transforms into

ω = (−1)n+1 d0 y
−wt(ω) d
n+1 yα1

1 · · · yαnn dy1 ∧ · · · ∧ dyn ∧
dyn+1

yn+1
.

Furthermore, the Euler vector field

E =

n∑
i=0

cixi
∂

∂xi
= −1

d
yn+1

∂

∂yn+1

and the operator
∑n
i=0 ρi(x)ι∂/∂xi takes the form

ydn+1

(
− 1

d0
ρ0(1, y1, . . . , yn)ιyn+1∂yn+1

+

n∑
i=1

(
ρi(1, y1, . . . , yn)− di

d0
ρ0(1, y1, . . . , yn)

)
ιyi∂yi

)
.
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Part a) of the lemma follows easily. Indeed, recalling the definition (5.27)–(5.28), we ge
that ψk has order of vanishing at yn+1 = 0 at least (k + 1)d− wt(ω) d− 1 > 0.

To prove part b) of the Lemma, let us compute the residue ResV
k!xαdx

(f−1)k+1 . As we

already discussed in Section 5.5.1, the restriction of the residue to V is precisely

(5.30) (−1)n(wt(ω)− 1) · · · (wt(ω)− k)

[
ω

df

]
.

On the other hand, since xαdx = df ∧ ψ0, using integration by parts we get that the
residue equals

ResV
k!df ∧ ψ0

(f − 1)k+1
= −ResV (k − 1)!d

(
1

(f − 1)k

)
ψ0 = ResV (k − 1)!

dψ0

(f − 1)k
.

However, since dψs = −df ∧ ψs+1 we can repeat the above computation until we get

(−1)k−1 ResV
dψk−1

f − 1
= (−1)k ResV

df ∧ ψk
f − 1

= (−1)k+nψk.

Therefore, the restriction of (−1)k+nψk to V is a differential form representing the coho-
mology class (5.30), which is exactly what we had to prove. �

Proposition 5.36 and Lemma 5.37 yield the following corollary.

Corollary 5.38. Let SV be the bi-linear form on Hn(V,C) 6=1 induced from the

polarizing form on Pn(V ,C). Then

SV

( [ω1/df ]

Γ({wt(ω1)})
,

[ω2/df ]

Γ({wt(ω2)})

)
coincides with

(−1)k1+n(n+1)/2 (2πi)nK
(k1+k2−n)
f

( ω1

Γ(wt(ω1))
,

ω2

Γ(wt(ω2))

)
for all weighted homogeneous forms ω1 and ω2 of non-integer weight, where {α} = α− [α]
denotes the fractional part of α and ki = [wt(ωi)].

5.5.4. Polarizing form on Hn(V,C)1. Similarly, let us examine more carefully the
isomorphism Pn−1(V∞,C) ∼= Hn(V,C)1. Suppose that wt(ω) = k is an integer. Then
(ω/df)|V is a holomorphic n-form on V which determines a cohomology class [ω/df ] in
Hn(V,C)1. In order to avoid cumbersome notation, let us put P := Pd0,...,dn+1 , P∞ :=
Pd0,...,dn , and 0 := [0, . . . , 0, 1] ∈ P. We have a natural projection map

π : P \ {0} → P∞, [Z0, . . . , Zn+1] 7→ [Z0, . . . , Zn].

Remark 5.39. Note that P \ {0} is the total space of the orbifold vector bundle
OP∞(1) := (Cn+1 \ {0})× C/C∗, where λ ∈ C∗ acts by

λ · (z0, . . . , zn, t) := (λd0z0, . . . , λ
dnzn, λt). �

Let us recall the open covering {Ui}0≤i≤n+1 of P, the orbifold charts πi : Xi → Ui,
and the orbifold coordinates xi on Xi – see Section 5.4.4. The open subsets Ui (0 ≤ i ≤ n)
provide a covering of P \ {0} and the local equation of P∞ in the orbifold chart Xi is
xin+1 = 0.
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Lemma 5.40. Suppose that wt(ω) = k is an integer. The restriction of the forms ψs
to the orbifold chart Xi (0 ≤ i ≤ n) have the form

(xin+1)(k−1−s)d
(
αs(x

i
0, . . . , x

i
n)
dxin+1

xin+1

+ βs(x
i
0, . . . , x

i
n)
)
,

where αs and βs are smooth forms independent of the variable xin+1.

Proof. Let us consider only the case i = 0. The remaining cases are similar. Let us
denote the coordinates x0

i =: yi (1 ≤ i ≤ n+ 1). Just like in the proof of Lemma 5.37 we
get

ω = (−1)n+1 d0 y
−k d
n+1 y

α1
1 · · · yαnn dy1 ∧ · · · ∧ dyn ∧

dyn+1

yn+1
.

while the contraction operation
∑
i ρi(x)ι∂/∂xi takes the form

ydn+1

(
− 1

d0
ρ0(1, y1, . . . , yn)ιyn+1∂yn+1

+

n∑
i=1

(
ρi(1, y1, . . . , yn)− di

d0
ρ0(1, y1, . . . , yn)

)
ιyi∂yi

)
.

Now the lemma follows easily from the definitions (5.27)–(5.28) by induction on s. �
In particular, the above lemma implies that the form ψk−1|V extends to a meromor-

phic form on V with a pole of order 1 along V∞. Therefore, ResV∞(ψk−1|V ) determines
a primitive cohomology class in Pn−1(V∞,C).

Lemma 5.41. Suppose that wt(ω) = k is an integer. Under the isomorphism Hn(V,C)1
∼=

Pn−1(V∞,C) (see part b) of Proposition 5.30) the cohomology class ResV∞(ψk−1|V ) cor-
responds to

(−1)k−1

2πi
(wt(ω)− 1) · · · (wt(ω)− k + 1) [ω/df ] .

The proof of Lemma 5.41 is similar to the proof of part b) of Lemma 5.37 and we
leave it as an exercise.

Proposition 5.42. Let SV∞ be the bi-linear form on Hn(V,C)1 induced from the
polarizing form on Pn−1(V∞,C). Then

(−1)nSV∞

(
[ω1/df ], [ω2/df ]

)
coincides with

(−1)k1+n(n+1)/2 (2πi)n+1 dK
(k1+k2−1−n)
f

( ω1

Γ(wt(ω1))
,

ω2

Γ(wt(ω2))

)
for all weighted homogeneous forms ω1 and ω2 of integer weights ki := wt(ωi).

Proof. Let ωi = xβ
(i)

dx (i = 1, 2) be weighted homogeneous forms whose weights
ki := wt(ωi) are integer numbers. We would like to express (see Proposition 5.36)

(5.31) lim
ε→0

∫
Vε

ψ
(1)
k1
∧ ψ(2)

k2−1

in terms of the Poincare pairing on P∞. Since ψ
(1)
k1−1 is weighted homogeneous of weight

0 we have (dιE + ιEd)ψ
(1)
k1−1 = 0. On the other hand, since dψ

(1)
k1−1 = −df ∧ ψ(1)

k1
we get

ιEdψ
(1)
k1−1 = −ιE(df ∧ ψ(1)

k1
) = −fψ(1)

k1
+ df ∧ ιEψ(1)

k1
.



226 5. WEIGHTED HOMOGENEOUS SINGULARITIES

Restricting to Vε where f = 1 and df = 0, we get

dιE(ψ
(1)
k1−1)

∣∣∣
Vε

= −ιEdψ(1)
k1−1

∣∣∣
Vε

= ψ
(1)
k1

∣∣∣
Vε
.

Using Stoke’s theorem we transform (5.31) into

lim
ε→0

∫
∂Vε

ιE(ψ
(1)
k1−1) ∧ ψ(2)

k2−1 = lim
ε→0

n∑
i=0

1

di

∫
∂Vε∩Xi

ιE(ψ
(1)
k1−1) ∧ ψ(2)

k2−1.

According to Lemma 5.40 we have

ψ
(l)
kl−1 = α(l)(xi0, . . . , x

i
n) ∧

dxin+1

xin+1

+ β(l)(xi0, . . . , x
i
n), l = 1, 2,

where α(l) and β(l) are smooth forms on Xi independent of the variable xin+1, that is,

the forms α(l) and β(l) are pullbacks via the projection π : Xi → Xi ∩ P∞. Recall
that xi = (xin+1)−di and xj = (xin+1)−djxij for j 6= i. Therefore, the Euler vector field

E = − 1
dx

i
n+1

∂
∂xin+1

and we get

(5.32)

∫
∂Vε∩Xi

ιE(ψ
(1)
k1−1)∧ψ(2)

k2−1 =
(−1)n

d

∫
∂Vε∩Xi

(
α(1) ∧α(2) ∧

dxin+1

xin+1

+α(1) ∧ β(2)
)
.

In the orbifold coordinate chart Xi, the submanifold ∂Vε ∩Xi is defined by

f(xi0, . . . , 1, . . . , x
i
n) = (xin+1)d, |xin+1|d = ε

(
1 +

∑
0≤j 6=i≤n

|xij |bj
)1/b

.

Note that the restriction of the projection π|∂Vε is a finite map of degree d and that the
1-form

dxin+1

xin+1

=
1

d

df(xi0, . . . , 1, . . . , x
i
n)

f(xi0, . . . , 1, . . . , x
i
n)

is a pullback via the projection map π|∂Vε . The integral (5.32) takes the form

lim
ε→0

(−1)n

d

∫
π(∂Vε)∩Xi

(
α(1) ∧ α(2) ∧ df(xi0, . . . , 1, . . . , x

i
n)

f(xi0, . . . , 1, . . . , x
i
n)

+ α(1) ∧ β(2)
)
.

In order to describe the image π(∂Vε), let us denote by Nε ⊂ P∞ the tubular neighborhood
of V∞ consisting of all z = [z0, . . . , zn] ∈ P∞, such that,

|f(z0, . . . , zn)| ≤ ε(|z0|b0 + · · ·+ |zn|bn)1/b.

The projection π : ∂Vε → ∂Nε is a regular covering of degree d. Note however that
the orientation of the boundary ∂Nε is opposite to the oreintation induced from ∂Vε via
the map π, because the image of Vε under the projection π is the complement P∞ \Nε.
Therefore, the above formula becomes

lim
ε→0

(−1)n+1

d

∫
∂Nε∩Xi

(
α(1) ∧ α(2) ∧ df(xi0, . . . , 1, . . . , x

i
n)

f(xi0, . . . , 1, . . . , x
i
n)

+ α(1) ∧ β(2)
)
.

Since in the limit ε → 0 the (2n − 1)-dimensional orbifold ∂Nε becomes the (2n − 2)-
dimensional orbifold V∞ the contribution to the above integral of α(1) ∧ β(2) is 0 for
dimensional reasons. For the remaining part of the integral we have

(−1)n+1 lim
ε→0

1

d

∫
∂Nε∩Xi

α(1) ∧ α(2) ∧ df(xi0, . . . , 1, . . . , x
i
n)

f(xi0, . . . , 1, . . . , x
i
n)

= (−1)n+1 2πi

d

∫
V∞∩Xi

α(1) ∧ α(2).
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Now the proof of the proposition can be completed as follows. According to Proposition
5.36 we have

(−1)n(n+1)/2Kf (ω1, ω2) =
(−1)k2−1

(2πi)n
wk1+k2 lim

ε→0

∫
Vε

ψ
(1)
k1
∧ ψ(2)

k2−1,

which according to the above computation is equal to

(−1)k2+n

(2πi)n
wk1+k2

2πi

d

n∑
i=0

1

di

∫
V∞∩Xi

α(1) ∧ α(2) =
(−1)k2+n

d(2πi)n−1
wk1+k2 SV∞([α(1)], [α(2)]),

where [α(l)] ∈ Hn−1(V∞,C) denotes the cohomology class represented by the differential
form α(l). On the other hand, since

α(l)|V∞ = ResV∞(ψ
(l)
kl−1),

according to Lemma 5.41 the cohomology class [α(l)] corresponds via the isomorphism
Pn−1(V∞,C) ∼= Hn(V,C)1 to (−1)kl−1(2πi)−1(kl − 1)![ωl/df ], that is,

SV∞([α(1)], [α(2)]) =
(−1)k1+k2

(2πi)2
Γ(wt(ω1))Γ(wt(ω2))SV∞([ω1/df ], [ω2/df ]). �

The formulas in Proposition 5.42 and Corollary 5.38 give an explicit description of a
polarizing form in terms of the higher residue pairing. Namely, the form SV is a polar-
ization form for the Hodge structure on Hn(f−1(1),C) 6=1, while −SV∞ is a polarization
form for Hn(f−1(1),C)1. The reason for the negative sign in the 2nd case comes from
the fact that under the residue isomorphism 2πi Res : Hn(f−1(1),C)1 → Pn−1(V∞,C)
the group F p ∩ F q is identified with P p−1,q−1(V∞,C). This has two implications. First,
F p ∩ F q is non-empty only if p− 1 + q − 1 = n− 1, that is, p+ q = n+ 1, which proves
that the weight of the Hodge structure on Hn(f−1(1),C)1 is n+ 1 (not n− 1). Second,
we have

−i(n+1)2+2qSV∞(u, u) = i(n−1)2+2(q−1)SV∞(α, α) > 0,

where u ∈ F p ∩ F q \ 0 and α := 2πi Res(u).

5.5.5. The polarizing form of Hertling. Finally, let us conclude compare the
above polarizing form with the one found by Hertling (see Theorem 10.30 in [31]). Let
us recall the Seifert form of the singularity f . Let us choose ε > 0 sufficiently small, so
that Vε has the same homotopy type as V = f−1(1). We have the following sequence

Hn(V,Z) ∼= Hn(Vε,Z)
PD // Hn(Vε, ∂Vε,Z)

var // Hn(Vε,Z) ∼= Hn(V,Z),

where the map PD is the Poincare duality isomorphism, i.e., cap product with the fun-
damental cycle of the manifold with boundary Vε, and var is the so-called variation oper-
ator (see [6], Section 1.1). Using Alexander duality one can prove that the composition
var ◦PD is an isomorphism. The Seifert form is defined by

L(A,B) := 〈A, var ◦PD(B)〉, A,B ∈ Hn(V,Z),

where 〈 , 〉 denotes the natural pairing bewteen cohomology and homology. It turns out
that the higher residue pairing can be expressed in terms of the Seifert form as follows.
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Proposition 5.43. If ω1 and ω2 are weighted homogeneous forms, then the pairing

(−1)n(n+1)/2 (2πi)n+1Kf

( ω1

Γ(wt(ω1))
,

ω2

Γ(wt(ω2))

)
coincides with

e−πiwt(ω1) L([ω1/df ], [ω2/df ])wwt(ω1)+wt(ω2). �

Comparing the formula in the above proposition with the formulas in Corollary 5.38
and Proposition 5.42 we get

(5.33) SV (A,B) = L(A, (M − 1)−1B), A,B ∈ Hn(V,C)6=1

and

(5.34) SV∞(A,B) = (−1)ndL(A,B), A,B ∈ Hn(V,C)1

The statement of Proposition 5.43 is the same as Theorem 4.3.3 in [33]. We refer to
Remark 4.3.4 in [33] for some further comments.

Remark 5.44. We expect that formulas (5.33) and (5.34) can be proved directly. If
this is done, then Corollary 5.38 and Proposition 5.42 would give yet another proof of
Proposition 5.43. �

The polarizing form of Hertling is defined by the following formulas:

S(A,B) := (−1)n(n−1)/2 L(A, (M − 1)−1B), A,B ∈ Hn(V,C)6=1

and

S(A,B) := −(−1)n(n−1)/2 L(A,B), A,B ∈ Hn(V,C)1.

The factor of d in (5.34) is not so important, but the signs (−1)n(n−1)/2 and (−1)n(n+1)/2

by which S differes from respectively SV and−SV∞ deserve an explanation. The definition
of the Hodge–Riemann bilinear relations in Hertling’s work do not agree with the defini-
tion in [63], that is, with Definition 5.29. Namely, if A ∈ F pHn(V,C)6=1 ∩F qHn(V,C) 6=1

then the convention in [31], Definition 10.16 yields i2p−nS(A,A) > 0, while the conven-

tion in Definition 5.29 yields in
2+2n−2pSV (A,A) > 0. The ratio of the two powers of

i is exactly in
2−n = (−1)n(n−1)/2. Similarly, if A ∈ F pHn(V,C)1 ∩ F qHn(V,C)1, then

i2p−n−1S(A,A) > 0, while in our case i(n+1)2+2(n+1−p)(−SV∞(A,A)) > 0. The ratio of

the two powers of i is exactly i(n+1)2−n−1 = (−1)n(n+1)/2.

5.6. Classification of opposite subspaces

Using the Hodge structure on Hn(f−1(1),C) we will prove the existence of a ho-
mogeneous opposite subspace. Moreover, we will prove that a ceratin finite dimensional
unipotent Lie group acts transitively and faithfully on the space of homogeneous opposite
subspaces. Hence we will obtain a complete classification of all homogeneous opposite
subspaces. Finally, for given opposite subspace we would like to give a geometric inter-
pretation of the solutions to the second structure connection in terms of period integrals.
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5.6.1. The Brieskorn lattice. Let Ωp[Cn+1] be the vector space of polynomial
p-forms on Cn+1. The quotient

H ′′ := Ωn+1[Cn+1]/df ∧ dΩn−1[Cn+1]

will be called the algebraic Brieskorn lattice of f . Let us recall also the twisted de

Rham cohomology groups Ĥf , Ĥ(0)
f equipped with the higher residue pairing Kf and the

Gauss-Manin connection – see Section 4.6.2. We are going to use the Brieskorn lattice to
construct an embedding

(5.35) ψ : Hn(f−1(1),C)→ Ĥ(0)
f .

This is a very important map. It would allow us to transfer the Hodge structure in Ĥ(0)
f

which would provide a very powerful tool for constructing opposite subspaces. Let us
denote by Hn := ∪λ∈C∗Hn(f−1(λ),C) the vanishing cohomology bundle. Recall that Hn

is equipped with a flat Gauss–Manin connection ∇. There is a natural map

s : H ′′ → Γ(C \ {0}, Hn), ω 7→ s(ω, λ),

where s(ω, λ) is the geometric section (5.26). The Brieskorn lattice has a natural structure
of a C[∂−1

λ ]-module

∂−1
λ · ω := df ∧ d−1ω, ω ∈ H ′′,

where d−1ω denotes n-form η ∈ Ωn[Cn], such that, dη = ω. The choice of η is not unique
but the equivalence class of df ∧η in H ′′ is uniquely determined by ω. The main property
of the above definition is that

(5.36) ∇∂/∂λs(∂−1
λ ω, λ) = s(ω, λ), ω ∈ H ′′.

The proof of the above formula is left as an exercise (see also Section 10.2.4 in [6]).

Proposition 5.45. The natural quotient map which to a holomorphic form ω ∈
Ωn+1[Cn+1] associates its cohomology class [ω] ∈ Ĥ(0)

f induces an embedding [ ] : H ′′ →
Ĥ(0)
f satisfying [∂−1

λ ω] = −w[ω].

Proof. The formula [∂−1
λ ω] = −w[ω] follows easily from the definitions. The difficult

part is to prove that if ω = (wd+ df∧)η for ω ∈ Ωn+1[Cn+1] and η ∈ Γ(Cn+1,Ωn+1
Cn+1)[[w]],

then ω = df ∧dφ for some φ ∈ Ωn−1[Cn+1]. Note that if we assign weight 1 to w, then the
twisted de Rham differential wd+ df will have weight 1. Therefore, we may assume that
ω is a weighted homogeneous form and that η = η0 + η1w + · · · where ηk is a weighted
homogeneous form of weight wt(ω)−k−1. Since the weights of xi are positive the forms ηk
must be polynomial of positive weight. Therefore, ηk = 0 for k ≥ wt(ω)−1. We claim that
there are weighted homogeneous forms φk ∈ Ωn−1[Cn+1], such that, ηk = df ∧φk+1 +dφk.
We argue by decreasing induction on k. For k sufficiently negative we can simply choose
φk = 0. Suppose that we determined ηi and φi for all i ≥ k. Since

dηk−1 = −df ∧ ηk = −df ∧ (df ∧ φk+1 + dφk) = −df ∧ dφk = d(df ∧ φk),

we get d(ηk−1 − df ∧ φk) = 0. Since Cn+1 is a Stein manifold, the holomorphic de Rham
complex can be used to compute the cohomology of Cn+1. Since Hn(Cn+1) = 0 we get
that ηk−1 − df ∧ φk = dφk−1 for some holomorphic (n − 1)-form φk−1. It remains only
to notice that we may assume that φk−1 is weighted homogeneous and hence polynomial
and that ω = df ∧ η0 = df ∧ dφ0. �
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Put h := Hn(f−1(1),C) for the fiber of Hn at λ = 1. Parallel transport along the
unit circle |λ| = 1 in counter clockwise direction defines a linear operator M ∈ End(H)
which we called the classical monodromy operator. According to Propositions 5.30 and
5.31 the geometric sections s(xαdx, 1) (α ∈ B) form a basis of h. Since s(xαdx, λ) =
λl(α)−1s(xαdx, 1) is invariant under the parallel transport with respect to ∇, we get that
s(xαdx, 1) is an eigenvector for the classical monodromy with eigenvalue e−2πil(α). In
other words, M is a diagonalizable operator. Put N := − 1

2πi logM , where the value of
log is chosen in such a way that all eigenvalues of N are in the interval (−1, 0]. Let us
define

sreg : H ′′ → h[λ], sreg(ω) := λ−N s(ω, λ),

where in the definition of sreg we assume that λ is sufficiently close to 1, the fibers
Hn(f−1(λ),C) are identified with h by parallel transport with respect to the Gauss-Manin
connection, and λ−N := e−N log λ is defined via the principal branch of the logarithm. Let
us check that sreg(ω) has only integer powers of λ. If ω is weighted homogeneous of weight
wt(ω) = k + α, where k ∈ Z, −1 < α ≤ 0, then N s(ω, 1) = αs(ω, 1) and we have

(5.37) sreg(ω) = λ−N s(ω, λ) = λk−1s(ω, 1).

Finally, there is a natural way to turn h[λ] into a C[∂−1
λ ]-module, such that, the map sreg

becomes a morphism of C[∂−1
λ ]-modules. Namely, suppose that A ∈ h is an eigenvector

with eigenvalue e−2πiα with −1 < α ≤ 0, then we define

∂−1
λ · (Aλ

k) := λ−N
∫ λ

0

(
xNAxk

)
dx :=

Aλk+1

α+ k + 1
.

Proposition 5.46. The map sreg : H ′′ → h[λ] is an injective morphism of C[∂−1
λ ]-

modules.

Proof. Let us first prove that sreg is a C[∂−1
λ ]-modules morphism. Suppose that ω

is a weighted homogeneous form of weight wt(ω) = k + α, where −1 < α ≤ 0. Then
∂−1
λ · ω = df ∧ d−1ω is weighted homogeneous of weight wt(ω) + 1 = k + 1 + α. Put

s(ω, λ) = λk+α−1A and s(∂−1
λ ·ω, λ) = λk+αB. Formula (5.36) implies that A = B(k+α).

Therefore,

sreg(∂−1
λ · ω) = λkB =

λk

k + α
A = ∂−1

λ · sreg(ω, λ),

where we used formula (5.37).
Suppose that ω ∈ Ωn+1[Cn+1] is a weighted homogeneous form, such that, the cor-

responding geomeric sections s(ω, λ) = 0. Recalling Corollary 5.38 and Proposition 5.42

we get that Kf (ω, ) = 0. Since the higher residue pairing on Ĥ(0)
f is non-degenerate, we

get that the class of ω in Ĥ(0)
f is 0. It remains only to recall Proposition 5.45. �

If A(λ) ∈ h[λ], then slightly abusing the notation we will say that A(λ) ∈ H ′′ if
A(λ) ∈ sreg(H ′′). The Steenbrink’s Hodge filtration on h can be characterized also in the
following way.

Lemma 5.47. The Steenbrink’s Hodge filtration F ph satisfies the following identity:

F ph = {A ∈ h | ∂−(n−p)
λ ·A ∈ H ′′}.



5.6. CLASSIFICATION OF OPPOSITE SUBSPACES 231

Proof. Suppose first that A ∈ F ph. Since the Hodge filtration is M -invariant we
may assume that A is an eigenvector of M with eigenvalue e−2πiα, −1 < α ≤ 0 and that
A = s(ω, 1) for some weighted homogeneous form ω, such that, wt(ω) = k + α for some
integer k ≤ n+ 1− p− α. By definition sreg(ω, λ) = λk−1A and

∂
−(n−p)
λ ·A =

Aλn−p

(α+ 1) · · · (α+ n− p)
= ∂n−p−k+1

λ

λk−1A

(α+ 1) · · · (α+ k − 1)
,

where we used that n − p − k + 1 ≥ 0. Since sreg is a morphism of C[∂−1
λ ]-modules, the

above formula implies that

∂
−(n−p)
λ ·A =

sreg(∂
−(n−p−k+1)
λ · ω)

(α+ 1) · · · (α+ k − 1)
∈ sreg(H ′′).

In the opposite direction, suppose that ∂
−(n−p)
λ · A = sreg(ω). The general case is easily

reduced to the case when A is an eigenvector of M with eigenvalue e−2πiα, −1 < α ≤ 0.
Let us write ω =

∑
i ωi, where ωi are weighted homogeneous forms. Since s(ωi, 1) is an

eigenvector of M with eigenvalue e−2πiwt(ωi), we get that each ωi has weight of the form
wt(ωi) = ki + α for some ki ∈ Z. Therefore

Aλn−p

(α+ 1) · · · (α+ n− p)
= ∂

−(n−p)
λ ·A =

∑
i

sreg(ωi) =
∑
i

λki−1s(ωi, 1).

By comparing the powers of λ, we get that only the terms for which ki − 1 = n − p
contribute, that is, ki = n + 1 − p ⇒ wt(ωi) = ki + α ≤ n + 1 − p ⇒ s(ωi, 1) ∈ F ph.
Setting λ = 1, we get that A ∈ F ph too. �

After all these preparations we define the map (5.35) by the following formula

(5.38) ψ(A) =
[
(−w)n+1−deg s−1

reg

(
∂−kλ · (−w)NA

)]
,

where deg : H ′′ → H ′′ is the linear operator induced from (5.9) and k is sufficiently big

such that ∂−kλ ·A ∈ H ′′. The definition is independent of the choice of k because

deg ◦∂−1
λ = ∂−1

λ ◦ (deg +1)

and [∂−1
λ ω] = −w[ω] for all ω ∈ H ′′. Since F 0h = h, Lemma 5.47 implies that we may

choose k = n.
Let us recall Hertling’s polarizing form S, that is,

S(A,B) =

{
(−1)n(n−1)/2SV (A,B) if A,B ∈ h6=1,

− (−1)n(n+1)/2

d SV∞(A,B) if A,B ∈ h1.

Proposition 5.48. The higher residue pairing K
(m)
f (ψ(A1), ψ(A2)) could be non-

zero only if A1, A2 ∈ h6=1 and m = n, or A1, A2 ∈ h1 and m = n + 1. The following
formula holds:

K
(m)
f (ψ(A1), ψ(A2)) =

1

(2πi)m
S(A1, A2),

where m = n in the first case and m = n+ 1 in the second case.

Proof. Suppose that Ai (i = 1, 2) are eigenvectors of M with eigenvalues e−2πiαi

where −1 < αi ≤ 0. Let ωi ∈ Ωn+1[Cn+1] be a weighted homogeneous form such that

sreg(ωi) = ∂−nλ ·Ai =
λnAi

(αi + 1) · · · (αi + n)
.
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Since s(ωi, λ) = λwt(ωi)−1s(ωi, 1) and N (Ai) = αiAi, we get wt(ωi) = n+ 1 + αi and

(5.39) [ωi/df ] = s(ωi, 1) =
Ai

(αi + 1) · · · (αi + n)
.

By definition

ψ(Ai) = (−w)n+1−wt(ωi)+αi [ωi] = [ωi].

The first claim in the proposition follows easily because the higher residue pairingK
(m)
f (ω1, ω2)

is non-zero only if wt(ω1) + wt(ω2) = m+ n+ 1 (see Lemma 5.34). There are two cases:
either α1 +α2 = −1 and then m = n, or α1 = α2 = 0 and then m = n+1. For the second
part of the proposition, suppose first that α1 + α2 = −1. Let us apply the formula from
Corollary 5.38

K
(n)
f

( ω1

Γ(wt(ω1))
,

ω1

Γ(wt(ω1))

)
=

(−1)n+n(n+1)/2

(2πi)n
SV

( [ω1/df ]

Γ(1 + α1)
,

[ω2/df ]

Γ(1 + α2)

)
.

Recalling formula (5.39) and the relation SV = (−1)n(n−1)/2S we get that the RHS of
the above formula coincides with

1

(2πi)n
S
( A1

Γ(n+ 1 + α1)
,

A2

Γ(n+ 1 + α2)

)
.

The first case of the formula that we would like to prove follows.
Suppose now that α1 = α2 = 0. Recalling the formula from Proposition 5.42 we get

K
(n+1)
f

( ω1

Γ(wt(ω1))
,

ω1

Γ(wt(ω1))

)
=
−(−1)n(n+1)/2

d(2πi)n+1
SV∞ ([ω1/df ], [ω2/df ]) .

Recalling formula (5.39) and the relation SV∞ = −d(−1)n(n+1)/2S we get that the RHS
of the above formula coincides with

1

(2πi)n+1
S
( A1

Γ(n+ 1)
,

A2

Γ(n+ 1)

)
.

This completes the proof of the proposition. �

5.6.2. Opposite filtrations and opposite subspaces. Suppose that Uph (p ∈ Z)
is an increasing M -invariant filtration of h. The M -invariance imply that

Uph =
⊕
s∈S1

Uphs, hs := Ker(M − s Id),

where Uphs = Uph ∩ hs.

Definition 5.49. An opposite filtration on h is an increasing M -invariant filtration
Uph (p ∈ Z) satisfying the following conditions:

(i) The filtration is finite: Uph = 0 for p� 0 and Uph = h for p� 0.
(ii) We have h =

⊕
p∈Z F

ph ∩ Uph.
(iii) If s is an eigenvalue of M , then

S(Uphs, Um−1−phs) = 0, ∀p ∈ Z,

where m = n for s 6= 1 and m = n+ 1 for s = 1. �

The idea to use opposite filtrations to construct opposite subspaces is due to M. Saito
[54] (see also [31], Theorem 7.16).
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Proposition 5.50. If Uph (p ∈ Z) is an opposite filtration, then the subspace

P := SpanC
{
ψ(A)w−p−k−1 | p ∈ Z, A ∈ F ph ∩ Uph, k ≥ 0

}
is a homogeneous opposite subspace.

The rest of this section will be dedicated to the proof of the above proposition. Let
us point out that the inverse is also correct, i.e., any homogeneous opposite subspace P is
obtained in the above way and the above formula for P provides a one-to-one correspon-
dence between opposite filtrations and homogeneous opposite subspaces. The interested
reader is invited to reverse the argument that follows (see also [33], Proposition 4.3.6).

Suppose that {Ai}µi=1 is a basis of h, such that, Ai ∈ F pih ∩ Upih. Since both
filtrations F p and Up are M -invariant we may also arrange that Ai is an eigenvector of M

with eigenvalue e−2πiαi where −1 < αi ≤ 0. By definition ∂
−(n−pi)
λ ·Ai ∈ H ′′. Therefore,

there exists a weighted homogeneous form ωi ∈ Ωn+1[Cn+1], such that,

sreg(ωi) = ∂
−(n−pi)
λ ·Ai =

λn−piAi
(αi + 1) · · · (αi + n− pi)

.

Since N (Ai) = αiAi, we get that wt(ωi) = n+ 1− pi + αi and

ψ(Ai) = (−w)n+1−wt(ωi)+αi [ωi] = (−w)pi [ωi].

We claim that the forms [ωi] form a C[[w]]-basis of Ĥ(0)
f . In order to prove this it is

sufficient to prove that the classes [[ωi]] ∈ Ωf = Ĥ(0)
f /wĤ(0)

f are linearly independent

which is equivalent to proving that the matrix with entries K
(0)
f (ωi, ωj) is non-degenerate.

The pairing K
(0)
f (ωi, ωj) is non-zero only if wt(ωi)+wt(ωj) = n+1. There are two cases:

αi +αj = −1 and αi = αj = 0. In the first case pi + pj = n and according to Proposition
5.48 we have

K
(0)
f (ωi, ωj) = (−1)piK

(n)
f (ψ(Ai), ψ(Aj)) =

(−1)pi

(2πi)n
S(Ai, Aj).

In the second case pi + pj = n+ 1 and again according to Proposition 5.48 we have

K
(0)
f (ωi, ωj) = (−1)piK

(n+1)
f (ψ(Ai), ψ(Aj)) =

(−1)pi

(2πi)n+1
S(Ai, Aj).

Suppose now that we have a pair (i, j), such that, S(Ai, Aj) 6= 0. Since S is M invariant
we either have αi+αj = −1 or αi = αj = 0. In the first case, since S is a polarizing form
for the Hodge filtration F ph6=1 which has weight n and Ai ∈ F pih we get that pi+pj ≤ n.
On the other hand, condition (iii) in Definition 5.49 implies that pi + pj ≥ n, that is,
pi + pj = n. Similarly, in the second case we will get that pi + pj = n + 1. This proves

that the matrix of the residue pairing K
(0)
f in the basis [[ωi]] is a product of the diagonal

matrix whose ith entry is i2pi−m(2π)−m (m = n or n+1 dependning on whether αi 6= 0 or
αi 6= 0) and the matrix of the polarizing form S in the basis Ai. Since the polarizing form
is non-degenerate, we get that the matrix of the residue pairing is also non-degenerate
which is what we had to prove.

The rest of the proof is straightforward. Since w−piψ(Ai) is a C[[w]]-basis it is easy to
prove that w−pi−1ψ(Ai) is a C[w−1]-basis of P and we have a direct sum decomposition

Ĥf = Ĥ(0)
f ⊕ P . Since the forms ωi representing w−piψ(Ai) are weighted homogeneous,
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w∇∂/∂w[ωi] = wt(ωi)[ωi]. Therefore, P is a homogeneous subspace. Finally, let us check
that P is a Lagrangian subspace, that is,

(5.40) Resw=0Kf (ψ(Ai)w
−pi−ki−1, ψ(Aj)w

−pj−kj−1)w−n−1)dw = 0, ∀ki, kj ≥ 0.

There are two cases: αi + αj = −1 or αi = αj = 0. In the first case, assuming the above
notation, we have

Kf (ψ(Ai)w
−pi−ki−1, ψ(Aj)w

−pj−kj−1) =
(−1)pj+kj+1

(2πi)n
w−pi−pj−ki−kj−1+2n S(Ai, Aj),

where we used Proposition 5.48. Since S(Ai, Aj) could be non-zero only if pi+pj = n, we
may assume that the power of w in the above formula is −ki − kj − 1 + n ⇒ the residue
(5.40) is 0. The argument in the second case is similar and it is left as an exercise. This
completes the proof of Proposition 5.50

Let us point out that using complex conjugation with respect to the real structure
Hn(f−1(1),R) we can define an opposite filtration in the following way:

Uph6=1 := Fn−ph6=1, p ∈ Z,

and

Uph1 := Fn+1−ph1, p ∈ Z.

Therefore, according to Proposition 5.50 there exists a homogeneous opposite subspace.

5.6.3. Classification of homogeneous opposite subspaces. Let us recall the

vector space Ωf := Ĥ(0)
f /wĤ(0)

f and the grading operator θ = n+1
2 − deg where the

degree operators is defined by (5.9). The operator θ is diagonalizable and we denote by
Ωαf := Ker(θ + α) the eigensubspace of θ with eigenvalue −α. Let us order the set of
numbers α, such that, Ωαf 6= 0 in an increasing sequence and let us repeat each α as many
times as dimC ΩαC. We get a sequence α1 ≤ · · · ≤ αµ known as the Steenbrink’s spectrum

of f . Furthermore, the residue pairing K
(0)
f on Ĥ(0)

f induces a non-degenerate pairing ( , )
on Ωf which will be called the residue pairing. Let us introduce also the Euler pairing
(see (3.29))

〈a, b〉 :=
1

2π
(a, eπiθb), a, b ∈ Ωf .

Since the degree of the Hessian of f is D =
∑n
i=0(1−2ci), using Corollary 5.7, we get that

if a ∈ Ωαf , b ∈ Ωβf , and (a, b) 6= 0, then α+β = 0. In particular, the Steenbrink’s spectrum
has the following symmetry αi + αµ+1−i = 0. Let us introduce also the following vector
subspaces of Ωf :

Ω<αf :=
⊕
β:β<α

Ωβf , Ω≤αf :=
⊕
β:β≤α

Ωβf , α ∈ Q.

The subspaces Ω>αf and Ω≥αf are defined in a similar fashion. Let Aut(Ω≤•f , 〈 , 〉) be the

group of all endomorphisms g ∈ End(Ωf ), such that,

(i) If v ∈ Ωαf , then g(v) ∈ v + Ω<αf .

(ii) 〈g(a), g(b)〉 = 〈a, b〉 for all a, b ∈ Ωf .
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The definition of the group Aut(Ω≤•f , 〈 , 〉) can be stated equivalently using Givental’s

symplectic space formalism (see Section 1.4) associated with the vector space Ωf and the

residue pairing ( , ). Namely, an element g ∈ End(Ωf ) belongs to Aut(Ω≤•f , 〈 , 〉) if and
only if

(i) The operator series Rg(w) := wθgw−θ has the form

Rg(w) = 1 +Rg,1w +Rg,2w
2 + · · · , Rg,k ∈ End(Ωf ).

(ii) Rg(w) is a symplectic transformation: Rg(w)Rg(−w)T = 1.

Let us recall that if P ⊂ Ĥf is an opposite subspace then we have constructed a section

σP : Ωf → Ĥ(0)
f (see Proposition 4.35).

Proposition 5.51. a) If P ⊂ Ĥf is a homogeneous opposite subspace, then σ̂P
induces an isomorphism Ωf [w] ∼= H ′′.

b) The group Aut(Ω≤•f , 〈 , 〉) acts transitively and faithfully on the set of all homo-
geneous opposite subspaces. The action is given by the following formula:

g · P = σ̂P ◦Rg(w)(Ωf [w−1]w−1),

where σ̂P : Ωf ((w))→ Ĥf is the C((w))-linear extension of σP .

Proof. Let ωi ∈ Ωn+1[Cn+1] (1 ≤ i ≤ µ) be weighted homogeneous forms whose
classes [[ωi]] ∈ Ωαif form a basis of Ωf where αi (1 ≤ i ≤ µ) is the Steenbrink spectrum of

f . Note that the cohomology classes [ωi] (1 ≤ i ≤ µ) form a C[[w]]-basis of Ĥ(0)
f .

Let P ⊂ Ĥf be a fixed homogeneous opposite subspace and let σP and σ̂P be the

corresponding section Ωf → Ĥ(0)
f and its C((w))-linear extension Ωf ((w)) → Ĥ(0)

f . Part

a) is an easy consequence of Proposition 5.11. Namely, we have

(5.41) w∇∂/∂w ◦ σ̂ = σ̂ ◦ (w∂w + deg) ,

for σ = σP . Therefore, the classes σP ([[ωi]]) are homogeneous of degree wt(ωi) = n+1
2 +αi.

Since the variable w has degree 1, the cohomology class σP ([[ωi]]) can be written as

µ∑
j=1

∞∑
k=0

sjik[ωj ]w
k, sjik ∈ C,

where only finitely many sjik are non-zero because the following identity must hold:
wt(ωi) = k + wt(ωj). Since wk[ωj ] = [(−∂λ)−k · ωj ] is in (the image of) the Brieskorn
lattice we get that σP ([[ωi]]) is in the Brieskorn lattice. In particular, σ̂P maps Ωf [w]
into the Brieskorn lattice. It remains only to prove that the map σ̂P induces a surjetcive

map Ωf [w]→ H ′′ where we identify H ′′ with its image in Ĥ(0)
f . This follows easily from

the fact that σP ([[ωi]]) = [ωi](mod wĤ(0)
f ) which implies that σP ([[ωi]]) (1 ≤ i ≤ µ) is a

C[[w]]-basis of Ĥ(0)
f . This completes the proof of part a).

Let us prove part b). Suppose that Q is another homogeneous opposite subspace.
Put R := σ̂−1

P ◦ σ̂Q. This is a C((w))-linear operator of Ωf ((w)) leaving the subspace Ωf [w]
invariant. In particular, we have

R[[ωj ]] :=

µ∑
i=1

Rij(w)[[ωi]], Rij(w) ∈ C[w]
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or equivalently

σ̂Q([[ωj ]]) =

µ∑
i=1

Rij(w)σ̂P ([[ωi]]).

On the other hand, formula (5.41) holds for both σ = σP and σQ. Differentiating the
above identity with w∇∂/∂w we get

w∂w(Rij(w)) = (wt(ωj)− wt(ωi))Rij(w).

This proves that Rij(w) = wαj−αigij for some gij ∈ C. Let g ∈ End(Ωf ) be the linear
operator whose matrix in the basis [[ωi]] (1 ≤ i ≤ µ) is the matrix with entries gij . We

claim that g ∈ Aut(Ω≤•f , 〈 , 〉) and that Q = g · P . Clearly, we have R = wθgw−θ. In

order to prove that g ∈ Aut(Ω≤•f , 〈 , 〉), we need only to check that R is a symplectic

transformation. However, note that both σ̂P and σ̂Q are isomorphisms of symplectic
vector spaces because

Kf (σ̂(φ1(w)), σ̂(φ2(w)))w−n−1 = (φ1(w), φ2(−w))

for σ = σP , σQ. Indeed, if φ1, φ2 ∈ Ωf , then the above formula becomes precisely Propo-
sition 4.35, c). The general case follows easily from the general properties of the higher
residue pairing – see property 2 in Section 4.5.3. Therefore R is a symplectic transforma-
tion of Ωf ((w)). Finally,

Q = σ̂Q(Ωf [w−1]w−1) = σ̂P ◦R(Ωf [w−1]w−1) = g · P. �

5.7. Period integrals

Let f be a weighted homogeneous singularity and let Uph be an opposite filtration.
Let (F, p : Zlin → Slin) be the space of linear deformations of f – see Section 5.3.2.

The opposite filtration allows us to construct an opposite subspace in Ĥ(0)
f and hence,

according to Proposition 5.12, Slin is equipped with a Frobenius type structure. Moreover,
according to Section 5.2.3, the Frobenius type structure can be extended to a Frobenius

structure on an open subset B of Cµ containing Slin = Ck. Let I
(m)
a (t, λ) be the solutions

of the second structure connection defined by (3.11) where the choice of the calibration
will be specified later on. We are going to prove that if we restrict to t ∈ Slin, then

the functions I
(m)
a (t, λ) can be identified with period integrals of the Milnor fiber Zλ,t.

Moreover, this identification would allow us to prove that the reflection vectors in Hf

correspond to the vanishing cycles and that the monodromy of the Frobenius manifold
(3.12) coincides with the monodromy of the singularity f .

5.7.1. Period map. Let Uph be an opposite filtration to the Hodge filtration F ph

on h = Hn(f−1(1),C). Let P ⊂ Ĥf be the corresponding opposite subspace – see
Proposition 5.50. Put

ψU :=
⊕
p∈Z

(−w)pψ|Fph∩Uph .

We have the following diagram of isomorphisms

Hn(f−1(1),C)
ψU // Ĥ(0)

f ∩ wP
π // Ωf ∼= Hf ,
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where the second isomorphism is induced from the quotient map π : Ĥ(0)
f → Ĥ(0)

f /wĤ(0)
f

and the isomorphism Ωf ∼= Hf depends on the choice of a holomorphic volume form
ϕ = νdx where ν ∈ C is a non-zero complex number: g ∈ Hf 7→ gϕ ∈ Ωf . The general
theory allows us to associate a Frobenius structure to the pair (P,ϕ) – see Section 4.6.2.
Furthermore, let us recall the isomorphism

var ◦PD : Hn(f−1(1),Z)→ Hn(f−1(1),Z)

defined by Poincare duality and the variation isomorphism – see Section 5.5.5. Finally,
let us introduce the following notation. If a is a real number, then dae denotes the ceiling
of a, that is, the smallest integer greater or equal than a and 〈a〉 := a − dae. Note that
−1 < 〈a〉 ≤ 0. If A is a diagonalizable linear operator acting on a finite dimensional
vector space, then we denote by 〈A〉 and dAe the linear operators which are defined on
the eigenvectors v of A by 〈A〉v := 〈λ〉v and dAev := dλev where Av = λv. Let us define
the linear map

Π : Hn(f−1(1),C)→ Ωf ,

such that,

(5.42)
[[
ψU ◦ (var ◦PD)−1(γ)

]]
= (−1)n(n+1)/2 in+1 (2π)−1−l Γ(1 + 〈deg〉) eπiθΠ(γ),

where l := n/2 and θ := n+1
2 − deg. Let us recall that if ω is a holomorphic form

then we denote by [ω] the cohomology class of ω in Ĥ(0)
f and by [[ω]] the class of ω in

Ωf = Ĥ(0)
f /wĤ(0)

f . The main motivation to introduce the map Π comes from the following
proposition.

Proposition 5.52. If ω ∈ H ′′ is a holomorphic form whose cohomology class [ω] ∈
Ĥ(0)
f ∩ wP , then the following formula holds(

[[ω]],
λθ+l−1/2

Γ(θ + l + 1/2)
Π(γ)

)
= (2π)−l

∫
γλ

ω

df
,

for all γ ∈ Hn(f−1(1),C), where γλ ∈ Hn(f−1(λ),C) denotes the parallel transport of γ
along the reference path used to specify the value of the LHS.

Proof. Since Hn(f−1(1),C) has a basis consisting of vectors of the form γ =
var ◦PD(B) with B ∈ F qh ∩ Uqh, M(B) = e−2πiβB, −1 < β ≤ 0, we may assume
that γ has such a form. Put ωB := ψU (B) = (−w)qψ(B) and note that

s(ωB , 1) = [ωB/df ] =
B

(β + 1) · · · (β + n− q)
and wt(ωB) = n + 1 − q + β. Similarly, since Ωf has a basis consisting of classes [[ωA]]
where [ωA] := ψU (A) = (−w)pψ(A) for A ∈ F ph ∩ Uph, M(A) = e−2πiαA, −1 < α ≤ 0,
we may assume that [ω] = [ωA] for some A. We have

s(ωA, 1) = [ωA/df ] =
A

(α+ 1) · · · (α+ n− q)
and wt(ωA) = n+ 1− p+ α.

The RHS is straightforwrd to compute

1

(2π)l
λwt(ω)−1〈s(ω, 1), γ〉 =

1

(2π)l
λwt(ω)−1L([ω/df ], B).
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Let us compute the LHS. We have

Π(γ) = c−1
n

e−πi deg

Γ(1 + 〈deg〉)
[[ωB ]] = c−1

n

e−πi(n+1−q+β)

Γ(1 + β)
[[ωB ]]

where cn = (−1)n(n+1)/2in+1(2π)−1−l. Note that(
θ + l − 1

2

)
[[ωB ]] = (q − β − 1) [[ωB ]].

The LHS of the identity that we have to prove takes the form

c−1
n

e−πi(n+1−q+β)

Γ(1 + β)

λq−β−1

Γ(q − β)
K(0)([ωA], [ωB ]).

The residue pairing could be non-zero only if the weights of the forms ωA and ωB add
up to n + 1, that is, p + q = n + 1 + α + β. Recalling Proposition 5.48 we get that
K(0)([ωA], [ωB ]) is equal to

K(0)((−w)−pψ(A), (−w)−qψ(B)) = (−1)pK(p+q)(ψ(A), ψ(B)) =
(−1)p

(2πi)m
S(A,B),

where m := p+ q = n+ 1 + α+ β. Note that q − β = n+ 1− p+ α = wt(ω) and

A

Γ(q − β)
=

1

Γ(1 + α)

A

(α+ 1) · · · (α+ n− p)
=

[ω/df ]

Γ(1 + α)

Therefore, the LHS becomes

c−1
n

(2πi)m
(−1)n+1−p−qe−πiβ

Γ(1 + α)Γ(1 + β)
λwt(ω)−1 S([ω/df ], B).

Now the computation splits into two cases. First, if α+ β = −1, then m = n and

S([ω/df ], B) =
(−1)n(n−1)/2

e−2πiβ − 1
L([ω/df ], B).

A simple computation shows that

Γ(1 + α)Γ(1 + β) = 2πi
e−πiβ

e−2πiβ − 1
.

Therefore, the LHS takes the form

−(−1)n(n−1)/2 c−1
n

(2πi)n+1
λwt(ω)−1 L([ω/df ], B).

The constant becomes

−(−1)n(n−1)/2 c−1
n

(2πi)n+1
=

1

(2π)l
,

that is, we get that the LHS is equal to the RHS. The second case is when α = β = 0.
Then m = n+ 1 and the LHS takes the form

c−1
n

(2πi)n+1
λwt(ω)−1 S([ω/df ], B) = −(−1)n(n−1)/2 c−1

n

(2πi)n+1
λwt(ω)−1 L([ω/df ], B).

Clearly, the constant factor is as in the previous case, so the above expression also coincides
with the RHS. �
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According to Proposition 5.52, the map Π defined by formula (5.42) determines com-
pletely the periods of the Milnor fiber f−1(1). For that reason we will refer to Π as the
period map of f corresponding to the opposite filtration U•h.

5.7.2. Euler pairing and its symmetrization. Let us recall that Ωf is equipped
with the Euler pairing (see (3.29))

〈[[ω1]], [[ω2]]〉 =
1

2π
K

(0)
f ([[ω1]], eπiθ[[ω2]]).

Let us introduce also the (−1)n-symmetrization of the Euler pairing

(a|b) := 〈a, b〉+ (−1)n〈b, a〉
which will be called the intersection pairing. We would like to prove that under the
period map Π these two pairings are identified with repsectively the Seifert form and the
intersection pairing of the singularity f .

Proposition 5.53. The following formulas hold:

〈Π(γ1),Π(γ2)〉 = −(−1)n(n−1)/2L(γ1, γ2)

and

(Π(γ1)|Π(γ2)) = (−1)n(n−1)/2γ1 ◦ γ2

for all γ1, γ2 ∈ Hn(f−1(1),C).

Proof. We may assume that γi = var ◦PD(Ai) where Ai ∈ F pih ∩ Upih, M(Ai) =
e−2πiαiAi, and −1 < αi ≤ 0. Let us denote [ωi] := ψU (Ai) = (−w)piψ(Ai) where ωi is a
weighted homogeneous form of weight n+ 1− pi + αi.

Let us prove the first identity. By definition the RHS is −(−1)n(n−1)/2〈A1, γ2〉 – here
the angle brackets denote the natural pairing between cohomology and homology. Recall
that

A1

(α1 + 1) · · · (α1 + n− p1)
= [ω1/df ].

Recalling Proposition 5.52 we get that the RHS of our identity is equal to

−(−1)n(n−1)/2 (2π)l (α1 + 1) · · · (α1 + n− p1)K
(0)
f ([[ω1]],

1

Γ(p2 − α2)
Π(γ2)),

where we used that

(θ + l + 1/2)Π(γ2) = ((n+ 1)/2− wt(ω2) + l + 1/2)Π(γ2) = (p2 − α2)Π(γ2).

On the other hand, p2−α2 = n+ 1−p1 +α1 because the residue pairing is non-zero only
if the weights of the forms add up to n+ 1. Therefore, the above formula takes the form

−(−1)n(n−1)/2 (2π)lK
(0)
f ([[ω1]],

1

Γ(1 + α1)
Π(γ2)).

By definition

[[ω1]] = ψU (A1) = (−1)n(n+1)/2in+1(2π)−1−lΓ(1 + α1)eπi degΠ(γ1).

Note that

−(−1)n(n−1)/2 (−1)n(n+1)/2in+1 eπi deg = eπi(−(n+1)/2+deg) = e−πiθ.

Since θT = −θ the formula that we have to prove follows easily from the above formulas.
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The second formula is a consequence of the well known formula for the intersection
form in terms of the Seifert form (see [6]), that is,

a ◦ b = −L(a, b)− (−1)nL(b, a), ∀a, b ∈ Hn(f−1(1),C). �

5.7.3. Period vectors. Let us continue to work with a fixed opposite filtration
Uph, the corresponding opposite subspace P , and a fixed choice ϕ = νdx ∈ Ωf of a
holomorphic volume form. The pair (P,ϕ) determines a Frobenius type structure on
Slin = Ck which can be extended to a Frobenius structure on an open subset B of
CB = Cµ containing Slin – see Sections 5.2.2 and 5.2.3 for more details. Let us recall the
construction of weighted homogeneous holomorphic forms ωI (I ∈ B), such that, their

cohomology classes [ωI ] ∈ Ĥ(0)
F determine a C[[w]]-trivialization of Ĥ(0)

F . Namely, as we
already discussed in Section 5.2.3 we may assume that the indeces I ∈ B have non-zero
entries only in the first k variables. The classes of the forms xIdx in Ωf form a basis. Let
us choose weighted homogeneous forms ω◦I ∈ Ωn+1[Cn+1], such that, [ω◦I ] = σf ([[xIdx]]

where σf : Ωf → Ĥ(0)
f ∩ wP is the section corresponding to the opposite subspace P .

Let ω◦ be a weighted homogeneous form, such that, [ω◦] = σf (ϕ). Then the forms ωI
are defined as follows. First, we construct a matrix E(t, w) of size B × B whose entries
EIJ(t, w) are defined by

exp
( k−1∑
a=0

taxa/w
)
xJω◦ =

∑
I∈B

ω◦IEIJ(t, w),

where the identity should be viewed in Ĥ(0)
f [[t0, . . . , tk−1]]. The matrix E(t, w) admits a

Birkhof factorization E(t, w) = T (t, w)A(t, w)−1 with T (t, w) = 1+O(w−1) and A(t, w) =
A0(t) +A1(t)w + · · · and we define

ωJ :=
∑
I∈B

xIAIJ(t, w)ω◦.

Due to homegeneity, as it was explained in Section 5.2.2, the forms ωI are polynomial
in x, t, and w and if we assign weight 1 to w, weight ci to xi (0 ≤ i ≤ n), and weight
1 − ca to ta (0 ≤ a ≤ k − 1), then ωI becomes a weighted homogeneous form of weight
wt(ω◦I ) = c ·I+c0 + · · ·+cn. In particular, ωI are holomorphic forms on Cn+1 dependning
holomorphically on t. Note that if ω is a holomorphic form on Cn+1, then the forms wω

and −dF ∧ d−1ω represent the same class in Ĥ(0)
F . Therefore, we may assume that the

forms ωI are independent of w.
On the other hand, let us recall the vanishing cohomology bundle Hn (see (5.16))

equipped with a flat Gauss-Manin connection. Let us consider a deformation of the
Brieskorn lattice which would allow us to cosntruct holomorphic sections of Hn. Namely,
put ΩpZlin/Slin

[Ck×Cn+1] for the vector space of polynomial p-forms on Cn+1 dependning

polynomially on the parameters t0, . . . , tk−1. Let us define

H ′′F := Ωn+1
Zlin/Slin

[Ck × Cn+1]/dF ∧ dΩn−1
Zlin/Slin

[Ck × Cn+1].

We will refer to H ′′F as the deformed Brieskorn lattice. The deformed Brieskorn lattice

H ′′F is naturally a C[t0, . . . , tn, ∂
−1
λ ]-module, where the action of ta (0 ≤ a ≤ k − 1) is by

multiplication and the action of ∂−1
λ is defined by

∂−1
λ · ω = dF ∧ d−1ω.
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Just like in the non-deformed case we have the following important fact.

Proposition 5.54. The map

H ′′F → Γ(Slin, Ĥ
(0)
F ), ω 7→ [ω]

is injective and we have

p(t)[ω] = [p(t)ω] ∀p(t) ∈ C[t0, . . . , tk−1], [∂−1
λ · ω] = −w[ω].

Proof. The proof is the same as the proof of Proposition 5.45. The only difference
is that we have extra variables t0, . . . , tk−1. However, if we assign weights 1 − ca to ta
and extend the notion of weighted homogeneous to include the variables ta too, then the
argument remains the same. The key fact which makes the argument work is that the
weights of ta are positive. �

Furthermore, if ω ∈ Ωn+1
Zlin/Slin

[Ck × Cn+1], then we have the notion of a geometric

section

s(ω, λ, t) :=

∫
ω

dF
∈ Hn(Zλ,t,C), (λ, t) ∈ C× Slin \DF ,

where ω/dF denotes any form η defined in a tubular neighborhood of Zλ,t in Cn+1, such
that, ω = dF ∧η. Again the choice of η is not unique but its restriction η|Zλ,t is a uniquely
determined holomorphic n-form on the hypersurface Zλ,t. The map (λ, t) 7→ s(ω, λ, t) is
a holomorphic section of Hn which we denote by [ω/dF ] and we will refer to as the
geometric section corresponding to the form ω. We have the following formulas for the
derivatives of the geometric sections with respect to the Gauss–Manin connection:

∇∂/∂λ[∂−1
λ · ω/dF ] = [ω/dF ] (0 ≤ a ≤ k − 1),

∇∂/∂ta [∂−1
λ · ω/dF ] =

[
(−∂taFω + Lie∂/∂ta ω)/dF

]
,

where Liev ω denotes the Lie derivative of the form ω with respect to the vector field v.
The proof of the above formulas is elementary and we leave it as an exercise (see also [6]).

Finally, let us recall (see Section 5.2.2) that the classes [[ωI ]] (I ∈ B) of the forms ωI
in p∗ΩF ∼= Ĥ(0)

F /wĤ(0)
F determine a trivialization of the vector bundle p∗ΩF . Let Ca(t)

be the matrix of the operator of multiplication by ∂F
∂ta

= xa, that is,

xa[[ωJ ]] =
∑
I∈B

[[ωI ]]CaIJ(t).

After all these preparations we can state the following proposition.

Proposition 5.55. The following formulas hold:

∇∂/∂ta [ωJ/dF ] = −
∑
I

∇∂/∂λ[ωJ/dF ]CaIJ(t) (0 ≤ a ≤ k − 1)(5.43)

(λ∇∂/∂λ +∇E)[ωJ/dF ] = (wt(ωJ)− 1)[ωJ/dF ],(5.44)

where E =
∑k−1
a=0(1− ca)ta

∂
∂ta

is the Euler vector field.

Proof. This proposition is an easy corollary from formulas (5.12)–(5.13) and Propo-
sition 5.54. Indeed, according to formula (5.12) we have

w∇∂/∂ta [ωJ ] =
∑
I

[ωI ]CaIJ(t).
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Equivalently, [
∂F

∂ta
ωJ − ∂−1

λ · Lie∂/∂ta ωJ −
∑
I

ωI CaIJ(t)

]
= 0.

According to Proposition 5.54 the form in the square brackets above is 0 in H ′′F . Therefore,
the corresponding geometric section is also 0, that is,[(∂F

∂ta
ωJ − ∂−1

λ · Lie∂/∂ta ωJ

)
/dF

]
=
∑
I

[ωI/dF ]CaIJ(t).

Recalling the formulas for the derivatives of the geometric sections we get that the LHS
of the above identity is

−∇∂/∂ta [∂−1
λ · ωI/dF ].

Differentiating by ∇∂/∂λ we get formula (5.43). The second formula (5.44) is proved in a
similar way. �

Using Proposition 5.55 we would like to construct a solution to the 2nd structure
connection in terms of the geometric sections. Let us recall the Frobenius type structure
on Slin consisting of the holomorphic vector bundle K := p∗ΩF , the flat connection ∇r
on K defined by the requirement that [[ωI ]] (I ∈ B) are flat sections, the Higgs field

C : TSlin
→ End(K), ∂/∂ta 7→ Ca,

where Ca is the operator of multiplication by ∂F
∂ta

, the operator U := CE = the en-
domorphism of K of multiplication by F . Using the flat connection ∇r we trivialize
p∗ΩF ∼= Slin × Ωf . By definition, in this trivialization, the sections [[ωI ]] correspond to
the constant sections [[ω◦I ]] = [[xIdx]]. Let us denote by [[ω]] ∈ Γ(Slin, p∗ΩF ) the section
which in the flat trivialization corresponds to the constant section ϕ = νdx, that is,
[[ω]] := ν[[ω0]], where 0 is the multi-index in B whose entries are all 0. The remaining
two ingredients of the Frobenius type structure are the grading operator θ ∈ End(K) and
the non-degenerate bilinear pairing g on K. Both θ and g are ∇r-flat and in the flat
trivialization are given respectively by θ = n+1

2 − deg and g is just the residue pairing on
Ωf . According to Proposition 5.12 the data (Slin,K,∇r, C, θ,U , g) that we just defined
is a Frobenius type structure.

According to the construction theorem of Hertling and Manin (see also Section 5.2.3),
there exists a unique Frobenius manifold B containing Slin as a closed complex subman-
ifold and an isomorphism

Φ : TB|Slin
→ K,

such that,

(i) Φ(e) = [[ω]], where e is the unit vector field.
(ii) If v′ ∈ TtSlin ⊂ TtB where t ∈ Slin, then Φ(v′ •t v′′) = Cv′(Φ(v′′)) for all

v′′ ∈ TtB where •t is the Frobenius multiplication in TtB.
(iii) Under the isomorphism Φ0 : T0B → Ωf the grading operator θ and the pairing

g coincide with respectively the grading operator and the Frobenius pairing of
B.

Suppose that I(m)(t, λ) is a solution to the 2nd structure connection of the Frobenius
manifold B. Using the flat trivialization of p∗ΩF and the isomorphism Φ we obtain a
trivialization of TB|Slin

∼= Slin×Ωf . Therefore, we can and we will interpret the restriction
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of I(m)(t, λ) to (λ, t) ∈ C × Slin \ DF as a multivalued analytic function with values in
Ωf . Note that the restriction satisfies the following system of differential equations

(λ− U)∂taI
(m)(t, λ) = −Ca

(
θ −m− 1

2

)
I(m)(t, λ) (0 ≤ a ≤ k − 1),

(λ− U)∂λI
(m)(t, λ) =

(
θ −m− 1

2

)
I(m)(t, λ)

where U and Ca are the linear operators in Ωf which under the flat trivialization p∗ΩF ∼=
Slin×Ωf correspond to U and C∂/∂ta . Note that since U = CE , the above system can be
written equivalently as

∂taI
(m)(t, λ) = −Ca ∂λ I(m)(t, λ) (0 ≤ a ≤ k − 1),(5.45)

(λ∂λ + E)I(m)(t, λ) =
(
θ −m− 1

2

)
I(m)(t, λ).(5.46)

Using geometric sections we can construct solutions to the above system in the following
way. If α ∈ Hn(f−1(1),C) is an arbitrary cycle and m ∈ −l + Z with l := n/2, then we

define the multivalued Ωf -valued function I
(m)
α (t, λ) by the following formula:

([[ω◦I ]], I(−l)
α (t, λ)) := (2π)−l ∂m+l

λ

∫
αλ,t

ωI
dF

, ∀I ∈ B,

where ( , ) is the residue pairing on Ωf , if m + l < 0 then we think of ωI as an element
of H ′′F and define the RHS by

(2π)−l
∫
αλ,t

∂m+l
λ · ωI
dF

,

and αλ,t ∈ Hn(Zλ,t,C) is the parallel transport of α along a reference path. We will refer

to the functions I
(m)
α (t, λ) (m ∈ −l+Z) as the period vectors of α. The value of the period

vector depends on the choice of a reference path in C × Slin \DF connecting the points
(1, 0) and (λ, t). Using Proposition 5.55 it is straightforward to prove that the period

vectors I
(m)
α (t, λ) satisfy the differential equations (5.45)–(5.46). Moreover, according to

Proposition 5.52

I(m)
α (0, λ) =

λθ−m−1/2

Γ(θ −m+ 1/2)
Π(α).

The RHS coincides with our definition of a calibrated period – see (3.9). In particular, if
we choose the calibration S(t, w) of the Frobenius manifold B to be such that S(0, w) = Id,

then the period vector I
(m)
α (t, λ) coincides with I

(m)
Π(α)(t, λ) where the latter is defined by

formula (3.11).
Note that the Frobenius structure on B depends only on the co-rank k of the singu-

larity f . By adding to f squares of new variables we can arrange that the number n takes
any value ≥ k that we wish. By choosing n to be odd or even, the above construction
gives a geometric interpretation for the periods (3.11) for respectively m ∈ 1

2 + Z and
m ∈ Z. We will be interested only in the period vectors with m ∈ Z, that is, we will
assume that n = 2l is an even number.

Corollary 5.56. If n = 2l is an even number, then under the isomorphism Φ−1
0 ◦Π :

Hn(f−1(1),C) ∼= T0B we have the following identifications
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(a) The Euler pairing 〈 , 〉 of the Frobenius structure (see (3.29)) coincides with
−(−1)lL, where L is the Seifert form of the singularity f .

(b) The intersection pairing ( | ) of the Frobenius structure (see (3.30)) coincides
with (−1)l × intersection pairing.

(c) The reflection vectors and the monodromy of the Frobenius manifold coincide
with respectively the set of vanishing cycles and the monodromy group of the
singularity f. �

Proof. Statements (a) and (b) of the above corollary follow immediately from
Proposition 5.53. Part (c) follows from the above discussion, that is, the period vector

I
(m)
α (t, λ) coincides with the solution of the 2nd structure connection I

(m)
Π(α)(t, λ) defined

by formula (3.11). Therefore, the isomorphism Π intertwines the monodromy representa-
tions of the 2nd structure connection and the Gauss–Manin connection of the vanishing
homology bundle. If Π(α) is a reflection vector, then there exists a simple loop C around
a generic point on the discriminant DF , such that, the monodromy transformation along
C transforms Π(α) into −Π(α) ⇒ the cycle α is transformed into −α. Recalling the

Picard–Lefschetz formula (see Proposition 5.22), we get that α = (α|γ)
2 γ must be pro-

portional to the vanishing cycle γ corresponding to the simple loop C. Finally, since
α ◦ α = (−1)l(α|α) = (−1)l 2 coincides with the self-intersection number of a vanishing
cycle, we get that α = ±γ must be a vanishing cycle. �

Remark 5.57. Using the so-called twisted Picard–Lefschetz theory (see [23]) we can

give a geometric interpretation of the solutions I
(m)
a (t, λ) of the 2nd structure connection

defined by (3.11) for all m ∈ C. However, the significance of the period vectors for which
m /∈ Z from the point of view of the theory of integrable systems and representation
theory of vertex operator algebras is not known to us.



CHAPTER 6

Simple singularities

6.1. Frobenius structures

There are many characterizations of simple singularities. The one that seems to be
the most relevant for our purposes is the following.

Definition 6.1. A weighted homogeneous singularity is said to be simple if all de-
formations are relevant, that is, B = Brel.

In the rest of this chapter, we will be working with a simple singularity f . Since
B = Brel, we will drop the index rel from the notation, i.e., according to Proposition 5.1,
we have a family of functions (F, p : Z → B), where Z := Cn+1 × B, B := CB, and
F (x, t) = f(x) +

∑
κ∈B tκx

κ.

6.1.1. Kodaira–Spencer isomorphism.

Proposition 6.2. If f is a simple singularity, then (F, p : Z → B) is a complete
family (see Definition 4.7).

Proof. We have to prove that the Kodaira–Spencer map

TB → p∗OCF , ∂tκ 7→
∂F

∂tk
is an isomorphism of OB-modules. We already know that p∗OCF is a locally free sheaf
of rank µF = dim(B) – see Section 4.2.2. In other words, the Kodaira–Spencer map is
a map between two holomorphic vector bundles on B. Let K be the set of all t ∈ B,
such that, the induced map between the fibers of the two vector bundles at t fails to be
an isomorphism. Note that K is a closed subset of B. The fiber of TB at t is just the
tangent space TtB ∼= CB, while the fiber of p∗OB at t is the algebra

Ht := C[x0, . . . , xn]/(∂x0ft, . . . , ∂xnft),

where ft(x) := F (x, t). The Kodaira–Spencer map between the fibers at t takes the form

φt : CB → Ht, a = (aκ) 7→
∑
κ

aκx
κ (mod ∂x0ft, . . . , ∂xnft).

By definition, φ0 is an isomorphism so 0 /∈ K. Using that f is weighted homogeneous
it is easy to prove that if t ∈ K, then λ · t ∈ K for all positive real numbers λ, where
(λ · t)κ := λ1−c·κtκ. If K is not empty, since c ·κ < 1, by letting λ→ 0 we would get that
there is a sequence of points in K converging to 0, that is, we would have that 0 ∈ K –
contradiction. �

Using the Kodaira–Spencer isomorphism, let us equip the tangent bundle TB with the
multiplication induced from the multiplication of functions in p∗OB . The unit 1 ∈ p∗OB

induces a vector field e = ∂
∂t0

, where 0 ∈ B is the multi-index with all entries equal to 0.

245
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Furthermore, the function F ∈ p∗OB induces a vector field E ∈ Γ(B,TB), which will be
called the Euler vector field. Since f(x) is weighted homogeneous, we have

(6.1)
( n∑
i=0

cixi
∂

∂xi
+
∑
κ∈B

(1− c · κ)tκ
∂

∂tκ

)
F (x, t) = F (x, t).

Recalling the Kodaira–Spencer isomorphism, the above identity yields that

E =
∑
κ∈B

(1− c · κ)tκ
∂

∂tκ
.

6.1.2. Primitive forms. Our next goal is to prove that up to a constant factor the
only primitive form is the standard holomorphic volume form ω := dx0 ∧ · · · ∧ dxn. This
follows almost immediately for homogeneity resasons. To begin with, let us look closer

at the homogeneity properties of the sheaf H(0)
F and the higher-residue pairing KF .

Lemma 6.3. Suppose that φk(x, t), k ≥ 0, are holomorphic functions on Z, such that,

(6.2)
( n∑
i=0

cixi
∂

∂xi
+
∑
κ∈B

(1− c · κ)tκ
∂

∂tκ

)
φk(x, t) = (r − k − c0 − · · · − cn)φk(x, t).

Then the series ϕ :=
∑∞
k=0 φk(x, t)wkω represents a homogeneous element of H(0)

F of
homogeneous degree r (see Definition 4.32).

Proof. By definition the cohomology class [ϕ] is said to be homogeneous of degree
r if (w∇w +∇E)[ϕ] = r[ϕ], where ∇ is the Gauss–Manin connection, ∇w := ∇∂/∂w, and
[ϕ] denotes the cohomology class represented by the form ϕ. We have

(w∇w +∇E)[ϕ] =

∞∑
k=0

w−1+k
[(

(−F + E(F ) + k)φk(x, t) + E(φk(x, t))
)
ω
]
.

Using (6.1) we can write E(F )− F = −
∑
cixiFxi . Note that

[−xiFxiφk(x, t)ω] = w[(φk(x, t) + xi∂xiφk(x, t))ω].

The formula for (w∇w +∇E)[ϕ] takes the form

∞∑
k=0

[(
c0 + · · ·+ cn + k + E +

n∑
i=0

cixi∂xi

)
φk(x, t)wkω

]
.

Recalling (6.2), we get that the above class coincides with r[ϕ], which is what we had to
prove. �

It is convenient to assign weight 1 − c · κ to tκ for all κ ∈ B and to introduce
the notion of weighted homogeneous functions on Z. Then condition (6.2) has a simple
interpretation, that is, the function φk(x, t) is weighted homogeneous of weight (or degree)
r − k − c0 − · · · − cn. Using Proposition 4.24 we can prove easily that the inverse of

Lemma 6.3 holds, i.e., every homogeneous cohomology class in H(0)
F can be represented

by a holomorphic form ϕ =
∑∞
k=0 φk(x, t)wkω, such that, φk are holomorphic functions

on Z satisfying (6.2). Indeed, according to Proposition 4.24, the classes [xκω], κ ∈ B form

a OB [[w]]-basis of H(0)
F . Suppose that [ϕ] =

∑
κ aκ(t, w)[xκω] ∈ H(0)

F is homogeneous of
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degree r. According to Lemma 6.3 [xκω] is homogeneous of weight c · κ + c0 + · · · + cn.
We get that each coefficient aκ(t, w) satisfies(

w∂w + E
)
aκ(t, w) = (r − c · κ− c0 − · · · − cn)aκ(t, w).

Expanding in the powers of w, that is, aκ(t, w) =:
∑∞
l=0 aκ,l(t)w

l, we get that each
coefficient aκ,l(t) is weighted homogeneous of weight (r − l − c · κ − c0 − · · · − cn). Put
φl(x, t) :=

∑
κ aκ,l(t)x

κ, then φl satisfies (6.2) and
∑∞
l=0 φl(x, t)w

lω represents ϕ.
Suppose now that ϕ =

∑∞
k=0 φk(x, t)wkω is a primitive form. Since ϕ is a holomor-

phic volume form, we get that φ0(x, t) must be an invertible element in OCF ,0, that is,
φ0(0, 0) 6= 0. On the other hand, since a primitive form is homogeneous of some de-
gree r, we may assume that φk(x, t) are weighted homogeneous functions on Z of weight
r − k − c0 − · · · − cn. Note that the weights of all variable xi and tκ are positive! There-
fore, the weighted homogeneous function φ0(x, t) must have weight 0, that is, φ0(x, t) is
a constant independent of x and t. We also get that r = c0 + · · ·+ cn. The latter implies
that the functions φk(x, t) have weight −k, which is negative for k > 0. Since we can not
have non-zero weighted homogeneous functions on Z of negative weight, we must have
φk(x, t) = 0 for all k > 0. We get that if a primitive form exists, then it must be a
constant multiple of ω.

Proposition 6.4. The standard volume form ω is primitive.

Proof. We have to check that conditions (i)–(v) in Definition 4.32 are satisfied. We
already know that (iv) is satisfied, while (v) is trivially satisfied. For α ∈ B, let us denote
∇α = ∇∂/∂tα the covariant derivative with respect to the Gauss–Manin connection. Note
that the cohomology class w∇αω is homogeneous of degree r+c ·α, because tα has weight
1− c · α. Using the Leibnitz rule we get(

w∂w + E
)
K(w∇αω,w∇βω) = (2r + c · (α+ β))K(w∇αω,w∇βω).

Therefore, the pairing K(p)(w∇αω,w∇βω) is a weighted homogeneous function on B of
weight

2r + c · (α+ β)− p− n− 1.

Since n + 1 − 2r =
∑n
i=0(1 − 2ci) coincides with the weight of the Hessian of f which

according to Proposition 5.3 is ≥ c · α and c · β < 1, we get that the above weight is
negative for p ≥ 1. Since the weights of tα are positive, we get that the above higher
residue pairings must vanish, that is, condition (i) in Definition 4.32 holds. The remaining
two conditions (ii) and (iii) are verified in a similar way, so we leave the details as an
exercise. �

Recalling Theorem 4.33 we get that B has a Frobenius structure of conformal dimen-
sion D =

∑n
i=0(1−2ci). Since the higher residue pairings K(p)(xIdx, xJdx) = 0 for p > 0

and I, J ∈ B we get that

(6.3) P = SpanC
{
w−l−1[xIdx] | I ∈ B, l ≥ 0

}
is an opposite subspace. In fact, the group Aut(Ω≤•f , 〈 , 〉) = {1}. Indeed, suppose that

g ∈ Aut(Ω≤•f , 〈 , 〉) and let gIJ be the entries of the matrix of g with respect to the basis

[[xIdx]] (I ∈ B) of Ωf . Note that the (I, J)-entry of Rg(w) = wθgw−θ is gIJw
c·J−c·I .

By definition, Rg(w) is a power series in w ⇒ c · J − c · I must be an integer. However,
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for simple singularities 0 < c · I, c · J < 1, so the only possibility for gIJ to be non-zero
is that I = J , that is, g = 1. Therefore, according to Proposition 5.51, there exists a
unique homogeneous opposite subspace, that is, (6.3) is the unique homogeneous opposite
subspace. Note that the Frobenius structure on B coincides with the Frobenius structure
associated to the pair (P, [[dx]]).

6.1.3. Vanishing cycles and root systems. Suppose that n = 2l is an even
number. We would like to prove that the set of vanishing cycles of f is a root system of
type ADE. Recall that a root system R of rank N is a subset of the standard real vector
space RN equipped with a positive definite symmetric bilinear form ( | ) satisfying the
following conditions:

(i) The set R spans RN .
(ii) If α ∈ R and kα ∈ R, then k = ±1.

(iii) If α, β ∈ R, then rα(β) := β − 2 (α|β)
(α|α) ∈ R.

(iv) If α, β ∈ R, then 2 (α|β)
(α|α) ∈ Z.

Let us consider the real vector space Hn(f−1(1),R) ∼= RN where N = µ is the Milnor
number. Put (α|β) := (−1)lα ◦ β, and let R be the set of vanishing cycles. All axioms
(i)–(iv) are clearly satisfied (see Proposition 5.22). The only non-trivial condition to check
is that ( | ) is positive definite. This follows from the Hodge–Riemann bilinear relations
for the Steenbrink’s Hodge structure. We claim that

l < wt(xIdx) < l + 1 ∀I ∈ B.

Indeed, let us write D = 1 − 2
h where h is a rational number. Since D is the weight of

the Hessian we must have that h ≥ 2. As we will see later on h is in fact an integer and
it coincides with the Coxeter number. We have

∑n
i=0 ci = l + 1

h and wt(xI) ≤ D ⇒

l <

n∑
i=0

ci < wt(xI) +

n∑
i=0

ci ≤ l +
1

h
+D = l + 1− 1

h
.

Our claim follows. We get that h1 = 0 and that the Hodge filtration has the form
0 = F l−1h ⊂ F lh = h. The Hodge–Riemann bilinear relations take the form

in
2+2lSV (A,A) > 0,

where A is the complex conjugate of A with respect to the real structure Hn(f−1(1),R).

The factor in
2+2l = (−1)l, while

SV (A,B) = L(A, (M − 1)−1B) = A ◦B,

where the second equality is a well known formula for the intersection pairing in terms of
the Seifert form (see [6]). Therefore, ifA is real then the Hodge–Riemann bilinear relations
yield (A|A) > 0, that is, the cohomological intersection pairing is positive definite. Since
the interesection pairings in cohomology and homology are intertwined via the duality
isomorphism var ◦PD : Hn(f−1(1),R) → Hn(f−1(1),R), we get that the homological
intersection pairing is also positive definite. This proves that the set of vanishing cycles
is a root system.

We can say a little bit more. Namely, since (α|α) = 2 for all vanishing cycles, we get
that all roots have the same length. Recalling the classification of root systems, we get
the following two facts
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(1) The set of vanishing cycles R consists of all cycle α ∈ Hn(f−1(1),Z), such that,
(α|α) = 2.

(2) The set of vanishing cycles R must be a root system of type A, D, or E.

We will say that the simple singularity is of type A, D, or E dependning on whether
the set of vanising cycles is a root system of type respectively A, D, or E. Up to an
isomorphism the simple singularities are classified by the following polynomials:

f(x) = g(x0, x1) + x2
2 + · · ·+ x2

n+1,

where the polynomial g(x0, x1) is in Table 1.

Type g(x) Exponents h

AN xN+1
0 +x2

1 1, 2, . . . , N N+1

DN xN−1
0 +x0x

2
1 1, 3, . . . , 2N−3, N−1 2N−2

E6 x4
0+x3

1 1, 4, 5, 7, 8, 11 12

E7 x3
0x1+x3

1 1, 5, 7, 9, 11, 13, 17 18

E8 x5
0+x3

1 1, 7, 11, 13, 17, 19, 23, 29 30

Table 1. Simple singularities.

There is a general method for computing a basis of vanishing cycles and the inter-
section matrix for functions in two variables due to A’Campo [2] and Gusein-Zade [29]
(see also [6]). By applying this method to the polynomials in Table 1 we can prove that
the function g has a Morsification g̃ whose critical values ũ1, . . . , ũN are pairwise ditinct,
such that, if we fix a disk U ⊂ C containing all critical values and we choose a point λ0

on the boundary of U , then there exists a set of smooth paths C1, . . . , CN satisfying the
following conditions:

(i) Ci has no self-intersections and it connects λ0 with the critical value ũi.
(ii) If i 6= j, then Ci ∩ Cj = {λ0}.

(iii) Let αi be the vanishing cycle of g̃(x0, x1) + x2
2 corresponding to the path Ci.

The set {α1, . . . , αN} is a set of simple roots.

By changing the enumeration of the critical values ũi if necessary, we can arrange that
the paths Ci are enumerated according to the order in which they exit the point λ0, that
is, if we draw a small clock-wise oriented circle with center at λ0 and we look at the
arc of that circle inside U , then the arc will intersect first C1, then C2, etc. Let γi be
the simple loop corresponding to Ci that goes anti-clockwise around ũi. Note that the
composition γ1 ◦ · · · ◦ γN is homotopic to the circle ∂U . Since the classical monodromy
M is the monodromy transformation along ∂U , we get that M = rα1 · · · rαN , that is, M
is a Coxeter transformation.

Remark 6.5. The vanishing cycles α1, . . . , αN corresponding to a set of paths C1, . . . , CN
satisfying conditions (i), (ii), and such that the enumeration of the paths agrees with the
enumeration of the critical values ũ1, . . . , ũN (in the above sense) is called a distingusihed
basis. Our claim from above is that a simple singularity admits a distinguished basis
consisting of simple roots. �

Remark 6.6. The method of Gusein–Zade [29, 6] gives a distingusihed basis which
however might fail to consist of simple roots. In particular, the Dynkin diagram might
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have a non-standard form. In order to transform the distinguished basis into one consist-
ing of simple roots one has to apply the so-called operations αm and βm+1 (1 ≤ m < N)
– see [6], Sections 2.6 and 4.1. �

6.2. HQEs for the total descendent potential

We would like to state the main result of this chpater (see also [24]). Namely, the total
descendent potential of a simple singularity f satisfies a system of Hirota quadratic equa-
tions (HQEs). These equations were identified in [16] with the Hirota bilinear equations
of the principal Kac–Wakimoto hierarchy corresponding to the root system of vanishing
cycles.

6.2.1. A1-singularity. Let us first consider the special case of an A1-singularity.
The equations in this case are equivalent to the HQEs of the KdV hierarchy (see Section
3.1). Therefore, the proof in this case follows trivially from the Kontsevich’s theorem for
Dpt.

Suppose that f(x) = x2 and that the primitive form is ω =
√

2∆−1/2dx where ∆ is a
non-zero complex number. Then the Frobenius manifold is B = C. Let t be the standard
coordinate on B and F (x, t) = x2+t be the miniversal unfolding. The Frobenius structure
is given by

∂t • ∂t = ∂t, (∂t, ∂t) =
1

∆
.

Note that the canonical coordinate u = t. The total descendent potential takes the form

DA1
(~,q) = Dpt(~∆,q(z) + z) ∈ C~[[q0, q1 + 1, q2, . . . ]],

where Dpt is the Witten–Kontsevich tau-function (1.65) and q(z) = q0 + q1z+ q2z
2 + · · · .

Put H = T0B and let us recall that we have an identification

H ∼= Ωf ,
∂

∂t
7→ ∂F

∂t
ω =
√

2∆−1/2[[dx]].

The period vector (with l = 0) takes the form

([[dx]], I(0)
α (λ)) =

∫
αλ

dx

df
= λ−1/2,

where αλ = [x+(λ)]− [x−(λ)] ∈ H̃0(f−1(λ),C), x±(λ) := ±
√
λ. Since ([[dx]], [[dx]]) = 1/2

we get I
(0)
α (λ) = 2λ−1/2[[dx]]. The remaining periods are obtained by differentiating and

anti-differentiating, that is,

I(k)
α (λ) =

(−1)k

2k−1
(2k − 1)!!λ−k−1/2 [[dx]], k > 0,

and

I(−k−1)
α (λ) = 2k+1 λk+1/2

(2k + 1)!!
[[dx]], k ≥ 0.

Note that the period map

Π : H̃0(f−1(λ),C)→ Ωf ∼= H

takes the form

Π(α) := 2Γ(1/2)[[dx]] =
√

2π∆
∂

∂t
.
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Let H = H((z−1)) be the Givental’s symplectic vector space. Let us recall the vertex
operators associated to the period vectors (see Section 3.2.3). Put

fα(λ, z) =
∑
n∈Z

I(n)
α (λ)(−z)n

and Γα(λ) = ef
α
−(λ,z)̂ ef

α
+(λ,z)̂ , where the quantization rules are determined by(

∂

∂t
zk
)̂

= −
√
~
∂

∂qk
,
(
dt(−z)−k−1

)̂= qk/
√
~,

where dt = ∆∂/∂t, that is, we identify T ∗0B
∼= T0B via the residue pairing. After a short

computation we get

Γα(λ) = exp
( ∞∑
k=0

qk√
~∆(2k + 1)!!

(2λ)k+1/2
)

exp
(
− 2

∞∑
k=0

(2k − 1)!!
√
~∆ ∂qk(2λ)−k−1/2

)
.

The equations take the form

(6.4) Res
dλ

λ

(∑
±

Γ±α(λ)⊗ Γ∓α(λ)

)
Φ⊗ Φ = 16

(
`+

1

8

)
Φ⊗ Φ,

where

(6.5) ` :=

∞∑
k=0

(
k +

1

2

)
(qk ⊗ 1− 1⊗ qk)(∂qk ⊗ 1− 1⊗ ∂qk),

Res denotes the coefficient in front of λ0. Under the substitutions

λ =
ζ2

2
, qk =

√
~∆ (2k + 1)!!T2k+1 (k ≥ 0)

the equations (6.4) coincide with the HQEs of the principal Kac–Wakimoto hierarchy of
type A1 (see [40]) which is known to be the same as the KdV hierarchy. In other words,

under the substitution qk =
√
~∆ (2k+1)!!T2k+1 (k ≥ 0), the solutions Φ of (6.4) coincide

with the tau-dunctions of the KdV hierarchy. Recalling Kontsevich’s theorem for Dpt we
get that DA1

is a solution to the equations (6.4).
Let us recall that the tau-functions of KdV hierarchy can be characterized by HQEs

that are reduction of the HQEs of the KP hierarchy (see Section 3.1). Therefore, the
total descendent potential DA1

is a solution to yet another system of equations, that is,

(6.6) Resλr
dλ√
λ

(
Γα/2(λ)⊗ Γ−α/2(λ)− Γ−α/2(λ)⊗ Γα/2(λ)

)
Φ⊗ Φ = 0

for all integers r ≥ 0. We will use that DA1
is a solution to both systems (6.4) and (6.6).

6.2.2. HQEs for a simple singularity. Suppose now that f(x) = g(x0, x1)+x2
2 +

· · ·+x2
n is a simple singularity with n = 2l even. Let φi(x) (1 ≤ i ≤ N) be a set of weighted

homogeneous polynomials representing a basis of the local algebra Hf of f . Equivalently,
the classes [[φi(x)dx]] (1 ≤ i ≤ N) form a basis of Ωf where dx := dx0 ∧ · · · ∧ dxn.
Reordering φi if necessary we may assume that the weight of φi is increasing as the index
i increases. In particular, the weight of φN (x) coincides with the conformal dimension
D. Let us write D =: 1− 2

h and wt(φi(x)) =: mi−1
h where h ≥ 2 and mi ≥ 1 are rational
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numbers. By using a linear change of the basis φi we may also arrange that the residue
pairing in Ωf takes the form

(φi(x)dx, φj(x)dx) = δi+j,N+1.

Since the residue pairing of two forms is non-zero only if their weights add up to n + 1,
we get that the numbers mi satisfy mi +mN+1−i = h.

Let us recall that the set of vanishing cycles R is a root system of type A, D, or E.
We claim that h is the Coxeter number of R and that m1 ≤ m2 ≤ · · · ≤ mN are the
Coxeter exponents. In particular, h and mi (1 ≤ i ≤ N) are integer numbers. Indeed, note
that the geometric sections [φi(x)/df ] (1 ≤ i ≤ N) provide an eigenbasis for the classical
monodromy operator M with eigenvalues respectively e−2πimi/h (1 ≤ i ≤ N), where we
used that wt(φi(x)dx) = l + mi/h. On the other hand, the existence of a distingusihed
basis of simple roots implies that M is a Coxeter transformation. By definition, the
Coxeter number is the order |M | of M and the Coxeter exponents 1 ≤ m′1 ≤ · · · ≤ m′N ≤
|M | are defined by the requirement that the sequence e2πim′i/|M | (1 ≤ i ≤ N) coincide
with the eigenvalues of M counted with multiplicities. Therefore, m′i/|M | = mi/h for all
i. However, since m′1 = 1 = m1, we get h = |M | and hence mi = m′i.

Let B = CN be the space of miniversal deformations

F (x, t) = f(x) +

N∑
i=1

tiφi(x), t = (t1, . . . , tN ) ∈ CN .

Let us choose the primitive form ω = dx and equip B with a Frobenius structure (see
Section 6.1). The vector space H = T0B has several interpretations/identifications which
we will use whenever relevant. First of all using the flat structure on B, we identify
H with the space of flat vector fields on B. Furthermore, using the Kodaira–Spencer

isomorphism we identify H with the local algebra Hf , that is, ∂/∂ti 7→ ∂F
∂ti

∣∣∣
t=0

. Finally,

using the primitive form we identify Hf
∼= Ωf , φ 7→ φω. The period vectors taking values

in Ωf ∼= H are defined by

(φi(x)dx, I(−l)
α (λ)) := (2π)−l

∫
αλ

φi(x)
dx

df

where α ∈ Hn(f−1(1),C) and αλ ⊂ f−1(λ) is the parallel transport of α along a reference

path. The remaining periods I
(k)
α (λ) = ∂k+l

λ I
(−l)
α (λ) for k ∈ Z are uniquely defined so

that

(6.7) I(k)
α (λ) =

λθ−k−1/2

Γ(θ − k + 1/2)
Π(α),

where θ = n+1
2 − deg is the grading operator and

Π : Hn(f−1(1),C)→ Ωf

is a linear isomorphism. In other words, using the map Π we obtain an identification
between the period vectors and the calibrated periods (3.9). Note that the map Π can be
described by the following formula:

(6.8)
( [[φi(x)dx]]

Γ(wt(φi(x)dx))
,Π(α)

)
= (2π)−l

∫
α

φi(x)
dx

df
, κ ∈ B.

Therefore, Π coincides with the period map (5.42).
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Let H = H((z−1)) be Givental’s symplectic loop space. Let Γα(λ) be the vertex
operators associated to the period vectors, i.e., put

fα(λ, z) =
∑
n∈Z

I(n)
α (λ)(−z)n

and Γα(λ) = ef
α
−(λ,z)̂ ef

α
+(λ,z)̂ , where the quantization rules are determined by(

∂

∂ti
zk
)̂

= −
√
~

∂

∂qk,i
,
(
dti(−z)−k−1

)̂= qk,i/
√
~, 1 ≤ i ≤ N, k ≥ 0,

where we identify T ∗0B
∼= T0B = H via the residue pairing which allows us to view {dti}

as a basis of H dual to ∂/∂ti with respect to the residue pairing.
The HQEs of our interest will have the following form

Res
dλ

λ

(∑
α∈R

aαΓα(λ)⊗ Γ−α(λ)

)
Φ⊗ Φ =

N(h+ 1)

12h
(Φ⊗ Φ)+(6.9)

∞∑
k=0

N∑
i=1

(
k +

mi

h

)
(qk,i ⊗ 1− 1⊗ qk,i)(∂qk,i ⊗ 1− 1⊗ ∂qk,i)(Φ⊗ Φ),(6.10)

where the coefficients aα are defined in terms of the phase factors as follows. Let us
consider the product of vertex operators

Γα(λ1)Γα(λ2) = Bα,α(λ1, λ2) : Γα(λ1)Γα(λ2) :

where Bα,α(λ1, λ2) = eΩ(fα+(λ1,z),f
α(λ2,z)) is the exponential of the propagator (see Section

3.3.1). Then

(6.11) aα = lim
λ′→λ

(1− λ/λ′)−2Bα,α(λ′, λ).

The coefficient aα can be computed explicitly as follows. To begin with, note that by
analytically continuing the identity in Proposition 5.52 we get that the period map Π
intertwines the classical monodromy operator M and the operator σ defined by (3.27),

that is, Π◦M = e
2πi
(
θ+

1
2

)
◦Π. In the case of a simple singularities the energy propagator

coincides with the calibrated propagator. Therefore, using Theorem 3.9 and Lemma 3.10,
we get

Bα,α(λ′, λ) =

h∏
r=1

(
1− ηr(λ/λ′)1/h

)(Mrα|α)

where η = e2πi/h. Substituting in formula (6.11) we get

aα =
1

h2

h−1∏
r=1

(1− ηr)(Mrα|α).

The main goal in this chapter is to prove the following theorem.

Theorem 6.7. The total descendent potential D(~,q) is a solution to the system of
HQEs (6.9)–(6.10).
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6.3. Proof of the HQEs

Now we come to one of the main points in this book. Namely, we would like to
demonstrate how to apply the techniques developed in Chapter 3 to prove that the to-
tal descendent potential satisfies HQEs. As we will see the argument is quite general.
There are no explicit formulas involved. The problem of constructing HQEs for other
singularities is in understanding the relation between the set of vanishing cycles and the
representation theory of lattice vertex algebras.

6.3.1. The coset Virasoro construction. The term (6.10) has an interpretation
in terms of the so-called coset representation of the Virasoro algebra 1 which will be used
in our proof. Let us point out that the proof of Theorem 6.7 in [24] uses yet another
interpretation of (6.10) in terms of quantization of quadratic Hamiltonians.

Let us define γi ∈ Hn(f−1(1),C), such that,

Π(γi) = Γ(1−mi/h) [[φi(x)dx]], 1 ≤ i ≤ N.
Note that γi form an eigenbasis for the classical monodromy operator. After a direct
computation we get that the Euler pairing

〈γi, γj〉 =
1

2π
(Π(γi), e

πiθΠ(γj)) =
1

1− ηmj
δi+j,N+1,

where η = e2πi/h. In particular, the intersection pairing takes the form

(γi|γj) = 〈γi, γj〉+ 〈γj , γi〉 = 1,

where we used that mi +mN+1−i = h. Therefore, the vectors γi := γN+1−i form a basis
of Hn(f−1(1),C) dual to the basis {γi} with respect to the intersection pairing ( | ).

The period vectors I
(m)
γi (λ) can be computed explicitly. After a direct computation

we get

I(k+1)
γi (λ) = (−1)k+1 mi

h

(mi

h
+ 1
)
· · ·
(mi

h
+ k
)
λ−k−1−mi/h [[φi(x)dx]], ∀k ≥ 0,

and

I(−k)
γi (λ) =

λk−mi/h(
k − mi

h

)
· · ·
(

1− mi
h

) [[φi(x)dx]], ∀k ≥ 0.

We will be interested in the differential operators

(∂λf
γi(λ, z))̂ =

∞∑
k=0

mi

h

(mi

h
+ 1
)
· · ·
(mi

h
+ k
)
λ−k−1−mi/h

√
~

∂

∂qk,i
+

∞∑
k=0

λk−mi/h(
k − mi

h

)
· · ·
(

1− mi
h

) qk,N+1−i/
√
~.

It can be checked that the coefficients in front of the powers of λ generate a Heisenberg
Lie algebra. Following the physics terminology, the operator series above is a free boson.
There is a standard way to construct free bosons on the tensor square of the Fock space.
Namely, put

φi(λ) := (∂λf
γi(λ, z))̂⊗ 1− 1⊗ (∂λf

γi(λ, z)) ,̂ 1 ≤ i ≤ N,

1We are thankful to Bojko Bakalov for pointing out to us this fact
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and

φi(λ) := (∂λf
γi(λ, z))̂⊗ 1− 1⊗ (∂λf

γi(λ, z)) ,̂ 1 ≤ i ≤ N.

The coefficients in front of the powers of λ generate a Heisenberg Lie algebra and the
operator series φi(λ) and φi(λ) are free bosons. Let us define the operator series

(6.12)
1

2

N∑
i=1

: φi(λ)φi(λ) :=
1

2

N∑
i=1

(
φ−i (λ)φi(λ) + φi(λ)φ+

i (λ)
)
,

where

φ±i (λ) = (∂λf
γi
± (λ, z))̂⊗ 1− 1⊗ (∂λf

γi
± (λ, z)) ,̂ 1 ≤ i ≤ N.

Note that φ+
i (λ) is a vector field while φ−i (λ) is a linear function, that is, the notation : :

in formula (6.12) is the standard normal ordering in which the differentiation operation
should be applied first. The coefficients in front of λ−n−2 in (6.12) close a Lie algebra
isomorphic to the Virasoro algebra. We will be interested only in the coefficient in front
of λ−2. Namely, using the explicit formulas for ∂λf

γi(λ, z))̂we get that the operator
(6.10) coincides with

(6.13) Resλdλ
(1

2

N∑
i=1

: φi(λ)φi(λ) :
)
.

The above construction of a representation of the Virasoro algebra is an example of the
so-called coset construction in the theory of vertex operator algebras. We refer to [38] for
further details.

6.3.2. From descendents to ancestors. Let us trivialize the tangent bundle TB ∼=
B ×H, where H = T0B, by using the flat structure. Let S(t, z) := 1 + S1(t)z−1 + · · · ,
Sk(t) ∈ End(H) be the calibration of the Frobenius structure, such that, Sk(0) = 0 for
k ≥ 1. The calibration allows us to construct flat coordinates on B as follows. We have
a map

τ : B → H, t 7→ τ(t) := S1(t)1,

where 1 is the unit of H ∼= Hf . Using the identification H ∼= Hf , we have a decomposition
τ(t) =

∑
i τi(t)φi(x). The functions τi(t) (1 ≤ i ≤ N) form a flat coordinate system on

B, such that τi(0) = 0 for all i.
If t ∈ B is a semi-simple point, then we have a canonical coordinate system (u1, . . . , uN ),

such that,

∂

∂ui
• ∂

∂uj
= δij

∂

∂uj
,
( ∂

∂ui
,
∂

∂uj

)
= δij/∆j .

Let us recall the linear operator Ψt : CN → H which maps the ith standard vector to the
normalized idempotent√

∆i∂/∂ui =

N∑
a=1

√
∆i

∂τa
∂ui

∂

∂τa
=

N∑
a=1

√
∆i

∂τa
∂ui

φa(x).

Let us recall the asymptotic solution Ψt(1 +R1(t)z+ · · · )eU/z to the Dubrovin’s connec-
tion and the operator Rt := 1 +

∑∞
k=1 ΨtRk(t) Ψ−1

t zk. Recall that Rt is a sympletcic
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transformation of H := H((z−1)). The formula for the total descendent potential (see
Section 1.6.4) takes the form

D(~,q) = eF
1(t)Ŝ−1

t R̂t

N∏
j=1

Dpt(~∆j ,q(uj) + z),

where F 1(t) is the genus-1 potential, St := S(t, z), and q =
∑
k≥0

∑
I qk,Iz

k∂/∂τI . Here

we think of q as a flat vector field and denote by q(uj) the derivative of uj with respect
to q. The total descendent potential is an element of the Fock space

(6.14) Ôτ(t)−z = C((~))[[q0 − τ(t), q1 + 1, q2, . . . ]]

where 1 = x0 is the unit in Hf
∼= H. Applying the vertex operator Γα(λ)D we get an

element in

(6.15) e(I(−1
α (λ),τ(t))−(I(−2)

α (λ),1)C((λ−1/h))((~)[[q0 − τ(t), q1 + 1, q2, . . . ]],

where the exponential term is due to the shifts in q0 and q1. Note however that the
exponential terms in the action of Γα(λ)⊗Γ−α(λ) cancel out, that is, (Γα(λ)⊗Γ−α(λ))D⊗
D belongs to the Fock space

C((λ−1/h))((~)[[q′0 − τ(t), q′′0 − τ, q′1 + 1, q′′1 + 1, q′2, q
′′
2 , . . . ]].

The first step in the proof is to conjugate the vertex operators Γα(λ)⊗Γ−α(λ) by Ŝ−1
t ⊗

Ŝ−1
t . Note that Ŝ−1

t is an isomorphism between the Fock space (6.14) and

(6.16) Ô−z = C((~))[[q0, q1 + 1, q2, . . . ]].

Therefore, the expression (Ŝt ⊗ Ŝt) (Γα(λ)⊗ Γ−α(λ)) D ⊗D takes values in

(6.17) C((λ−1/h))((~)[[q′0, q′′0 , q′1 + 1, q′′1 + 1, q′2, q
′′
2 , . . . ]].

Let recall the operator series fα(t, λ, z) and the corresponding vertex operators Γα(t, λ)
– see Section 3.2.3. Note that since at t = 0 the calibration St is the identity, we have
fα(0, λ, z) = fα(λ, z) and Γα(0, λ) = Γα(λ). Recalling formulas (3.22) and (3.24) we get

ŜtΓ
α(λ)Ŝ−1

t = e
1
2Wα,α(t,λ,λ)Γα(t, λ),

where slightly abusing the notation we identify the vanishing cycle α with its image
Π(α) ∈ H. Therefore, we have

Γα(λ)⊗ Γα(λ) Ŝ−1
t ⊗ Ŝ−1

t = eWα,α(t,λ,λ) Ŝ−1
t ⊗ Ŝ−1

t Γα(t, λ)⊗ Γα(t, λ).

Let us also recall that Wα,α(t, λ, λ) can be expressed in terms of the phase form (3.52).
Namely, recalling Proposition 3.5, a) and using that Wα,α(t, λ1, λ2) vanishes at t = 0, we
get

(6.18) Wα,α(t, λ1, λ2) =

∫ t

0

N∑
i=1

(I(0)
α (s, λ1), φi •s I(0)

α (s, λ2))dsi.

Using the translation invariance of the period vectors we get

(6.19) Wα,α(t, λ, λ) =

∫ t−λ1

−λ1

N∑
i=1

(I(0)
α (s, 0), φi •s I(0)

α (s, 0))dsi.

Let us conjugate the Virasoro term (6.10) with Ŝ−1
t ⊗ Ŝ−1

t . Put

φi(t, λ) := (∂λf
γi(t, λ, z))̂⊗ 1− 1⊗ (∂λf

γi(t, λ, z)) ,̂ 1 ≤ i ≤ N,
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and

φi(t, λ) := (∂λf
γi(t, λ, z))̂⊗ 1− 1⊗ (∂λf

γi(t, λ, z)) ,̂ 1 ≤ i ≤ N.

By comparing the linear terms in f in formula (1.62) we get the following conjugation
rule:

f̂ Ŝ−1 = Ŝ−1(Sf) .̂

Therefore,

φi(0, λ) Ŝ−1
t ⊗ Ŝ−1

t = Ŝ−1
t ⊗ Ŝ−1

t φi(t, λ)

and the same relation still holds if we replace φi with φi. In order to conjugate the
normally ordered product (6.12) let us make use of the following relation

φi(t, λ1)φi(t, λ2) =: φi(t, λ1)φi(t, λ2) : +[φ+
i (t, λ1), φi(t, λ2)].

Since [f̂ , ĝ] = Ω(f, g) (see Proposition 1.33, b)), the above commutator takes the form

[φ+
i (t, λ1), φi(t, λ2)] = 2∂λ1

∂λ2
Ωγi,γi(t, λ1, λ2).

Therefore,

: φi(0, λ1)φi(0, λ2) : Ŝ−1
t ⊗ Ŝ−1

t =Ŝ−1
t ⊗ Ŝ−1

t : φi(t, λ1)φi(t, λ2) : +

2∂λ1∂λ2

(
Ωγi,γi(t, λ1, λ2)− Ωγi,γi(0, λ1, λ2)

)
.

Note that according to Lemma 3.7, the above formula can be specialized to λ1 = λ2 = λ.
Put

C(t, λ) := λ2
N∑
i=1

∂λ1
∂λ2

(
Ωγi,γi(t, λ1, λ2)− Ωγi,γi(0, λ1, λ2)

)∣∣∣
λ1=λ2=λ

,

and bα(t, λ) := aα e
Wα,α(t,λ,λ). Then Theorem 6.7 is equivalent to the following identity

(6.20) Res
dλ

λ
ΩR(t, λ)At ⊗At =

N(h+ 1)

12h
At ⊗At,

where

ΩR(t, λ) :=
∑
α∈R

bα(t, λ)Γα(t, λ)⊗ Γ−α(t, λ)− λ2

2

N∑
i=1

: φi(t, λ)φi(t, λ) : −C(t, λ)

and

(6.21) At(~,q) = R̂t

N∏
i=1

Dpt(~∆i,q(ui) + z)

is the total ancestor potential.
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6.3.3. The total ancestor potential for A1-singularity. Let us assume the no-
tation from Section 6.2.1. The calibration operator has the form S(t, z) = et/z and the
total ancestor potential is by definition

At(~,q) = e(t/z)̂ Dpt(~∆,q(z) + z).

It is straightforward to compute that

(1/z)̂=
q0

2~∆
+

∞∑
m=0

qm+1∂qm

which is exactly the Virasoro operator L−1 with ~ re-scaled by ∆ (see Section 1.6.1).
The string equation implies that the total ancestor potential coincides with the total
descendent one. Therefore, the total descendent potential Dpt(~∆, q(z) + z) is a solution
to (6.20).

Let us compute the operator ΩR(t, λ) in the case of A1-singularity. Formula (6.18)
takes the form

Wα,α(t, λ1, λ2) =

∫ t

0

2ds√
(λ1 − s)(λ2 − s)

,

where α is the vanishing cycle. We get Wα,α(t, λ, λ) = 2 log(λ/(λ − t)). Since aα = 1
16 ,

we get

bα(t, λ) =
1

16

λ2

(λ− t)2
.

The constant

C(t, λ) = λ2 ∂λ1
∂λ2

Wα,α/2(t, λ1, λ2)
∣∣
λ1=λ2=λ

=
λ2

4(λ− t)2
− 1

4
.

The Laurent series expansion of C(t, λ) at λ = ∞ has only negative powers of λ−1.
Therefore,

Res
dλ

λ
C(t, λ) = 0.

The HQEs for the total ancestor potential of A1-singularity takes the form

(6.22) Res
λdλ

(λ− t)2
ΩA1

(t, λ)At ⊗At =
1

8
At ⊗At,

where

ΩA1
(t, λ) =

1

16

(
Γα(λ− t)⊗ Γ−α(λ− t) + Γ−α(λ− t)⊗ Γα(λ− t)

)
− (λ− t)2

4
: φα(λ− t)2 :

and

φα(λ− t) = ∂λ

(
fα(λ− t, z)̂⊗ 1− 1⊗ fα(λ− t, z)̂).

Similarly, conjugating the HQEs (6.6) with e(t/z)̂ ⊗ e(t/z)̂ yields the following HQEs:
(6.23)

Resλr
dλ√
λ− t

(
Γα/2(λ− t)⊗ Γ−α/2(λ− t)− Γ−α/2(λ− t)⊗ Γα/2(λ− t)

)
At ⊗At = 0
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for all r ≥ 0.

6.3.4. Analytic properties of the HQEs. The residue operation Res dλλ in (6.20)

is defined formally as the coefficient in front of λ0. More precisely, the expression ΩRAt⊗
At takes value in (6.17) and the HQEs are equivalent to saying that the coefficient in
front of λ0 coincides with the RHS of (6.20). On the other hand, using that the total
ancestor potential is tame (see Section 1.6.3) one can easily prove that the expression

Γα(t, λ)At ⊗ Γ−α(t, λ)At = exp
( ∞∑
k=0

(I(−k−1)
α , q′k − q′′k )/

√
~
)
×

×At(~, q′0 −
√
~I(0)
α , q′1 +

√
~I(1)
α , . . . )At(~, q′′0 +

√
~I(0)
α , q′′1 −

√
~I(1)
α , . . . )

is a formal power series in q′0, q
′′
0 , q
′
1+1, q′′1 +1, . . . with coefficients formal Laurent series in

~1/2 whose coefficients are polynomial expressions in the period vectors I
(m)
α := I

(m)
α (t, λ).

The phase factors Wα,β(t, λ, λ) and the second order partial derivatives

∂λ1∂λ2Wα,β(t, λ1, λ2)|λ1=λ2=λ

are multivalued analytic functions in (t, λ) ∈ B × C \ discr (see (6.18)). Therefore, the
coefficients bα(t, λ) and C(t, λ) are also multivalued analytic. Note that the operator
ΩR(t, λ) is invariant under the analytic continuation around λ =∞ because the analytic
continuation permutes the summands according to the action α 7→ Mα of the Coxeter
transformation M on the root system R, while C(t, λ) remains invariant. We get that
the coefficient in front of each monomial in ~±1/2 and q′0, q

′′
0 , q
′
1 + 1, q′′1 + 1, . . . in (6.20)

is a convergent Laurent series in λ−1. In particular, the formal residue Res dλλ coincides

with the analytic one: −Resλ=∞
dλ
λ .

Lemma 6.8. The operator ΩR(t, λ) is single valued, i.e., it is analytic in (t, λ) ∈
B × C \ discr.

Proof. Suppose that t is a generic semi-simple point, such that, the critical values
u1(t), . . . , uN (t) of F (x, t) are pairwise distinct. Let L be a simple loop in {t} × C \
{u1(t), . . . , uN (t)} based at (t, λ) and going around one of the critical values, say ui(t).
Let us require also that L approaches ui(t) in a transverse direction (see Definition 3.22).
Since the fundamental group of C \ {u1(t), . . . , uN (t)} is generated by such loops, it is
sufficient to prove that ΩR is invariant under the analytic continuation along L. Let
ϕ ∈ Hn(f−1(1),Z) be the vanishing cycle corresponding to the simple loop conjugate to
L via the reference path from (0, 1) to (t, λ) which determines the value of ΩR(t, λ). Let
rϕ : Hn(Zλ,t,Z) → Hn(Zλ,t,Z) be the monodromy transformation representing the loop

L. By definition the analytic continuation of Γα(t, λ) is Γrϕ(α)(t, λ). The function C(t, λ)

can be identified with the pairing of a geometric section with the cycle
∑N
i=1 γi ⊗ γi.

Therefore, the analytic continuation of C(t, λ) along L amounts to replacing the cycle∑N
i=1 γi ⊗ γi by

N∑
i=1

rϕ(γi)⊗ rϕ(γi) =

N∑
i=1

γi ⊗ γi

where the equality follows from the fact that rϕ preserves the intersection pairing ( | )
and that {γi} and {γi} are dual bases with respect to ( | ). It remains only to check that
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the analytic continuation of bα(t, λ) is brϕ(α)(t, λ). Using formula (6.19) we get that the
analytic continuation of bα(t, λ) is equal to brϕ(α)(t, λ) iff

Wα,α(t, λ, λ)−Wrϕ(α),rϕ(α)(t, λ, λ) +

∫
L[

N∑
i=1

(I(0)
α (s, 0), φi •s I(0)

α (s, 0))dsi = log(arϕ(α)/aα),

where L[ is the path in B parameterized by t − x1, (t, x) ∈ L and the above identity
should be considered modulo 2πiZ. Using Lemma 3.7 and recalling the definition (3.52)
of the phase form we get that the LHS of the above identity can be written as

lim
λ′→λ

(
Ωα,α(t, λ′, λ)− Ωrϕ(α),rϕ(α)(t, λ

′, λ) +

∫
L̂

Wα,α

Ωrϕ(α),rϕ(α)(0, λ
′, λ)− Ωα,α(0, λ′, λ)

)
,

where L̂ is the loop in B × C2 parameterized by (t, x+ λ′ − λ, x), (t, x) ∈ L. Thanks to
Theorem 3.28, the first line in the above formula is an integer multiple of 2πi. Recalling
the definition (6.11), we get that the limit of the 2nd line in the above formula is precisely
log(arϕ(α)/aα). This is exactly what we had to prove. �

Suppose that t ∈ B is a generic semi-simple point, such that, the critical values
u1(t), . . . , uN (t) are pairwise distinct. Lemma 6.8 implies that the coefficient in front of
each monomial in ~±1/2 and q′0, q

′′
0 , q
′
1 + 1, q′′1 + 1, . . . in (6.20) is an analytic function in

C \ {u1(t), . . . , uN (t)}. Recalling the residue theorem we transform (6.20) into

(6.24)

N∑
i=1

Resλ=ui(t)
dλ

λ
ΩR(t, λ)At ⊗At =

(N(h+ 1)

12h
+ Resλ=0

dλ

λ
C(t, λ)

)
At ⊗At.

The proof of (6.24) is a local computation near each critical value ui(t). Let us fix a
critical value ui(t) and assume that λ is sufficiently close to ui(t). Let us fix a reference
path C to (t, λ) so that the values of all vertex operators Γα(t, λ) and all coefficients
bα(t, λ) are fixed. Moreover, according to Theorem 3.23 we may choose the reference
path

C : (τ(s),Λ(s)) (0 ≤ s ≤ 1)

between (τ(0),Λ(0)) = (0, 1) and (τ(1),Λ(1)) = (t, λ) in such a way that

Ωiα,ϕ(t, λ′, λ) = Ωα,ϕ(t, λ′, λ)

for all λ′ sufficiently close to λ satisfying

|λ− ui(t)| < |λ′ − ui(t)| < |uj(t)− ui(t)| ∀j 6= i,

where α ∈ Hn(f−1(1),C) is an arbitrary cycle and ϕ is the vanishing cycle corresponding
to the reference path C. More precisely, for C we can choose a path consisting of two
pieces: a path around the discriminant (i.e. in the domain D) from (0, 1) to a point
(t, λ0) ∈ {t} ×C and a path in {t} ×C from (t, λ0) to (t, λ) which can be identified with
the tail of a simple loop around ui(t) approaching ui(t) in a transverse direction. Let us
recall that Ωiα,ϕ(t, λ′, λ) is the Laurent series expansion in the powers of (λ− ui(t))1/2 of
the infinite series

∞∑
n=0

(−1)n(I(n)
α (t, λ′), I(−n−1)

ϕ (t, λ)),
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while

Ωα,ϕ(t, λ′, λ) = Ωα,ϕ(0, λ′ − λ+ 1, 1) +

∫
Ĉ

Wα,ϕ,

where

Ĉ : (τ(s), λ′ − λ+ Λ(s),Λ(s)) (0 ≤ s ≤ 1)

is the lift of the reference path C.
If (α|ϕ) = 0, then the vertex operator Γα(t, λ) is analytic at λ = ui(t) (see Proposition

3.4) and therefore it does not contribute to the residue. If (α|ϕ) 6= 0, then since R is an
ADE root system, either (α|ϕ) = ±1 or α = ±ϕ.

6.3.5. From ancestors to KdV. The subset of all α ∈ R satisfying (α|ϕ) = ±1
splits into pairs (α, rϕ(α)), such that, (α|ϕ) = 1. The goal in this subsection is to prove
that the residue of the 1-form

(6.25)
dλ

λ

(
bα(t, λ)Γα(t, λ)⊗ Γ−α(t, λ) + brϕ(α)(t, λ)Γrϕ(α)(t, λ)⊗ Γ−rϕ(α)(t, λ)

)
At ⊗At

at λ = ui(t) vanishes.
Let us introduce the following functions:

viα(t, λ) := lim
ε→0

exp

(∫ t

t+(λ−ui−ε)1

(
I(0)
α (s, λ) • I(0)

α (s, λ) + (α|ϕ)2 dui(s)

2(ui(s)− λ)

))
,

where ε is a complex number such that Arg(ε) = Arg(λ − ui) and the integration path
is the straight line segment s = t + x1, x ∈ [λ − ui(t) − ε, 0]. Here the integrand

I
(0)
α (s, λ) • I(0)

α (s, λ) takes values in H ∼= TsB ∼= T ∗sB, where the first isomorphism is
defined by the flat structure trivialization of TB and the second one is defined by the
residue (Frobenius) pairing. In other words, the integrand is identified with a 1-form on
B dependning on the parameter λ. The functions viα(t, λ) are defined for all λ sufficiently
close to ui(t). We are not going to use this fact, but note that viα(t, λ) can be extended
analytically along any path in C×B \ discr.

Proposition 6.9. Suppose that α ∈ Hn(f−1(1),C) is any cycle and let α′ := α −
(α|ϕ)ϕ/2. The following identity holds:

Γα(t, λ) R̂t =
(viα′(t, λ)

viα(t, λ)

)1/2

Γα
′
(t, λ) R̂t Γ

(α|ϕ)/2
pt (ui(t), λ).

Proof. Note that the vertex operator Γα factorizes as follows (see Proposition 1.33):

Γα(t, λ) = e−Ω(fα
′

+ ,fϕ) (α|ϕ)/2Γα
′
(t, λ)Γ(α|ϕ)ϕ/2(t, λ),

where the propagator Ω(fα
′

+ (t, λ), fϕ(t, λ)) is interpreted via the Laurent series expansion
of the period vectors at λ = ui(t). We will prove bellow that the propagator is a convergent
Laurent series in (λ−ui(t))1/2. Therefore, the above identity is an identity between linear

operators from the space of tame series Ôtame
H+,−z into the space of formal power series in

q0, q1 + 1, q2, . . . with coefficients formal Laurent series in ~1/2 whose coefficients are
convergent Laurent series in (λ− ui(t))1/2. Recalling formula (3.23) we get

Γ(α|ϕ)ϕ/2(t, λ) R̂t = e(α|ϕ)2V (fϕ−,f
ϕ
−)/8R̂t Γ

(α|ϕ)/2
pt (ui(t), λ).
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Therefore, in order to prove the proposition we need only to verify that

(6.26) − (α|ϕ) Ω(fα
′

+ , fϕ) +
1

4
(α|ϕ)2 V (fϕ−, f

ϕ
−) = log(viα′(t, λ)/viα(t, λ)).

The quadratic form (see Proposition 3.5)

V (fϕ−, f
ϕ
−) = lim

ε→0

∫ t+(λ−ui−ε)1

t

(
I(0)
ϕ (s, λ) • I(0)

ϕ (s, λ) +
2dui(s)

ui(s)− λ

)
.

It remains to compute the symplectic pairing Ω(fα
′

+ , fϕ). We have

dΩ(fα
′

+ (t, λ), fϕ(t, λ)) = I
(0)
α′ (t, λ) • I(0)

ϕ (t, λ),

where d is the differential with respect to t (see (3.51)). The above formula proves that
the propagator is a convergent power series in (λ− ui(t))1/2. In fact, since by definition

(α′|ϕ) = 0, the series fα
′

+ (t, λ) is regular at λ = ui(t), while fϕ−(t, λ) is a power series in

(λ − ui(t))1/2. Therefore, the propagator is a convergent power series in (λ − ui(t))1/2

and the following formula holds:

Ω(fα
′

+ (t, λ), fϕ(t, λ)) = lim
ε→0

∫ t

t+(λ−ui(t)−ε)1
I

(0)
α′ (s, λ) • I(0)

ϕ (s, λ).

The LHS of formula (6.26) takes the form

− lim
ε→0

∫ t

t+(λ−ui(t)−ε)1

(
(α|ϕ)I

(0)
α′ • I

(0)
ϕ +

1

4
(α|ϕ)2 I(0)

ϕ • I(0)
ϕ + (α|ϕ)2 dui(s)

2(ui(s)− λ)

)
,

where for brevity we supressed the dependence of the period vectors I(0) on (s, λ). By
definition (α|ϕ)ϕ = 2(α− α′), so the above formula takes the form

− lim
ε→0

∫ t

t+(λ−ui(t)−ε)1

(
2I

(0)
α′ • I

(0)
α−α′ + I

(0)
α−α′ • I

(0)
α−α′ + (α|ϕ)2 dui(s)

2(ui(s)− λ)

)
.

Recalling the definition of viα′ and viα it is straightforward to check that the above formula
coincides with the RHS of (6.26). �

Let us substitute (6.21) into (6.25). Note that if we decompose α = α′ + (α|ϕ)ϕ/2,
just like in Proposition 6.9, then rϕ(α) = α′ − (α|ϕ)ϕ/2. Applying the formula from
Proposition 6.9 we get that (6.25) is equal to

viα′(t, λ)(Γα
′
(t, λ)⊗ Γα

′
(t, λ)) (R̂t ⊗ R̂t)(6.27)

dλ

λ

(
bα(t, λ)

viα(t, λ)
Γ
ϕ/2
pt ⊗ Γ

−ϕ/2
pt +

brϕ(α)(t, λ)

virϕ(α)(t, λ)
Γ
−ϕ/2
pt ⊗ Γ

ϕ/2
pt

)
(6.28)

N∏
j=1

Dpt(~∆j ,q
′(uj) + z)Dpt(~∆j ,q

′′(uj) + z).(6.29)

The cycle α′ is invariant with respect to the local monodromy. Therefore, all periods

I
(m)
α′ (t, λ) are analytic at λ = ui(t). In particular, the first line (6.27) is analytic at
λ = ui(t). The operator in the big brackets on the second line (6.28) acts on the ith term
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in the product (6.29). Recalling the HQEs for KdV, i.e., formula (6.6), we get that if we
prove that

bα(t, λ)

viα(t, λ)
= −

brϕ(α)(t, λ)

virϕ(α)(t, λ)
= B(t)(λ− ui(t))−1/2,

where B(t) is some function independent of λ, then it will follow that the expression
(6.27)–(6.29) is analytic at λ = ui(t) for all t, such that, ui(t) 6= 0. There is a slight
complication here when ui(t) = 0 because then the form dλ/λ has a pole. This complica-
tion can be resolved as follows. Let us consider the residue of (6.27)–(6.29) at λ = ui(t)
as a function in t. It is a holomorphic function in a neighborhood where the canonical
coordinates u1, . . . , uN exist which must be 0 for all points t, such that, ui(t) 6= 0 and
uj(t) 6= uk(t) for j 6= k. By continuity, the residue must be identically 0 for all t in a
neighborhood where the canonical coordinates exist.

Let us first prove that

bα(t, λ)

viα(t, λ)
= B(t)(λ− ui(t))−1/2.

Equivalently, we have to prove that

(6.30) ∂λ log bα(t, λ)− ∂λ log viα(t, λ) = − 1

2(λ− ui(t))
.

We have log bα(t, λ) = log aα+Wα,α(t, λ, λ). The coefficient aα is a constant independent
of λ. The phase factor Wα,α is a quadratic expression in the period vectors. Using the
translation invariance of the period vectors we get

∂λ log bα(t, λ) = −∂t1Wα,α(t, λ, λ) = −(I(0)
α (t, λ), I(0)

α (t, λ)),

where for the 2nd equality we used Proposition 3.5. Using the translation invariance of
the period vectors we can write

log viα(t, λ) =

∫ t−λ1

t−(ui+ε)1

(
I(0)
α (s, 0) • I(0)

α (s, 0) + (α|ϕ)2 dui(s)

2ui(s)

)
.

Differentiating the above formula with respect to λ we get

∂λ log viα(t, λ) = −(I(0)
α (t, λ), I(0)

α (t, λ)) + (α|ϕ)2 1

2(λ− ui(t))
.

The identity (6.30) follows because (α|ϕ) = 1.
Finally, it remains to prove that

(6.31)
bα(t, λ)

brϕ(α)(t, λ)

virϕ(α)(t, λ)

viα(t, λ)
= −1.

Let L ⊂ {t} × C ⊂ B × C be a closed loop based at (t, λ) of the form L = L−1
ε ◦ Cε ◦ Lε

where Lε := {t}×(the line segment [λ, ui(t) + ε]) and Cε := {t}×(the circle with center

ui(t) and radius ε). Let us fix λ′ sufficiently close to λ and denote by L̂ε and Ĉε the paths
in B × C2 with parameterization (t, x + λ′ − λ, x), where the parameter x is such that
(t, x) vary along respectively Lε and Cε. Recalling the definition of viα, virϕ(α), and the

phase form Wα,α we get

log virϕ(α)(t, λ)− log viα(t, λ) = lim
ε→0

lim
λ′→λ

(∫
L̂ε

Wα,α −
∫
L̂ε

Wrϕ(α),rϕ(α)

)
.
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On the other hand, the coefficient brϕ(α)(t, λ) coincides with the analytic continuation of
bα(t, λ) along L (see the proof of Lemma 6.8), that is,

brϕ(α)(t, λ) = bα(t, λ) exp
(

lim
λ′→λ

∫
L̂

Wα,α

)
.

Therefore the LHS of (6.31) coincides with

exp

(
lim
ε→0

lim
λ′→λ

(
−
∫
L̂

Wα,α +

∫
L̂ε

Wα,α −
∫
L̂ε

Wrϕ(α),rϕ(α)

))
= exp

(
− lim
ε→0

lim
λ′→λ

∫
Ĉε

Wα,α

)
.

Let us decompose the cycle α = α′ + (α|ϕ)ϕ/2. Note that since the period vectors

I
(m)
α′ (t, λ) are analytic in a neighborhood of λ = ui(t) the only contribution to the above

limt will come from

1

4
(α|ϕ)2 lim

ε→0
lim
λ′→λ

∫
Ĉε

Wϕ,ϕ = −πi(α|ϕ)2 = −πi,

where in the first identity we used Lemma 3.30. This completes the proof of the identity
(6.31) and hence our claim that the residue of (6.25) at λ = ui(t) vanishes is proved.

6.3.6. From ancestors to the Kac–Wakimoto form of KdV. Let us compute
the residue at λ = ui(t) of the 1-form

(6.32)
dλ

λ
bϕ(t, λ)

(
Γϕ(t, λ)⊗ Γ−ϕ(t, λ) + Γ−ϕ(t, λ)⊗ Γϕ(t, λ)

)
At ⊗At.

Conjugating with the operator R̂t⊗R̂t (see Proposition 6.9) we get that the above 1-form
is equal to

(R̂t ⊗ R̂t)
dλ

λ

bϕ(t, λ)

viϕ(t, λ)

(
Γϕpt ⊗ Γ−ϕpt + Γ−ϕpt ⊗ Γϕpt

)
(6.33)

N∏
j=1

Dpt(~∆j ,q
′(uj) + z)Dpt(~∆j ,q

′′(uj) + z).(6.34)

Let us compute the ratio bϕ(t, λ)/viϕ(t, λ). Recall that

bϕ(t, λ) = lim
λ′→λ

(1− λ/λ′)2 exp
(

Ωϕ,ϕ(t, λ′, λ)
)
.

Let us express the coefficient viϕ(t, λ) as an integral of the phase form along a path. Let

us consider the path ∆̂ε from (t, λ′ − λ + ui(t) + ε, ui(t) + ε) to (t, λ′, λ) defined by the

straight line in {t} × C2, that is, ∆̂ε admits the parameterization

(t, λ′ − x, λ− x), x ∈ [λ− ui(t)− ε, 0].

Here, just like in the previous section, ε is a complex number, such that, Arg(ε) =
Arg(λ− ui(t)). We have

(6.35)

∫
∆̂ε

Wϕ,ϕ =

∫ 0

λ−ui(t)−ε
(I(0)
ϕ (t, λ′ − x), I(0)

ϕ (t, λ− x))dx

and ∫ t

t+(λ−ui−ε)1

2dui(s)

ui(s)− λ
=

∫ λ−ui(t)

ε

2dξ

ξ
,
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where we used the parameterization s = t+ (λ−ui− ξ)1. Comparing the above formulas
with the definition of viϕ(t, λ) we get

viϕ(t, λ) = lim
ε→0

lim
λ′→λ

exp
(∫

∆̂

Wϕ,ϕ +

∫ λ−ui(t)

λ′−λ+ε

2dξ

ξ

)
.

Note that the order of the limits in the above formula is important. It turns out that it
is possible to compute explicitly the error of exchanging the order of the two limits. This
is actually one of the key observations in [16].

Lemma 6.10. Up to an integer multiple of 2πi the following formula holds:

(6.36)

(
lim
ε→0

lim
λ′→λ

− lim
λ′→λ

lim
ε→0

)(∫
∆̂ε

Wϕ,ϕ +

∫ λ−ui

λ′−λ+ε

2dξ

ξ

)
= log 16.

where ui = ui(t), that is, we suppressed the dependence of ui on t.

Proof. Let us recall formula (6.35) and the Laurent series expansion of the period
vectors

I(0)
ϕ (t, λ− x) =

2√
2(λ− x− ui)

( dui√
∆i

+O(λ− x− ui)
)
.

Substituting this expansion in (6.35) it is not hard to see that only the leading order
terms contribute to the LHS of (6.36). In other words, the LHS of (6.36) coincides with(

lim
ε→0

lim
λ′→λ

− lim
λ′→λ

lim
ε→0

)(∫ 0

λ−ui−ε

2dx√
λ′ − x− ui

√
λ− x− ui

+

∫ λ−ui

λ′−λ+ε

2dξ

ξ

)
.

The first integral is equal to

−4 log
(√

λ′ − x− ui +
√
λ− ui − x

)∣∣∣x=0

x=λ−ui−ε
= −4 log

√
λ′ − ui +

√
λ− ui√

λ′ − λ+ ε+
√
ε

and the sum of the two integrals become

4 log
(√λ′ − λ+ ε+

√
ε√

λ′ − λ+ ε

√
λ− ui√

λ′ − ui +
√
λ− ui

)
.

The commutator of the two limits is straightforward to compute, i.e., the limit λ′ → λ is
0, while the limit limλ′→0 limε→0 is −4 log 2. �

Note that

lim
ε→0

∫
∆̂ε

Wϕ,ϕ = Ωiϕ,ϕ(t, λ′, λ)

because both sides have the same derivative with respect to λ and they both vanish at
λ = ui(t). Therefore, using Lemma 6.10, we get the following formula

viϕ(t, λ) = 16(λ− ui(t))2 lim
λ′→λ

(λ′ − λ)−2eΩiϕ,ϕ(t,λ′,λ).

Since Ωϕ,ϕ(t, λ′, λ) = Ωiϕ,ϕ(t, λ′, λ), we get

bϕ(t, λ)

viϕ(t, λ)
=

λ2

16(λ− ui(t))2
.
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Let us compute explicitly the vertex operators Γ±ϕpt (ui, λ), where for brevity we omit the
argument t and write ui = ui(t). We have

fϕ(t, λ, z) = Rt(z) fϕpt(ui, λ, z),

where

fϕpt(ui, λ, z) = ±
∑
m∈Z

(−z∂λ)m
√

2∆i(λ− ui)∂ui .

Note that if we identify the tangent and the cotangent spaces TtB ∼= T ∗t B via the Frobe-
nius pairing, then

√
∆i∂ui = dui/

√
∆i. Recalling the quantization rules we get(

(−z)−k−1
√

∆i∂ui

)̂
=

1√
∆i

(
(−z)−k−1dui

)̂
=

N∑
a=1

∂ui
∂τa

qk,a/
√

~∆i = qk(ui)/
√

~∆i,

where (τ1, . . . , τN ) are the flat coordinates on B (see Section 6.3.2) and k ≥ 0. Using the

commutation relation [f̂ , ĝ] = Ω(f, g), we get that(
(−z)k

√
∆i∂ui

)̂
= (−1)k+1

√
~∆i

∂

∂qk(ui)
.

Here we can think of qk(ui) (k ≥ 0, 1 ≤ i ≤ N) as a new set of formal variables related
to qk,a via the substitution

qk(ui) = qk,1
∂ui
∂τ1

+ · · ·+ qk,N
∂ui
∂τN

.

This is an invertible substitution because the Jacobian matrix of the transition from flat
to canonical coordinates is invertible. We get that the vertex operator Γϕpt =: ef

ϕ(ui,λ,z)̂ :
coincides with the vertex operator of an A1-singularity, that is, in the notation of Section
6.2.1 Γϕpt = Γα(λ− ui) with qk replaced by qk(ui) and ∆ by ∆i. In particular, the vertex

operators Γ±ϕpt act only on the ith term in the product (6.34). Recalling the HQEs (6.22)
we get that in order to compute the residue at λ = ui of the 1-form (6.33) –(6.34) we
may replace (6.33) by

(R̂t ⊗ R̂t) dλ
(λ

4
: φpt(ui, λ)2 : +

1

8(λ− ui)

)
,

where

φpt(ui, λ) = ∂λ

(
fϕpt(ui, λ, z)̂⊗ 1− 1⊗ fϕpt(ui, λ, z)

)̂
.

By extracting the linear terms in f in the conjugation formula (1.63) we get the following

rule: R̂ f̂ = R̂f R̂. Therefore,

R̂t ⊗ R̂t φpt(ui, λ1)φpt(ui, λ2) = φϕ(t, λ1)φϕ(t, λ2) R̂t ⊗ R̂t,
where

φϕ(t, λ) = ∂λ

(
fϕ(t, λ, z)̂⊗ 1− 1⊗ fϕ(t, λ, z)

)̂
.

On the other hand,

φϕ(t, λ1)φϕ(t, λ2) =: φϕ(t, λ1)φϕ(t, λ2) : +2∂λ1
∂λ2

Ω(fϕ+(t, λ1, z), f
ϕ(t, λ2, z))

and

φpt(ui, λ1)φpt(ui, λ2) =: φpt(ui, λ1)φpt(ui, λ2) : +2∂λ1
∂λ2

Ω(fϕpt,+(ui, λ1, z), f
ϕ
pt(ui, λ2, z)),
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where : : is the normally ordered product. Therefore,

R̂t ⊗ R̂t : φpt(ui, λ1)φpt(ui, λ2) :=: φϕ(t, λ1)φϕ(t, λ2) : R̂t ⊗ R̂t+

2∂λ1∂λ2

(
Ωϕ,ϕ(t, λ1, λ2)− Ωpt

ϕ,ϕ(ui, λ1, λ2)
)
R̂t ⊗ R̂t

where Ωpt
ϕ,ϕ is the propagator for A1-singularity with (in the notation of Section 6.2.1)

∆ = ∆i and t = ui. The residue of the 1-form (6.32) takes the form(
Resλ=ui dλ

(
λ

4
: φϕ(t, λ)φϕ(t, λ) : +(6.37)

λ

2
∂λ1

∂λ2

(
Ωϕ,ϕ(t, λ1, λ2)− Ωpt

ϕ,ϕ(ui, λ1, λ2)
)∣∣∣∣
λ1=λ2=λ

)
+

1

8

)
At ⊗At.

6.3.7. Residue of the Virasoro term. Let us single out the terms in

(6.38) − λdλ

2

N∑
i=1

: φγi(t, λ)φγi(t, λ)

which contribute to the residue at λ = ui. Let us decompose γi = αi + (γi|ϕ)ϕ/2 and
γi = αi + (γi|ϕ)ϕ/2, where αi and αi are invariant with respect to the local monodromy
around λ = ui. Note that

ϕ =

N∑
i=1

γi(γ
i|ϕ) =

N∑
i=1

(αi + (γi|ϕ)ϕ/2)(γi|ϕ)

and since

N∑
i=1

(γi|ϕ)(γi|ϕ) = (ϕ|ϕ) = 2

the above equality implies that

N∑
i=1

αi(γ
i|ϕ) = 0.

similarly
∑N
i=1 α

i(γi|ϕ) = 0. Therefore, (6.38) can be written in the following form

−λdλ
2

( N∑
i=1

: φαi(t, λ)φαi(t, λ) : +
1

2
: φϕ(t, λ)φϕ(t, λ) :

)
The terms involving φαi(t, λ) and φαi(t, λ) are analytic at λ = ui. Note that the remaining
term cancels a corresponding term in the residue (6.37).

6.3.8. Proof of Theorem 6.7. We have already reduced the proof of Theorem 6.7
to proving that the total ancestor potential satisfies the HQEs (6.24). Using the same
argument as in Section 6.3.5 we may reduce the proof to the case when ui(t) 6= 0 for all i.
Recalling the computations from Sections 6.3.5, 6.3.6, and 6.3.7, we get that it remains
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only to check the following identity:

N∑
i=1

Resλ=ui λdλ

(
−λ−2C(t, λ) +

1

2
∂λ1∂λ2

(
Ωϕ,ϕ(t, λ1, λ2)− Ωpt

ϕ,ϕ(ui, λ1, λ2)
)∣∣∣
λ1=λ2=λ

)
=

− N

8
+
N(h+ 1)

12h
+ Resλ=0

dλ

λ
C(t, λ).

Let us simplify the LHS. Recalling the definition of C(t, λ) and decomposing γj = αj +
(γj |ϕ)ϕ/2 and γj = αj + (γj |ϕ)ϕ/2 we get

λ−2C(t, λ) =∂λ1∂λ2

 N∑
j=1

(
Ωαj ,αj (t, λ1, λ2)− Ωαj ,αj (0, λ1, λ2)

)
+

+
1

2

(
Ωϕ,ϕ(t, λ1, λ2)− Ωϕ,ϕ(0, λ1, λ2)

))∣∣∣∣
λ1=λ2=λ

.

Note that

Ωαj ,αj (t, λ1, λ2)− Ωαj ,αj (0, λ1, λ2)
∣∣
λ1=λ2=λ

is analytic at λ = ui because the periods I
(m)
αj (t, λ) and I

(m)
αj (t, λ) are analytic at λ = ui.

Therefore, the LHS takes the form

(6.39)

N∑
i=1

Resλ=ui

λdλ

2
∂λ1∂λ2

( N∑
j=1

Ωϕ,ϕ(0, λ1, λ2)− Ωpt
ϕ,ϕ(ui, λ1, λ2)

)∣∣∣∣∣∣
λ1=λ2=λ

Let us recall that the derivatives of the propagator can be expressed in terms of the
periods (see Lemma 3.14 )

∂λ1
∂λ2

Ωα,β(t, λ1, λ2) = ∂λ2

(
1

λ1 − λ2
(I(0)
α (t, λ1), (λ2 − E•)I(0)

β (t, λ2))

)
.

We have (see Proposition 3.16)

1

λ1 − λ2
(I(0)
ϕ (0, λ1), (λ2 − E•)I(0)

ϕ (0, λ2)) =
2

λ1 − λ2
+ · · ·

where the dots stand for terms regular at λ1 = λ2 and that do not contribute to the
residue. Recall that

I
(0)
pt (ui, λ) =

2√
2(λ− ui)

dui√
∆i

.

We get

∂λ1
Ωpt
ϕ,ϕ(ui, λ1, λ2) =

2

λ1 − λ2

√
λ2 − ui√
λ1 − ui

=
2

λ1 − λ2
− 1

λ1 − ui
− λ1 − λ2

4(λ1 − ui)2
+ · · · .

The residue (6.39) takes the form

−
N∑
i=1

Resλ=ui

λdλ

8(λ− ui)2
= −N

8
.
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Comparing with the RHS of the identity that we would like to prove we get that we need
to verify that

Resλ=0
dλ

λ
C(t, λ) = −N(h+ 1)

12h
.

Note that the differential with respect to t

dC(t, λ) = λ2
N∑
i=1

I(1)
γi (t, λ) • I(1)

γi (t, λ)

has a zero at λ = 0 of order at least 2. Therefore, the residue that we would like to
compute is independent of t. Let us pick t = 1. We get

C(1, λ) = λ2∂λ1∂λ2

N∑
i=1

(
Ωγi,γi(0, λ1 − 1, λ2 − 1)− Ωγi,γi(0, λ1, λ2)

)∣∣∣∣∣
λ1=λ2=λ

,

where we used the translation invariance I(m)(1, λ) = I(m)(0, λ−1). The above expression
can be computed explicitly. We have

I(0)
γi (0, λ) = λ−mi/h[[φi(x)dx]]

and γi = γN+1−i, so

∂λ1
Ωγi,γi(0, λ1, λ2) =

(λ2/λ1)mi/h

λ1 − λ2
.

A straightforward computation yields

C(1, λ) =
1

2

N∑
i=1

mi

h

(mi

h
− 1
)(

1− λ2

(λ− 1)2

)
.

The residue

Resλ=0
dλ

λ
C(t, λ) =

1

2

N∑
i=1

mi

h

(mi

h
− 1
)
.

The Coxeter exponents mi (1 ≤ i ≤ N) of type A, D, or E are well known (see Table 1).

One can easily check that the above sum coincides with −N(h+1)
12h . �
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