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1. Introduction

The Gromov–Witten (shortly GW) invariants of a compact Kähler mani-
fold X are defined as the number of holomorphic maps from Riemann sur-
faces of fixed genus to X satisfying, various constraints. The rigorous def-
inition of the invariants is a difficult problem. One has to develop integra-
tion theory on the moduli spaces Mg,n(X, d) of equivalence classes of stable
maps f : (Σ, p1, . . . , pn) → X , where Σ is a genus-g, nodal Riemann surface,
pi, 1 ≤ i ≤ n are marked points, and f∗([Σi]) = d ∈ H2(X ;Z). Such spaces
are in general not manifolds or orbifolds. In fact they might have several
irreducible components of different dimensions. Nevertheless, they have the
properties of compact complex orbifolds. To the best of my knowledge, there
are three different approaches which were invented in order to deal with the
fundamentals of GW theory. The first one is entirely algebraic, it is based on
the intersection theory on Delign-Mumford stacks (see [13]), and it amounts
to constructing a virtual fundamental cycle (see [11], [2]). The other two ap-
proaches are both analytic, but quite different in nature. One can identify the
moduli space as the zero locus of a section (constructed via Cauchy-Riemann
equations) of a Banach bundle. The problem is that the section is not transver-
sal. A natural idea is to deform the section so that we achieve transversality
(see [12]). Finally, the third approach is still under construction, and it con-
sists of generalizing the notion of smoothness, so that we can actually call the
moduli spaces manifolds (polyfolds to be precise) (see [7]).
In my lectures I’m not going to address any of the foundational issues. All

of the above mentioned approaches are quite technical and they will take us in
a different direction. My goal is to show what are the moduli spaces good for
and to point towards some new directions for researching. The Gromov–Witten
invariants are organized in a generating functionDX called the total descendent
potential of X. There are two problems which are my main motivation. The
first one is the so called Virasoro conjecture. It says that a certain sequence
of linear differential operators, commuting as the holomorphic vector fields on
the circle, annihilates DX . This problem is still open and it is proved only for
certain types of manifolds. The second problem is motivated by the Witten’s
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conjecture (see [14]), proved by Kontsevich (see [10]), which says that the
Gromov–Witten invariants of a point are governed (i.e. uniquely determined)
by the KdV hierarchy. It is known that the Gromov–Witten invariants of CP 1

are governed by the Extended Toda Hierarchy and for some other classes of
manifolds (e.g. toric manifolds, Grassmanians, flag manifolds) it is expected
that a similar hierarchy should exist.
My first goal is to prove Givental’s formula for the total descendent potential

of CP n. The proof (due to A. Givental) is motivated by the localization argu-
ment of M. Kontsevich [9]. However, it relies also on the so called quantum
Riemann-Roch theorem as well as on the so called materialization phenomena
in equivariant quantum cohomology. I am going to follow closely the articles
[3, 5, 6] and the notes that I took from Givental’s class when I was a graduate
student at Berkeley. Then I want to turn to the applications of this formula.
First, this is almost an immediate corollary from the formula, proof of the Vi-
rasoro constraints for CP n. Then I want to explain a very interesting relation
between the representation theory of affine Lie algebras and Picard–Lefschetz
periods of simple singularities. In particular, I will describe a tool which looks
very promising for addressing the problem of finding an integrable hierarchy
which governs the GW invariants of CP n. Most of the theorems I am plan-
ning to prove can be generalized to toric manifolds, but just to simplify the
exposition I’m going to work only with CP n.

2. Gromov–Witten theory of the point

In this lecture I would like to point out several results which I would like to
generalize for CP n.

2.1. Witten’s conjecture. Let Mg,n be the moduli space of equivalence
classes of nodal Riemann surfaces of genus g, equipped with n marked points.
The equivalence relation is given by a diffeomorphism (i.e. re-parameterization
of the surface) φ : (Σ′, j′) → (Σ, j) such that φ∗j = j′ and φ(p′i) = pi. By defi-
nition, Mg,n is empty if 2g − 2 + n ≤ 0, i.e., (g, n) = (0, 0), (0, 1), (0, 2), (1, 0).
For all other pairs (g, n), the points in the moduli space have only finite or-
der automorphisms and in fact Mg,n can be equipped with the structure of a
compact complex orbifold of complex dimension 3g − 3 + n (equipping Mg,n

with an orbifold structure can be done with the theory of Strebel differentials
see [10] as well as the preprint [15]).
Put

〈ψk1, . . . , ψkn〉g,n =

∫

Mg,n

ψk11 . . . ψknn ,

where ψi is the 1-st Chern class of the Line bundle Li → Mg,n of cotangent
lines at the i-th marked point. By definition the integral is 0 if the moduli
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space is empty or the degree of the ψ-classes does not match the dimension of
Mg,n. Let

Dpt(t) = exp
(∑ 1

n!
〈ψk1, . . . , ψkn〉g,ntk1 . . . tknǫ2g−2

)
,

where the sum is over all non-negative integers g, n, k1, . . . , kn, and t = (t0, t1, . . .)
is a sequence of formal variables. As it will be seen later, it is convenient to
work with another sequence of formal variables q = (q0, q1, . . .) such that
qk = tk, for k 6= 1 and q1 = t1 − 1.
Let

Γ± = exp
(
±
∑

k≥0

(2λ)k+1/2

(2k + 1)!!

qk
ǫ

)
exp

(
∓
∑

k≥0

(2k − 1)!!

(2λ)−k−1/2
ǫ∂qk

)
.

Then we say that τ(q0, q1, . . . ; ǫ) is a tau-function of the KdV hierarchy if the
following equations are satisfied:

Resλ=∞λ
n dλ√

λ

(
Γ+ ⊗ Γ− − Γ− ⊗ Γ+

)
τ ⊗ τ) = 0, n ≥ 0,

where the equations should be interpreted as follows: τ ⊗ τ = τ(q′)τ(q′′), the
vertex operator preceding (resp. following) the tensor product acts on τ(q′)
(resp. τ(q′′)). Furthermore, let q′ = q+ y and q′′ = q− y. Notice that

Γ± ⊗ Γ∓ = exp
(
± 2

∑

k≥0

(2λ)k+1/2

(2k + 1)!!

yk
ǫ

)
exp

(
∓
∑

k≥0

(2k − 1)!!

(2λ)−k−1/2
ǫ∂yk

)
,

and τ(q′)τ(q′′) = τ(q+y)τ(q−y). Using the Taylor’s formula we expand in the
powers of y. The result is a power series in y with coefficients Laurent series
in λ−1, whose coefficients are quadratic polynomials in the partial derivatives
of τ. The vanishing of the residues for all n ≥ 0 means that all quadratic
polynomials in front of the negative powers of λ must vanish. For example, if
n = 0 then the coefficient in front of y1 gives us the celebrated KdV equation:

∂q1v = vvx +
ǫ2

12
vxxx, v = ǫ2(log τ)xx,

where x := q0 and the subscript x means partial derivative with respect to x.
Similarly, by comparing the coefficients in front of other powers of y we get
that v is a solution to a system of PDE’s of the following type:

∂qnv = Pn(v, vx, vxx, . . .), n ≥ 1,

where Pn are differential polynomials in v. It is not obvious, but it can be
shown that the above system of PDE’s coincide with the so called KdV hier-
archy, which justifies why we called τ a tau-function of KdV.

Theorem 2.1 (Witten’s conjecture). The generating function Dpt is a tau-
function of the KdV hierarchy.
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The theorem was first proved by Kontsevich. His proof had some technical
subtleties which later on were overcome. One proof that I like a lot is based
on Mirzahani’s formula for the volume of the moduli space Mg,n(L1, . . . , Ln)
of Riemann surfaces with boundaries of fixed lengths. It was notice by N. Do
that Mirzahani’s formula can be used to avoid the subtleties in the Kontsevich’s
argument. Namely, if we let Li → ∞ then the leading terms of Mirzahani’s
formula can be identified with a sum over ribbon graphs. This observation
allows us to write Dpt as a sum over ribbon graphs. The later coincide with
the asymptotic of a certain matrix integral and it is easy to see that we have
a tau-function of KdV (see [10]).
Let us show how the KdV equation can be used to compute the intersection

number 〈ψ〉1,1 =
∫
M1,1

ψ1. Start by differentiating the KdV equation by q3,

then substitute t = 0 and compare the coefficients in front of ǫ2. We get the
following identity:

(2.1) 〈1, 1, ψ, ψ3〉1,4 = 〈1, 1, ψ3〉1,3〈1, 1, 1〉0,3 +
1

12
〈1, 1, 1, 1, 1, ψ3〉1,1.

Later on (see Section 4) we prove the following identities:

〈ψk1, . . . , ψkn, 1〉g,n+1 =

n∑

i=1

〈ψk1, . . . , ψki−1, . . . , ψkn〉,g,n

and

〈ψk1, . . . , ψkn, ψ〉g,n+1 = (2g − 2 + n)〈ψk1 , . . . , ψkn〉g,n,
known respectively as the string and the dilaton equations. With the help of
these two identities it is easy to see that (2.1) implies that: 〈ψ〉1,1 = 1/24.
The string equations and the dilaton equation imply the following con-

straints on the generating function Dpt. Put

L−1 :=
t20
2
− ∂

∂t0
+
∑

m≥0

tm+1
∂

∂tm
=
q20
2

+
∑

m≥0

qm+1
∂

∂qm
,

and

L0 = −3

2

∂

∂t1
− 1

16
+
∑

m≥0

(m+
1

2
)tm

∂

∂tm
= − 1

16
+
∑

m≥0

(m+
1

2
)qm

∂

∂qm
.

Then L−1Dpt = L0Dpt = 0. In fact there is a whole sequence of differential
operators Ln, n ≥ −1, commuting like holomorphic vector fields on the circle
(i.e. zn+1∂/∂z), such that

Theorem 2.2 (Virasoro constraints). LnDpt = 0, n ≥ −1.

This theorem follows from a result of Kac and Schwarz, which says that
a tau function of the KdV hierarchy satisfying the string equation satisfies
Virasoro constraints.
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2.2. Another point of view of KdV. The Hirota quadratic equations (shortly
HQE) which were given above can be interpreted as the Plücker relations of
the embedding of some infinite dimensional Grassmanian into some projective
space. Yet another interpretation of HQE can be obtained via the representa-

tion theory of the affine Lie algebra ŝl2. By definition, the affine Lie algebra ĝ

corresponding to a simple lie algebra g is defined by

ĝ = g[t, t−1] + CK + C d,

where K is a central element, d = t∂t and the commutator is defined by

[X ⊗ tn, Y ⊗ tm] = [X, Y ]⊗ tn+m + nδn,−m(X, Y )K,

where ( , ) is an invariant bi-linear form in g. We will be interested only in
affine Lie algebras of type A,D, or E, in which case the invariant form can be
characterized uniquely by demanding that all roots have length

√
2.

Put ĥ = h + CK + C d, where h is a Cartan subalgebra of h. Pick a set of
simple roots α1, . . . , αl and let α∨

0 = K − θ∨ where l = dimCh, θ is the longest
root of g and for a root α ∈ h∗ we denote by α∨ ∈ h the corresponding coroot,
which in the A,D, or E case coincides with the dual to α with respect to the
invariant form. It turns out (this is one of the things that I’m planning to
prove) that the irreducible, integrable, highest weight representations of ĝ are

classified by weights Λ ∈ ĥ∗, s.t., 〈Λ, α∨
i 〉 ∈ Z≥0, 0 ≤ i ≤ l. The representa-

tion corresponding to the weight Λ0 defined by: 〈Λ0, h〉 = 〈Λ0, d〉 = 0, and
〈Λ0, K〉 = 1, is called the basic representation. The basic representation can
be realized in many different ways by differential operators acting on certain
Fock spaces. All these realizations are parametrized by conjugacy classes of
the Weyl group of g. This is something I’m planning to explain later as well.

For example, in the case of ŝl2 we have the following realization. Let

H2k+1 =

[
0 tk

tk+1 0

]
, A2k =

[
−tk 0
0 tk

]
, A2k+1 =

[
0 tk

−tk+1 0

]
, k ∈ Z.

The basic representation of ŝl2 is realized on the vector space L(Λ0) = C[[x1, x3, . . .]]
of formal power series by the following formulas:

A(z) =
∑

n∈Z z
−nAn 7→ 1

2

(
Γ+(z)− 1

)
,

Hj 7→ ∂
∂xj
, H−j 7→ jxj ,

K 7→ 1, d 7→ 1
2
A0 −

∑
j jxj

∂
∂xj
,

where j (including the summations below) is a positive odd number and

Γ±(z) = exp
(
± 2

∑

j

zjxj

)
exp

(
∓ 2

∑

j

z−j

j

∂

∂xj

)
.
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Theorem 2.3. A function τ ∈ L(Λ0) belongs to the orbit ŜL2 · 1 iff it satisfies
the following HQE:

resz=∞

dz

z

(
Γ+(z)⊗ Γ−(z)

)
(τ ⊗ τ) = (8l + 1)(τ ⊗ τ),

where l = 1
2

∑
j j(x

′
j − x′′j )(∂x′j − ∂x′′j ).

Finally, one can show that the solutions of the above HQE correspond to
tau-functions of the KdV hierarchy via the substitution: qk = ǫ(2k+1)!!x2k+1.

3. The virtual tangent bundle

Let Mg,n(X ; d) be the moduli space of equivalence classes of stable maps

f : (Σ, p1, . . . , pn) → X,

where Σ is a genus g nodal Riemann surface, pi are marked points, and f is
a continuous map, holomorphic on each irreducible component, and f∗[Σ] =
d ∈ H2(X ;Z). By definition, stable means that the group of automorphisms of
the configuration (Σ, p1, . . . , pn; f) is finite. Two stable maps f : Σ → X and
f ′ : Σ′ → X are equivalent if there is a diffeomorphism φ : Σ′ → Σ such that
j′ = φ∗j, φ(p′i) = pi and f ◦ φ = f ′, where j′ and j are the complex structures
respectively on Σ and Σ′.
The moduli spaces are compact, however in most cases they are not man-

ifolds or orbifolds. The reason for this is that the infinitesimal deformations
of a stable map (Σ, p, f) might have obstructions, so we can’t always extend
them to actual deformations. Nevertheless, one can define a homology cycle,
called virtual fundamental cycle, such that the integration theory on the mod-
uli space is the same as if Mg,n(X, d) were compact complex orbifolds. In this
section we compute the virtual tangent sheaf T ∈ K0(Mg,n(X, d)) whose stalk
at a stable map is the formal difference of the infinitesimal deformations and
the obstructions. The virtual fundamental cycle is in some sense the Euler
class of the obstruction bundle. As we will see below the deformations and
the obstructions of stable maps are classified by certain vector spaces whose
dimension might vary, i.e., the obstructions in general give rise to a sheaf not
to a bundle, so the construction of the virtual fundamental cycle is more com-
plicated then just taking the Euler class of a bundle. In case the obstructions
give rise to a bundle then the virtual fundamental cycle is the Euler class.
We consider a simplified version of the deformation theory of a stable map.

Namely, let (Σ, p, f), p = (p1, . . . , pn), be a fixed stable map. We classify the
infinitesimal deformations of the map f and their obstructions, keeping the
Riemann surface and the marked points fixed. Choose an open covering {Vi}
of Σ by holomorphic disks and let Ui be coordinate charts of X such that
f(Vi) ⊂ Ui. In each chart Ui we pick coordinates and so on each Vi the map
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f is represented by a collection of holomorphic functions ui = (u1i , . . . , u
D
i ),

D = dimCX. Finally, let gji be the transition functions between the charts Ui
and Uj , i.e., uj = gji(ui).
Case 1: 1-st order deformations. Let ui = ui+ǫvi be first order deformations.

Compare the coefficient in front of ǫ in the gluing identity ūaj = gaji(ū
1
i , . . . , ū

D
i ).

We get:

(3.1) vaj =
D∑

b=1

∂gaji
∂ubi

vbi ,

which implies that the vector fields
∑

a v
a
j

∂
∂uaj

∈ Γ(Vj, f
∗TX) glue to give a

global section of f ∗TX , i.e., the infinitesimal deformations are classified by
H0(Σ, f ∗TX).
Case 2: 2-nd order deformations. Let ūi = ui+ ǫvi+ ǫ2wi be a second order

deformation. Comparing the coefficients in front of ǫ2 in the gluing identity
ūaj = gaji(ūi) we get:

waj =
∑

b

∂gaji
∂ubi

wbi +
1

2

∂2gaji
∂ubi∂u

c
i

vbiv
c
i ,

i.e.,

(3.2)
∑

a

waj
∂

∂uaj
=
∑

b

wbi
∂

∂ubi
+

1

2

∑

a,b,c

∂2gaji
∂ubi∂u

c
i

vbiv
c
i

∂

∂uaj
,

The LHS and the first sum on the RHS are elements respectively ofH0(Vi, f
∗TX)

and H0(Vj, f
∗TX). We denote the second term on the RHS by wji. A di-

rect computation (using also formula (3.1)) shows that wki = wkj + wji, i.e.,
w = (wji) give rise to a Cech cocycle. Let [w] ∈ H1(Σ, f ∗TX) be the cor-
responding cohomology class, then formula (3.2) means that [w] = 0, so the
obstructions belong to the cohomology group H1(Σ, f ∗TX).
Let TΣ be the sheaf of holomorphic vector fields on Σ which vanish at the

marked points and at the nodes. A similar argument shows that H1(Σ, TΣ)
classifies the deformations of the complex structure on Σ, and H0(Σ, TΣ) are
the automorphisms of (Σ, p). Finally, for s ∈ Sing(Σ) let T ′

s and T ′′
s be the

tangent spaces at s to the two branches of Σ that meet at s. Then T ′
s⊗T ′′

s can
be identified with a space of infinitesimal deformations of (Σ, p, f) which come
from resolving s. Namely, let x and y be coordinates on the two branches and
let ǫ∂x⊗∂y ∈ T ′

s⊗T ′′
s . In a neighborhood of s the Riemann surface is given by

the equation xy = 0 and we resolve the singularity by deforming the equation
into xy = ǫ.
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The above discussion motivates the following definition:

T(Σ,p,f) := H1(Σ, TΣ)−H0(Σ, TΣ) +
⊕

s∈SingΣ

T ′
s ⊗ T ′′

s +H0(Σ, f ∗TX)−H1(Σ, f ∗TX),

so when we vary (Σ, p, f) we get an element T ∈ K0(Mg,n(X, d)). Using the
Riemann-Roch formula:

dimCH
0(Σ, E)− dimCH

1(Σ, E) = rk(E)(1− g) +

∫

Σ

c1(E),

we can easily compute that the virtual rank of T , i.e., the virtual dimension
of the moduli space Mg,n(X, d) is: 3g − 3 + n +D(1− g) +

∫
d
c1(TX).

Example 3.1. If the degree is 0, i.e., the maps contracts the curve to a point.
We have Mg,n(X, 0) = Mg,n×X. On the other hand H0(Σ, f ∗TX) = Tf(Σ)X,
H1(Σ, f ∗TX) = H0(Σ,OΣ)⊗ Tf(Σ)X, so the tangent bundle is given by

T = TMg,n
+ TX − E⊗ TX,

where E is the rank g bundle onMg,n whose fiber at (Σ, p) is given by H1(Σ,OΣ)
(the dual to this bundle is known as the Hodge bundle). Since the obstructions
form a bundle we have that the virtual fundamental cycle is the Poincare dual
to the Euler class, i.e.,

∫

Mg,n(X,0)

α =

∫

Mg,n×X

α ` Euler(E⊗ TX).

Example 3.2. If X is a manifold whose tangent spaces are spanned by global
vector fieldsH0(X, TX) (e.g. Grassmanians, flag manifolds) then H1(Σ, f ∗TX) =
0 for all genus-0 curves Σ. This implies that the obstructions vanish so the
moduli space M0,n(X, d) is a compact complex orbifold.

4. Universal identities in Gromov–Witten theory

Let X be a projective manifold whose cohomology algebra has only even
degree non-zero classes. We denote by {φa}, 1 ≤ a ≤ N a basis of H∗(X). By
definition the descendent GW invariants of X are the following correlators:

(4.1) 〈φa1ψk1 , . . . , φanψkn〉g,n,d :=
∫

[Mg,n(X,d)]

ψk11 . . . ψknn ev∗(φa1 ⊗ . . .⊗ φan),

where ψi is the first Chern class of the line bundle Li → Mg,n(X, d) whose
fiber at (Σ, p, f), p = (p1, . . . , pn) is the cotangent line T ∗

pi
Σ, ev(Σ, p, f) :=

(f(p1), . . . , f(pn)) ∈ Xn is the evaluation map and the integration is over the
virtual fundamental cycle. In this section we prove some identities between
the correlators (4.1).
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4.1. The universal curve. Let (Σ, p, f) be a stable map. A point on some
irreducible component is called special if it is either a marked point or a nodal
point of Σ. Notice that the condition that the map is stable means that for each
irreducible component Σ′ of Σ contracted by f the configuration (Σ′, special
points) is stable, i.e., 2g′ − 2+ n′ > 0, where g′ is the genus of Σ′ and n′ is the
number of special points.
Let π : Mg,n+1(X, d) - Mg,n(X, d) be the map forgetting the last marked

point and contracting all unstable components. In fact π is the universal curve
, i.e., if σ = (Σ, p, f) ∈ Mg,n(X, d) is a stable map then there is a canonical
identification between the fiber π−1(σ) and Σ. Indeed, if π(Σ′, p′, f ′) = (Σ, p, f)
then we either have Σ′ = Σ, f ′ = f or Σ′ = Σ ∪ Σ′′, where the irreducible
component Σ′′ is a copy of CP 1, the map f contracts Σ′′, and the only marked
points on Σ′′ are pn+1 and pi for some i, 1 ≤ i ≤ n. In the first case we map
(Σ′, p′, f ′) to pn+1 and in the second to pi.
Let us denote by si : Mg,n(X, d) - Mg,n+1(X, d) the section which to each

σ = (Σ, p, f) assigns the point in π−1(σ) ∼= Σ which corresponds to the marked
point pi. Finally, let Di := [si(Mg,n(X, d))] be the divisor corresponding to
the section si.

4.2. The string equation. The following identity is known as the string
equation:

〈φa1ψk1 , . . . , φanψkn , 1〉g,n+1,d =
n∑

i=1

〈φa1ψk1 , . . . , φaiψki−1, . . . φanψ
kn, 1〉g,n,d.

The proof is based on the following relations in the cohomology ofMg,n+1(X, d):
Fact 1: if 1 ≤ i 6= j ≤ n then [Di][Dj ] = 0, where for a divisor D we denote

by [D] its Poincaré dual. This is obvious because from the definitions it follows
that Di and Dj are disjoint.
Fact 2: For 1 ≤ i ≤ n we have ψi[Di] = 0. The reason for this is that the

restriction of the bundle Li to Di is a trivial bundle. Indeed, notice that Di

can be viewed as the image of a gluing map

gli : Mg,n(X, d)×M0,3
- Mg,n+1(X, d).

On the other hand gl∗iLi is a cotangent line bundle on M0,3 = pt, and hence
it is trivial.
Fact 3: Let Li → Mg,n+1(X, d) be the pullback via π of the bundle Li →

Mg,n(X, d). Then ψi = ψi + [Di], where ψi = c1(Li).

Note that the line bundles Li and Li are the same outside of the divisor
locus Di. Let (Σ′, p′, f ′) be a point on Di. Write Σ′ = Σ ∪ Σ′′, where Σ′′ is
a copy of CP 1 which carries the marked points pi and pn+1. We pick local
coordinates x and y respectively on Σ and Σ′′ near the nodal point, let yi be
a local coordinate on Σ′′ near pi. We may assume that yi = 1/y. Let ǫ be



10 TODOR E. MILANOV

the coordinate on the moduli space corresponding to resolving the node via
xy = ǫ. We have the following relations:

dx = −ǫy−2dy = ǫdyi, i.e., dyi = ǫ−1dx.

On the other hand dx and dyi are local sections of Li and Li which generate the
corresponding sheaves of holomorphic sections and ǫ = 0 is the local equation
of the divisor Di. Using the correspondence between divisors and line bundles
on complex manifolds we get that: Li = Li ⊗ L(Di), i.e., ψi = ψi + [Di].
To finish the proof of the string equation it remains only to notice that

ψki = ψk−1
i (ψi + [Di]) = ψk−1

i ψi = . . . = ψ
k−1

i (ψi + [Di]).

4.3. Pushforward in cohomology. Let p : X → Y be a proper map be-
tween complex manifolds. Then there is a well defined pushforward map
p∗ : H∗(X) → H∗−2r(Y ) where r = dimC(X) − dimC(Y ). Intuitively, p∗ is
integration along the fiber. The precise definition can be done in three steps.
Step 1: If π : X × Y → Y is the projection on the second factor and

θ ∈ H∗(X×Y ) is a cohomology class whose restriction to each fiber X×{y} is
compactly supported, then we define π∗(θ) by integrating over the fiber. More
precisely for each y ∈ Y we take a coordinate chart V near y such that, the
restriction of θ to X×V can be represented by

∑
I θI(y)∧dyi1∧. . .∧dyis, where

the summation is over all multiindeces I = (i1, . . . , is) and θI(y) is a differential

form on X . Then the restriction of π∗(θ) to V is given by
∑

I

( ∫
X
θI(y)

)
dyi1∧

. . . ∧ dyis. It is easy to see that all these local differential forms glue together
and the resulting differential form represents the cohomology class π∗(θ).
Step 2: If i : X → Y is a closed embedding. Then by the Thom isomorphism

we have H∗(X) ∼= H∗+r(N,N − X), where N is the normal bundle to X
and r is the codimension of X in Y. By excision we have H∗(N,N − X) =
H∗(U, U − X) = H∗(Y, Y − X), where U is a tubular neighborhood of X in
Y . If θ ∈ H∗(X) then i∗(θ) ∈ H∗(Y ) is defined via the above sequence of
isomorphisms and the natural map H∗(Y, Y −X) → H∗(Y ).
Step 3: If p : X → Y is an arbitrary proper map. Then we factor p as

X
g
- X × Y

π
- Y , where g(x) = (x, p(x)) is the graph-map of p. We

define p∗ := π∗ ◦ g∗.
Let us remark that p∗ is a H

∗(Y )-module homomorphism, i.e., p∗(a ` p∗b) =
p∗(a) ` b. Also in case X and Y are compact then p∗ can be equivalently
defined via Poincaré duality: p∗(a) = P.D.[p∗(P.D.[a])].

4.4. Dilaton equation. Now we prove the dilaton equation:

〈φa1ψk1, . . . , φanψkn, ψ〉g,n+1,d = (2g − 2 + n)〈φa1ψk1, . . . , φanψkn〉g,n,d
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First, let us prove that π∗(ψn+1) = 2g − 2 + n. We know that π∗(ψn+1) is
a number, so it is enough to integrate ψn+1 along any of the fibers π−1(σ),
σ = (Σ, p, f) ∈ Mg,n(X, d). We may assume that Σ is a smooth curve.

Let φ : π−1(σ)
∼=
- Σ be the canonical identification. For each point σ′ =

(Σ′, p′, f ′) ∈ Mg,n+1(X, d) we denote by ln+1 the cotangent line at the (n+1)-
st marked point. If σ′ ∈ Di then Σ′ = Σ ∪ Σ′′ (see the discussion above
about the universal curve) we denote by li the cotangent line to Σ at the nodal
point common for Σ and Σ′′. Let Ln+1 be the line bundle whose fiber at σ′

is ln+1 if σ′ /∈ Di for all 1 ≤ i ≤ n, or li if σ
′ ∈ Di. It is not hard to see

that the restriction of Ln+1 to the fiber π−1(σ) is canonically isomorphic to
φ∗(T ∗Σ). On the other hand the same comparison argument as in the proof
of the string equation shows that Ln+1 = Ln+1 ⊗ L(D1 + . . . + Dn). Taking
the Chern classes, and then integrating along the fiber π−1(σ) ∼= Σ we get
π∗(ψn+1) =

∫
Σ
c1(T

∗X) + n = 2g − 2 + n.
Notice that the restriction of Ln+1 to Di is a trivial bundle, so ψn+1[Di] = 0.

Therefore ψki ψn+1 = ψ
k

iψn+1, because ψi−ψi = [Di]. Now the dilaton equation
is easy to prove. We have:
∫

Mg,n+1(X,d)

φa1ψ
k1
1 . . . φanψ

kn
n ψn+1 =

∫

Mg,n+1(X,d)

π∗
(
φa1ψ

k1
1 . . . φanψ

kn
n

)
ψn+1

and using that
∫
Mg,n+1(X,d)

=
∫
Mg,n(X,d)

◦π∗ we get

∫

Mg,n(X,d)

φa1ψ
k1
1 . . . φanψ

kn
n π∗ψn+1 = (2g − 2 + n)

∫

Mg,n(X,d)

φa1ψ
k1
1 . . . φanψ

kn
n .

4.5. The divisor equation. Using the same ideas as in the proof of the string
and the dilaton equations, one can easily prove that if p ∈ H2(X) then

〈φa1ψk11 , . . . , φanψknn , p〉g,n+1,d =
( ∫

d

p
)
〈φa1ψk11 , . . . , φanψknn 〉g,n,d +

+

n∑

i=1

〈φa1ψk11 , . . . , (φai · p)ψki−1
i , . . . , φanψ

kn
n 〉g,n,d

The above identity is called the divisor equation. In fact, the same formula
holds for all cohomology classes p of degree less or equal than 2.

5. Genus-0 GW theory

Let φa, 0 ≤ a ≤ N − 1 be a basis of H∗(X ;C). We assume that φ0 = 1 and
that φ1, . . . , φr, r = dimCH

2(X ;C) is a basis of the second-degree cohomology
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group. The genus-0 total descendent potential of X is defined by:

F (0)(t) =
∑

n,d

Qd

n!
〈t(ψ), . . . , t(ψ)〉0,n,d,

where t(ψ) =
∑

k,a t
a
kφaψ

k and Qd is an element of the group algebra of

H2(X ;Z). We may assume that φi ∈ H2(X ;Z), 1 ≤ i ≤ r are such that
their Poincaré duals αi ∈ H2(X ;Z) form a Z-basis. We put Qi = Qαi

and then Qd = Qd1
1 . . . Qdr

r , where d = d1α1 + . . . + drαr, i.e., F (0)(t) ∈
C[[tak]]⊗C[[Q±1

1 , . . . , Q±1
r ]]. In fact if X is a Grassmanian then one can choose

αi to be represented by effective curve classes, and since c1(TX) is a multi-
ple of the Kähler form we have

∫
αi
c1(TX) > 0 which implies that F (0)(t) ∈

C[[tak]]⊗ C[Q1, . . . , Qr], i.e., we may assume that Qi are complex parameters.

5.1. Genus-0 topological recursion relations. Our first goal is to prove
the so called Topological recursion relations (TRR for brevity):

1

n!
〈φaψi+1, φbψ

j, φcψ
k, t(ψ) . . . , t(ψ)〉0,n+3,d =

∑

n1+n2=n
d1+d2=d

N−1∑

µ,ν=0

gµν

n1!n2!
×(5.1)

〈φaψi, φµ, t(ψ), . . . , t(ψ)〉0,n1+2,d1〈φν , φbψj, φcψk, t(ψ) . . . , t(ψ)〉0,n2+3,d2 ,

where gµν =
∫
X
φµφν are the entries of the matrix of the Poincaré pairing and

gµν are the entries of its inverse.
Let ct : M0,n+3(X, d) → M0,3 be the map forgetting the map, the last

n marked points, and contracting all unstable components. Let (Σ, p, f) ∈
M0,n+3(X, d). Note that if we forget f and the last n marked points then only
one of the irreducible components of Σ is stable (and hence is not contracting
by ct). We call this distinguished component the central component of Σ. Let
D be the set of all stable maps such that the first marked point is not on
the central component. The same comparison argument as in the proof of the
string equations shows that: ψ1 − ψ1 = [D], where ψ1 is the first Chern class
of the pullback of the cotangent lines bundle L1 → M0,3. Notice that ψ1 = 0.
It follows that the RHS of (5.1) can be written in the following form:

(5.2)
1

n!

∫

[D]

φaψ
i
1φbψ

j
2φcψ

k
3t(ψ4) . . . t(ψn+3).

On the other hand, given a point (Σ, p, f) ∈ D we can split the curve into
two parts Σ′ and Σ′′ such that Σ′ is a tree of CP 1s which carries the first
marked point and such that under the contraction map it is contracted to a
point on the central component. Σ′′ is the complement of Σ′. Thus there is a
natural map gl which to each stable map (Σ, p, f) ∈ D assigns an element of
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the preimage of the diagonal of the following map:

M0,n1+1+◦(X, d1)×M0,•+2+n2(X, d2)
ev◦×ev•

- X ×X.

The map gl is a
(
n
n1

)
-covering because if we split the last n marked points of

Σ into two groups then there are exactly that many ways to re-number them
so that the order of the marked points in each group does not change. Since
the Poincaré dual to the diagonal in X ×X has the form

∑
µ,ν g

µνφµ ⊗ φν we

see that (5.2) is transformed into:
∑

n1+n2=n
d1+d2=d

1

n1!n2!

∫

M0,n1+1+◦(X,d1)×M0,•+2+n2 (X,d2)

∑

µ,ν

gµνev∗
◦φµev

∗
•φν(. . .),

where the dots stand for the integrand in (5.2). Formula (5.1) follows.

5.2. From two to one point descendents. Let τ =
∑

a τ
aφa ∈ H∗(X)

be a cohomology class. We view τa as coordinate functions on H∗(X). The
correlators

〈φa1ψk1 . . . φasψks〉0,s(τ) =
∑

n,d

Qd

n!
〈φa1ψk1 . . . φasψks, τ, . . . , τ〉0,s+n,d,

are called s-point descendent GW invariants.
The 1- and 2-point descendents are organized into generating series of the

type Sτ (z) = 1+S1(τ)z
−1+S2(τ)z

−2+ . . . andWτ (z, w) =
∑

k,lWkl(τ)z
−kw−l,

where Sk(τ) and Wkl(τ) are linear transformations in H∗(X), defined by:

(φa, Sτφb) = (φa, φb) +
∑

k≥0

〈φa, φbψk〉0,2(τ)z−k−1

and

(φa,Wτ (z, w)φb) =
∑

k,l≥0

〈φaψk, φbψl〉0,2(τ)z−kw−l.

Lemma 5.1. The following formula holds:

Wτ (z, w) =
tSτ (z)Sτ (w)− 1

z−1 + w−1
,

where the transpose of S is with respect to the Poincaré pairing.

Proof. We need to verify that

(φa,Wτ (z, w)φb)
(
z−1 + w−1

)
+ (φa, φb) = (Sτ (z)φa, Sτ (w)φb).

Using the String equation (SE for brevity) it is easy to verify that the LHS of
the above identity coincides with

(5.3)
∑

k,l≥0

〈φaψk, φbψl, 1〉0,3(τ)z−kw−l.
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We split the summation range in the above sum into four groups. First if
k = l = 0 then the corresponding summand is just (φa, φb). The summands
corresponding to k, l ≥ 1 can be simplified first with TRR and then they add
up to the following sum:

(5.4)
∑

µ,ν

∑

k,l≥1

〈φaψk−1, φµ〉0,2(τ)gµν〈φν , φbψl, 1〉0,3(τ)z−kw−l.

By definition we have
∑

k≥1

〈φaψk−1, φµ〉0,2(τ)z−k = (φµ, (Sτ(z)− 1)φa)

and∑

l≥1

〈φν, φbψl, 1〉0,3(τ)w−l =
∑

l≥1

〈φν , φbψl−1〉0,2(τ)w−l = (φν , (Sτ (w)− 1)φb),

where for the first equality we used SE. Therefore the sum (5.4) equals
∑

µ,ν

(φµ, (Sτ (z)− 1)φa)g
µν(φν , (Sτ (w)− 1)φb) = ((Sτ (z)− 1)φa, (Sτ (w)− 1)φb).

Similarly, the summands in (5.3) corresponding to k ≥ 1, l = 0 add up
to ((Sτ (z) − 1)φa, φb), and the ones corresponding to k = 0 and l ≥ 1 to
(φa, (Sτ (w)− 1)φb). The lemma follows. �

The importance of the following corollary will become clear after we intro-
duce the Givental’s quantization formalism.

Corollary 5.2. The 1-point series satisfies the following condition: tSτ (−z)Sτ (z) =
1.

5.3. Quantum differential equations. We view H := H∗(X) as a manifold
and we trivialize the tangent bundle TH by identifying φa with the coordinate
vector fields ∂/∂τa. In each tangent space we define a multiplication •τ , called
the quantum cup product, by the formula:

(φa • φb, φc) = 〈φa, φb, φc〉0,3(τ).
Notice that if we let (this is the genus-0 GW potential of X)

F (0)(τ) =
∑

n,d

Qd

n!
〈τ, . . . , τ〉0,n,d

then the RHS in the definition of •τ coincides with the third partial deriva-

tives ∂3F (0)

∂τa∂τb∂τc
. It is clear that •τ is commutative and it satisfies the Frobenius

property: (a•τ b, c) = (a, b•τ c), i.e., each tangent space is a Frobenius algebra.
Also, from the string equation it follows that 1 = ∂/∂τ 0 is a unity. The only
thing that is not so easy to see is that •τ is associative.
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Lemma 5.3. The 1-point descendent series Sτ (z) satisfies the following system
of ODEs:

(5.5) z∂τaSτ (z) = (φa•τ )Sτ (z), 0 ≤ a ≤ N − 1,

where φa•τ is the linear operator of quantum multiplication by φa = ∂/∂τa.

Proof. The equality (5.5) is equivalent to:

∞∑

k=0

〈φa, φb, φcψk〉0,3(τ)z−k = (Sτ (z)φc, φa •τ φb)z−k.

On the other hand, thanks to the TRR, the LHS in the above equality is
equivalent to:

〈φa, φb, φc〉0,3(τ) +
∞∑

k=1

∑

µ,ν

〈φa, φb, φµ〉0,3(τ)gµν〈φν, φcψk−1〉0,3(τ)

Using the definitions of the quantum cup product and the 1-point series Sτ (z),
we get that the above expression equals to:

(φa •τ φb, φc) +
∑

µ,ν

(φa •τ φb, φµ)gµν ((Sτ (z)− 1)φc, φν) .

The lemma follows. �

LetM be a small ball centered at 0 in CN . Assume that g is a non-degenerate
bi-linear pairing on TM , A is a holomorphic section of T ∗M⊗2 ⊗ TM, i.e.,
the tangent spaces TtM are equipped with a multiplication •t which depends
holomorphically on t ∈M, e is a vector field on M such that its restriction to
TtM is a unity with respect to •t, and finally E is a vector field on M.

Definition 5.4. The data (M, g,A, e, E) form a Frobenius structure on M of
conformal dimension D ∈ C, if the following conditions are satisfied.

(1) g and • satisfy the Frobenius property: g(X • Y1, Y2) = g(Y1, X • Y2),
(2) The one-parameter group corresponding to E acts on M by conformal

transformations of g, i.e., LEg = (2−D)g,
(3) e is a flat vector field: ∇L.C.e = 0, where ∇L.C. is the Levi-Civitá

connection of g,
(4) The connection operator

(5.6) ∇ = ∇L.C. − z−1
N∑

i=1

(
∂

∂ti
•t
)
dti +

(
z−2(E•t)− z−1µ

)
dz,

where µ := ∇L.C.(E) − (1 − D
2
)Id : TM → TM is the Hodge grading

operator, is flat, i.e., ∇2 = 0.
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The flatness of the family of connection operators implies that •t is commu-
tative and associative and that there exists a function F (τ), called potential of
the Frobenius structure, such that the structure constants of the multiplication
•t are given by the third partial derivatives of F, i.e., g(∂/∂τa•t∂/∂τ b, ∂/∂τ c) =
∂3F/(∂τa∂τ b∂τ c), where τ = (τ 1, . . . , τN) is a flat coordinate system on M .

Theorem 5.5. Let H = H∗(X). Then the Poincaré pairing, the quantum
multiplication, the cohomology class 1, and the vector field:

E =
N−1∑

a=0

(1− degCφa)τ
a ∂

∂τa
+ c1(TX),

form a Frobenius structure on H of conformal dimension D := dimCX.

Proof. The only thing that we need to check is that the corresponding con-
nection is flat, i.e., [∇∂/∂τa ,∇∂/∂τb ] = 0 and [∇∂/∂τa ,∇∂/∂z] = 0. The first
commuator vanishes thanks to Lemma 5.3. The vanishing of the second one
is equivalent to:

∂τa(E•τ ) = [µ, (φa•τ )] + (φa•τ ).
The above equality is equivalent to:

∂τa〈φb, φc, E〉0,3(τ) = (1 + db + dc −D)〈φa, φb, φc〉0,3(τ),
where da, 0 ≤ a ≤ N − 1 is the complex degrees of φa and we used that the
Hodge grading operator satisfies tµ = −µ, and µ(φa) = (D

2
− da)φa. On the

other hand the LHS is equal to: (1− da)〈φa, φb, φc〉0,3(τ) + E〈φa, φb, φc〉0,3(τ),
so we need to verify that

E〈φa, φb, φc〉0,3(τ) = (da + db + dc −D)〈φa, φb, φc〉0,3(τ),
which follows esily from the dimension formula

dimCM0,n(X ; d) = D − 3 + n +

∫

d

c1(TX),

and the divisor equation. �

5.4. Examples. In the computations, it is convenient to use that the asso-
ciativity of the quantum cup product is equivalent to the following system of
PDEs for the potential F = F (0) : for all a, b, c, and d we have

∑

µ,ν

gµν(FabµFcdν − FadµFbcν) = 0,

where the indices mean partial derivatives. These are the so called WDVV-
equations, and as we will see below they can be used to solve some interesting
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enumerative problems. To prove them note that the above system is equivalent
to the identities:

((φa •τ φb) •τ φc, φd) = (φa •τ (φb •τ φc), φd).
On the other hand, the above identities follow from the associativity and the
Frobenius property of •τ .
Example 1: If X = pt. Then H = C, τ = τ0φ0 and for dimensional reasons

we have F (0)(τ) =
τ30
3!
. The quantum multiplication coincides with the standard

multiplication in C. The system of QDE reads: z∂τ0Sτ (z) = Sτ (z), and we get
Sτ (z) = eτ0/z.
Example 2: If X = CP 1. Now H = C[p]/p2, where p is the hyperplane class,

τ = τ0 + τ1 p. Using string and divisor equations we get the following formula:
F (0)(τ) = 1

2
τ 20 τ1 +Qeτ1 . From here we can compute the structure constants of

•τ and we get that (H, •τ ) ∼= C[p]/〈p2 −Qeτ1〉.
Example 3: If X = CP 2. Similarly to the above case we have: τ = τ0 +

τ1 p+ τ2 p
2 and the string and divisor equation reduce the computation of F (0)

to computing correlators involving only p2, i.e.,

F (0)(τ) =
1

2
(τ 20 τ2 + τ0τ

2
1 ) +

∞∑

d=1

(Qeτ1)d
τ 3d−1
2

(3d− 1)!
Nd,

where Nd = 〈p2, . . . , p2〉0,3d−1,d can be interpreted as the number of degree d
rational curves in CP 2 passing through 3d− 1 points in general position.
Among all WDV V -equations only one is not trivial: a = b = 2, and c =

d = 1, which gives us F222 = F 2
211 − F221F111. Comparing the coefficients in

front of Q we get the following recursion relation:

Nd

(3d− 4)!
=

∑

d1+d2=d

( Nd1d
2
1

(3d1 − 2)!

Nd2d
2
2

(3d2 − 2)!
− Nd1Nd2d1d

3
2

(3d1 − 3)!(3d2 − 1)!

)
.

Starting with N1 = 1, the above relation determines Nd, for all d > 1.

6. Givental’s quantization formalism

Let H be any complex vector space, equipped with a non-degenerate bilinear
form ( , ). Let H = H((z−1)) be the space of Laurent series in z−1 with
coefficients in H . We turn the vector space H into a symplectic vector space
via the symplectic form:

Ω(f, g) = resz=0(f(−z), g(z))dz, for all f, g ∈ H.
This form induces naturally a symplectic form ω on the manifold H by de-
manding that (H,Ω) ∼= (T0H, ω|T0H). A Darboux coordinate system on H can
be constructed as follows. Let {φa}N−1

a=0 be a bases of H and denote by {φa}
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the corresponding Poincaré dual bases, i.e., (φa, φb) = δab. Let pk,a and qak be
the functions on H defined by:

f =
∞∑

k=0

N−1∑

a=0

(
pk,a(f)φ

a(−z)−k−1 + qak(f)φaz
k
)
.

In such coordinates we have: φa(−z)−k−1 = ∂/∂pk,a, φaz
k = ∂/∂qak and the

form ω =
∑

k,a dpk,a ∧ dqak .
Let sp(H,Ω) = {A : H → H | Ω(Af, g)+Ω(f, Ag) = 0 be the Lie algebra of

infinitesimal symplectic transformations. Given an element A ∈ sp(H,Ω) we
define a linear vector field XA(f) = Af ∈ H ∼= TfH. It is not hard to check
that the symplectic condition is equivalent to the fact that XA is Hamiltonian,
i.e., there exists a function hA on H such that dhA = ιXA

ω. On the other hand
notice that

Ω(Af, f) = ιf ιAfω = ιfdhA =
(∑

k,a

pk,a
∂

∂pk,a
+ qak

∂

∂qak

)
hA = 2hA,

where f ∈ H is identified with the vector field
∑

k,a(pk,a(f)∂/∂pk,a+q
a
k(f)∂/∂q

a
k),

and the last equality follows from the fact that hA is quadratic in p and q, be-
cause XA is linear. So we have the following formula: hA = 1

2
Ω(Af, f).

Given an infinitesimal symplectic transformation A we define a differential

operator Â acting on the space of formal power series in qak , k ≥ 0, 0 ≤ a ≤ N−1
whose coefficents are formal Laurent series in ǫ. We refer to the above space as
the Fock space and we denote it by Fun(H+). We use the Weyl quantization
rules: q̂ak = qak/ǫ and p̂k,a = ǫ∂/∂qak . Monomial expressions in p and q are
quantized by representing each p (resp. q) by the corresponding differentiation
(resp. multiplication) operator and moving all differentiation operators before

the multiplication ones. We define Â := ĥA. Notice that the quantization of
quadratic Hamiltonians is a projective representation of Lie algebras, i.e.,

[F̂ , Ĝ] = {F,G}̂+ C(F,G),

where the cocycle is defined by:

C(papb, qaqb) = −C(qaqb, papb) =
{
1 if a 6= b

2 otherwise,

and C vanishes for all other pairs of quadratic Darboux monomials.
Our next goal is to describe the quantized action of a particular class of

symplectic transformations on Fun(H+). By definition, the twisted loop group
L(2)GL(H) consists of all symplectic trnasformations of H of the formM(z) =∑

kMkz
k. Notice that the symplectic condition is equivalent to tM(−z)M(z) =

1. The elements of L(2)GL(H) of the form S(z) = 1 + S1z
−1 + S2z

−2 + . . .
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(resp. R(z) = 1 + R1z + R2z
2 + . . .) are called lower-triangular (resp. upper-

triangular). To be precise, the elements of the twisted loop group are Laurent
polynomials in z, and S and R are elements of different formal completions of
L(2)GL(H) (in particular, the product SR does not make sense).

Theorem 6.1. Let S = eA(z) be a lower-traingular symplectic transformation
and F ∈ Fun(H+) be an element of the Fock space. Then

Ŝ−1F = e
1

2ǫ2
W (q,q)F([Sq]+),

where Ŝ = eÂ, f+ means the series obtained from f by truncating the terms
with negative powers of z, andW (q,q) =

∑
k,l(Wklql, qk), where qn =

∑
a q

a
nφa,

is defined by:

∑

k,l≥0

Wklz
−kw−l =

tS(z)S(w)− 1

z−1 + w−1
.

Proof. Write A(z) =
∑

k≥1Akz
−k. Then it is not hard to see that the corre-

sponding quadratic Hamiltonian is given by: −1
2
(Aq,q(−z)) − (Ap,q(−z)),

i.e.,

hA =
1

2

∑

m,l

(−1)m+1(Am+l+1ql, qm) +
∑

k,l≥0

(−1)k(Akpl, qk+l),

where

q(z) =
∑

k

qkz
k =

∑

k,a

qakφaz
k,

and

p(z) =
∑

k

pk(−z)−k−1 =
∑

k,a

pk,aφ
a(−z)−k−1.

Put G(t,q) = e−tÂF . We compute G for all t. In particular, the Theorem
would follow from the case t = 1.
Notice that G is a solution to the differential equation ∂tG = −ÂG, which

after the substitution g = log G, turns into:

(6.1)
∂g

∂t
=

1

2ǫ2
(Aq,q(−z)) +

∑

k,a

(Aφa(−z)−k−1,q(−z)) ∂g
∂qak

.

This is a 1-st order PDE which we solve by the method of the characteristics.
Step 1: first, we solve the homogeneus equation, i.e.,

∂g

∂t
=
∑

k,a

(Aφa(−z)−k−1,q(−z)) ∂g
∂qak

.
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The auxiliarly system of ODE’s is

∂qak
∂t

= −(Aφa(−z)−k−1,q(−z)) ⇔ ∂q

∂t
= −[Aq]+.

Notice that [A[. . . [Aq]+]]+ = [Anq]+, where on the LHS A is repeated n times.
Therefore, the system of ODE’s has the following solution: q(t) = [e−tAc]+,
where c = q(0) ∈ H+ = H [z] is an initial condition. The method of the
characteristics is based on the fact that the solutions g(t,q) of the PDE are
constant along the curves (t,q(t)) ∈ C×H+. From here we find that if (t,q) ∈
C×H+ is any point then the curve (s,q(s)) with initial condition (0, [etAq]+)
will pass through the point (t,q). Therefore, the general solution of the PDE
is given by: g(t,q) = f([etAq]+), where f is an arbitrary function on H+.
Step 2: a direct computation shows that the function

Wt(q,q) =
1

2ǫ2

∑

k,l

(Wkl(t)ql, qk),

defined by the formula:

∑

k,l≥0

Wkl(t)z
−kw−l =

e
tA(z)teA(w)t − 1

z−1 + w−1

is a solution to (6.1).
So the general solution to (6.1) is given by g(t,q) = Wt(q,q) + f([etAq]+).

Notice that for t = 0 we have G = F , and W0(q,q) = 0, so f = logF . The
theorem follows. �

7. From descendent to ancestor GW invariants

In this section we assume that X is a projective manifold, H = H∗(X ;C),

and ( , ) is the Poincaré peiring. Let αi(ψ, ψ) =
∑

k,m α
k,m
i ψkψ

m
be a poly-

nomial in ψ and ψ whose coefficients αk,mi are cohomology classes in H∗(X),
and τ ∈ H is a fixed cohomology class. Then the correlator:

(7.1) 〈α1(ψ, ψ), . . . , αn(ψ, ψ)〉g,n(τ)
represents the following sum of integrals over moduli spaces:

∑

d,l

∑

k.,m.

Qd

l!

∫

Mg,n+l(X;d)

ψk11 ψ
m1

1 . . . ψknn ψ
mn

n ev∗(αk1,m1

1 ⊗ αkn,mn

n ⊗ τ⊗l),

where the sum is over all d ∈ H2(X,Z), l ≥ 0 and multi-indices k. = (k1, . . . , kn)
and m. = (m1, . . . , mn). The cohomology classes in the integrand are:

– ψi the 1-st Chern class of the line bundle Li of cotangent lines at the
i-th marked points,
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– ψi is the pullback of the ψi-class on Mg,n via the (forgetfull) map
π : Mg,n+l(X, d) → Mg,n which forgets the map, the last l marked
points, and contracts all unstable components

– ev : Mg,n+l(X, d) → Xn+l is the evaluation map.

By definition, the corelator (7.1) is 0 if the moduli space Mg,n is empty, i.e.,
for (g, n) ∈ {(0, 0), (0, 1), (0, 2), (1, 0)}.
The goal in this section is to express correlators of the type (7.1) in terms

of correlators that involve only ψ-classes. This can be achieved thanks to the
following lemma.

Lemma 7.1. Assume that α ∈ H∗(X) and (g, n) is a stable pair (i.e. Mg,n

is non-empty). Then the following formula holds:

〈αψk+1ψ
m
, α2(ψ, ψ), . . . , αn(ψ, ψ)〉g,n(τ) =

= 〈αψkψm+1
+ Sk+1αψ

m
, α2(ψ, ψ), . . . , αn(ψ, ψ)〉g,n(τ),

where Sτ (z) = 1 + S1(τ)z
−1 + . . . is the 1-point descendent series defined in

Subsection 5.2.

Proof. Let D1 be the divisor in Mg,n+l(X, d) of all points (Σ, p., f) such that
the first marked point p1 is not on the same irreducible component as any of
the points pi, 2 ≤ i ≤ n. Notice that ψ1 = ψ1 + [D1] and that the divisor D1

can be identified with the image of the gluing map:

gl :
⊔

l′+l′′=l
d′+d′′=d

Mg,n−1+l′+◦(X, d
′)×X M0,1+l′′+•(X, d

′′) → Mg,n+l(X, d),

where in the fiber product the maps from the moduli spaces to X are given by

the evaluations at the marked points ◦ and •. Writing ψk+1
1 ψ

m

1 = ψk1ψ
m+1

1 +
[D1]ψ

k
1ψ

m
we get that the integral

∫

Mg,n+l(X,d)

ev∗1(α)ψ
k+1
1 ψ

m

1 α2 . . . αnτ
⊗l

equals to
∫

Mg,n+l(X,d)

ev∗1(α)ψ
k
1ψ

m+1

1 α2 . . . αnτ
⊗l +

∑

l′+l′′=l
d′+d′′=d

l!

l′!l′′!

∑

µ,ν

gµν ×

×
∫

Mg,n−1+l′+◦(X,d
′)

α2 . . . αnτ
⊗l′ev∗◦(φµ)ψ

m

◦

∫

M0,1+l′′+•(X,d
′′)

ev∗1(α)ψ
k
1τ

⊗l′′ev∗•(φν),

where the combinatorial factor
(
l
l′

)
comes from the fact that in the gluing map

gl the union of the l′ marked points on the 1-st moduli space and the l′′ marked
points on the second one have to be renumbered with the numbers from n+1
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to n + l. Notice that the expression
∑

µν g
µνφµ ⊗ φν is the Poincaré dual to

the diagonal in X ×X. The lemma follows. �

Let t(z) =
∑

k,a t
a
kφaz

k. Then the lemma from above implies the following
identity:

〈t(ψ), . . . , t(ψ)〉g,n(τ) = 〈[Sτt]+(ψ), . . . , [Sτt]+(ψ)〉g,n(τ).
Notice that the LHS in the above equality can be written also in the form

∑

d,l

Qd

l!
〈t(ψ) + τ, . . . , t(ψ) + τ〉g,n,d.

This follows from the Taylor’s formula. Now we are ready to describe the
connection between descendent and ancestor GW invariants. Let

D̃(t) = exp
(∑

g,n

ǫ2g−2

n!
〈t(ψ), . . . , t(ψ)〉g,n(0)

)
,

where the summation is over all (g, n), including the unstable ones. We are
slightly abusing the notations because in (7.1) we defined the correlator to be
0 if (g, n) is an unstable pair. The ancestor invariants are organized in the
following generating series:

Ãτ (t) = exp
(∑

g,n

ǫ2g−2

n!
〈t(ψ), . . . , t(ψ)〉g,n(τ)

)
,

where the summation is over all stable pairs (g, n). From the discussion above

it is clear that we have: D̃(t+ τ) = Cτ (t)Ãτ([Sτt]+), where

logCτ (t) =

(
〈 〉0,0(τ) + 〈 t(ψ)〉0,1(τ) +

1

2
〈 t(ψ), t(ψ)〉0,2(τ)

)
ǫ−2 + 〈 〉1,0(τ).

Both generating functions D̃ and Ã are formal series in τ, t0, t1, . . . whose
coefficients are formal Laurent series in ǫ. It turns out that if we want to express
the relation between descendents and ancestors in terms of the quantization

formalism from the previous lecture, we need to identify D̃ and Ã with elements
of the Fock space Fun(H+) of all formal power series in τ, q0, q1+1, q2, . . ., whose
coefficients are formal Laurent series in ǫ. The identifications are given by the
so called dilaton shift: q(z) = t(z)− z, i.e.,

D(q) = D̃(z + q(z)), Aτ (q) = Ãτ (z + q(z)).

We refer to D (resp. Aτ ) as the total descendent (resp. ancestor) potential.
In the new notation our formula takes the form:

D(q) = Cτ (q(z) + z − τ)Aτ (−z + [Sτ (q(z) + z − τ)]+).

First, let us simplify the argument in the ancestor potential:

−z + [Sτ q(z)]+ + z + S11− τ = [Sτ q(z)]+.
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Where we used that

(S11, φa) = 〈1, φa〉0,2(τ) = 〈1, φa, τ〉0,3,0 =
∫

X

φaτ,

i.e., S1(τ)1 = τ.
On the other hand, using the dilaton equation, it is not hard to verify that

〈ψ − τ,q(ψ)〉0,2(τ) = −〈q(ψ)〉0,1(τ)
〈ψ − τ, ψ − τ〉0,2(τ) = −〈ψ − τ〉0,1(τ)

〈ψ − τ〉0,1(τ) = −2〈〉0,0(τ).
From this formulas we get

logCτ (q(z) + z − τ) = 〈〉1,0(τ) +
1

2ǫ2
〈q(ψ),q(ψ)〉0,2(τ).

Recalling Theorem 6.1 and the formula relating 1- to 2-point descendents we
get the following formula:

(7.2) D = eF
(1)(τ)Ŝ−1

τ Aτ = exp
(
F (1)(τ) +

1

2ǫ2
〈q(ψ),q(ψ)〉0,2(τ)

)
Aτ([Sτq]+),

where F (1)(τ) = 〈 〉1,0(τ) is the genus-1 GW potential.

7.1. Reconstruction of genus-0 descendents. Notice that the integral∫

Mg,n+l(X,d)

ψ
k1
1 . . . ψ

kn
n ev∗(φa1 . . . φanτ

⊗l)

is 0 if ki ≥ 1, 1 ≤ i ≤ n for dimensional reasons: the product of the ψ-
classes is a cohomology class of degree ≥ n pulled back from M0,n, which
has deimension n − 3. Now formula (7.2) implies that if we choose τ = τ(q)
such that [Sτq]0 = 0 then the total genus-0 desecendent potential is given by
F (0)(q) = 1

2
〈q(ψ),q(ψ)〉0,2(τ). In other words, we need to find a formal power

series τ(q) which is a solution to the equation:

q0 + S1(τ)(q1 + 1) + S2(τ)q2 + . . . = τ,

where we used that S1(τ)1 = τ. One way to do this is to denote the LHS
from above by F (τ,q) and think of F as a map τ 7→ F (τ,q) in the space
of formal series. Then we have to find a fixed point of F . Starting with an
initial approximation: τ (1) = q0, the succesive iterations, τ (n+1) = F (τ (n),q)
will generate a sequence which is convergent in the appropriate formal sense
to a fixed point τ(q) of F.
For example, if X is a point. Then Sτ (z) = eτ/z and using the formula for

2-point descendents in terms of 1-point descendents we get

F (0)
pt (q) =

1

2
〈q(ψ),q(ψ)〉0,2(τ) =

1

2

∑

k,l≥0

τk+l+1

k + l + 1

qk
k!

ql
l!
,
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where τ is a solution to

q0 + (q1 + 1)τ + q2
τ 2

2!
+ . . . = τ.

The first three iterations have the form:

τ (1) = q0, τ (2) = q0 + (q1 + 1)q0 + q2
q20
2!

+ . . . ,

τ (3) = q0 + (q1 + 1)q0 + (q1 + 1)2q0 + q2
q20
2!

+ . . .

8. The quantum Riemann–Roch theorem

Let E → X be a vector bundle. Put Eg,n,d = π∗ev
∗
n+1(E) – it is an element

of the K-group K(Mg,n(X, d). In this lecture, following Mumford (see also [3])
we compute the Chern character chk(Eg,n,d). We will use the Grothendieck–
Riemann–Roch theorem:

Theorem 8.1. Let p : X → Y be a proper map between complex manifolds
and E ∈ K(X) then we have

ch(π∗(E)) = π∗(ch(E) ∪ td∨(ΩX/Y )),

where ΩX/Y is the sheaf on X of relative differentials.

The duall Tod class td∨(L) of a line bundle L is by definition:

x

ex − 1
=
∑

r≥0

Br

r!
xr,

where B0 = 1, B1 = −1
2
, B2 = 1

12
, . . . are the so called Bernoulli numbers

and x = c1(L). For an arbitrary vector bundle the Tod class is defined by
demanding that td∨ obeys the multiplicative property:

if 0 - E ′ - E - E ′′ - 0 then td∨(E) = td∨(E ′)td∨(E ′′)

For proof and further details we refer to Fulton’s book. We apply this theorem
to the universal curve. We are not going to justify why Theorem 8.1 can be
used in our settings.
Let us give the answer. Consider the diagram:

Z
j
- C := Mg,n+1(X, d)

evn+1
- X

M := Mg,n(X, d)

π

?
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where Z is the locus of all singular points of the fibers of π. Note that if
t = (Σ, p., f) ∈ Mg,n(X, d) then the fiber π−1(t) ∼= Σ, so the singular points
correspond to the nodes of Σ and we can identify Z with the total range of
the gluing maps:

⊔

g′+g′′=g,
n′+n′′=n,
d′+d′′=d

Mg′,n′+◦(X, d
′)×X M0,•+1+•(X, 0)×X Mg′′,◦+n′′(X, d′′)

j
- Mg,n+1(X, d)

⊔
Mg−1,n+◦+◦(X, d)×X×X M0,•+•+1(X, 0)

where the maps from the moduli spaces to X necessary to define the fiber
products are given by the evaluation maps at the appropriate gluing points.

Theorem 8.2. Let ψ+ = ψ′′
◦ and ψ− = ψ′

◦ be the cotangent line classes on Z.
Then we have the following formula for ch(Eg,nd) :

∑

r≥0

Br

r!
π∗

(
ev∗n+1ch(E)

(
ψrn+1 −

n∑

i=1

(σi)∗ψ
r−1
i +

1

2
j∗

∑

a+b=r−2

(−1)aψa+ψ
b
−

))
,

where σi, 1 ≤ i ≤ n are the sections of the universal curve corresponding to the
marked points.

The proof of the theorem amounts to computing the Tod class of the sheaf
of relative differentials ΩC/M of the universal curve.

8.1. Two exact sequences. According to Fin Knudsen, the sheaf ΩC/M has
a two term vector bundles resolution: 0 → E1 → E2 → ΩC/M → 0. The

corresponding determinant sheaf ωC/M = det(ΩC/M) := ∧topE0 ⊗∧topE∨
1 is the

relative dualizing sheaf. In particular, if we restrict ωC/M to a fiber π−1(t) ∼= Σ

of the universal curve π then for any vector bundle E on Σ we have H i(Σ, E) =
H1−i(Σ, ωΣ ⊗ E∨)∨.
Let us compare the sheaves Ω and ω locally. Outside of the singular locus Z,

the sheaf Ω is locally free which implies that the two sheaves are canonically
identified. Let C → S be a family of stable maps, and so each fiber Ct
represents a point t ∈ M and it is also identified with the fiber π−1(t). Locally,
the singular locus of C has the form xy = ǫ, where x and y are local coordinates
on C (near the node) and ǫ is a local coordinate on S. Since ΩC/S = (OC dx+
OC dy)/d(xy)OC we have:

ωC/S = (OCdx ∧ dy)⊗ (d(xy)OC)
∨ ∼= HomOC

(d(xy)OC,OCdx ∧ dy).

Let ζ = dx/x for x 6= 0, or −dy/y for y 6= 0. Then we see that ωC/S =
OC ζ . Comparing the local expressions of ΩC/S and ωC/S we get that ΩC/S =
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ISingωC/S, where ISing is the ideal sheaf of the singular locus of the fibers of
C → S. Therefore we have ΩC/M = IZωC/M. From the exact sequence:

0 - IZ - OC
- j∗OZ

- 0,

tensoring by ωC/M we get

0 - ΩC/M
- ωC/M

- j∗(OZ ⊗ j∗ωC/M) - 0.

On the other hand ωC/M = Ln+1(−D1 − . . .−Dn), where Di are the divisors

in C corresponding to the sections σi (for proof see Knudsen). Notice that the
divisors Di do not intersect Z and that j∗Ln+1 is a trivial bundle. So the above
exact sequence turns into:

(8.1) 0 - ΩC/M
- ωC/M

- j∗OZ
- 0.

Finally, put D = D1 + . . . + Dn. Then we have an exact sequence: 0 →
O(−D) → O → OD → 0, tensoring with Ln+1 (I am slightly abusing the no-
tations by not distinguishing between vector bundles and locally free sheaves)
we get:

(8.2) 0 - ωC/M
- Ln+1

-

n⊕

i=1

(σi)∗ODi
- 0.

8.2. The Tod class. Using the multiplicative property of the Tod class and
the exact sequences (8.1) and (8.2) we get:

td∨(ΩC/M) =
(
td∨(Ln+1)− 1 + 1

) n∏

i=1

( 1

td∨(ODi
)
− 1 + 1

)( 1

td∨(j∗OZ)
− 1 + 1

)
.

As it will become clear from the computations below, the above product ac-
tually equals to:

(8.3) td∨(Ln+1) +
n∑

i=1

( 1

td∨(ODi
)
− 1
)
+

1

td∨(j∗OZ)
− 1.

The first term is by definition

(8.4)
ψn+1

eψn+1 − 1
=
∑

r≥0

Br

r!
ψrn+1.

For the second term we used the exact sequence:

0 - O(−Di) - O - (σi)∗ODi
- 0.

The multiplicative property of the Tod class gives us that the i-th summand
in the sum in (8.3) is:

td∨(O(−Di))− 1 = (−Di)
(∑

r≥1

Br

r!
(−Di)

r−1
)
,
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where slightly abusing the notations we identify the divisorDi with its Poincaré
dual cohomology class.
On the other hand the divisor Di can be identified with the image of the

gluing map σi : Mg,n(X, d) ∼= Mg,n(X, d) ×X M0,•+2(X, 0) → Mg,n+1(X, d),
where the domains of the corresponding stable maps are glued respectively at
the i-th marked point and the • marked point. Therefore the pullback via σi
of the normal bundle to Di is L

∨
i ⊗L∨

• . In particular σ∗
iDi = −ψi −ψ• = −ψi,

where we used that L• is a trivial bundle. Since the Poincaré dual to Di is the
same as (σi)∗1 we find (using also the projection formula: αf∗β = f∗(f

∗αβ))
that the above formula transforsm into

−(σi)∗

(∑

r≥1

Br

r!
ψr−1
i

)
.

It remains only to compute the last term in (8.3). We will use that Z is the
intersection of two divisors D+ and D− which can be identified respectively
with the images of the gluing maps:

j+ :
⊔

Mg′,n′+1+•(X, d
′)×X Mg′′,◦+n′′(X, d′′) - Mg,n+1(X, d)

and

j− :
⊔

Mg′,n′+◦(X, d
′)×X Mg′′,•+1+n′′(X, d′′) - Mg,n+1(X, d)

Notice that the map j, which consists of gluing two pairs of points, factors
through both j+ and j−, namely: j = j+σ+ = j−σ−, where the maps σ+ and
σ− are the gluing maps respectively at the first and the second pairs of points.
So we can identify Z = D+ ∩D− as the zero locus of a transversal section of
the rank 2 bundle O(D+)⊕O(D−). Using the Koszul resoltuion we find:

0 - O(−D+ −D−) - O(−D+)⊕O(−D−) - O - j∗OZ
- 0

Again using the multiplicity of the Tod class we get:

1

td∨(j∗OZ)
− 1 =

D+D−

D+ +D−

( eD++D− − 1

(eD+ − 1)(eD− − 1)
− 1

D+
− 1

D−

)
.

On the other hand the epression in the brackets could be written as

1

eD+ − 1
+

1

eD− − 1
+ 1− 1

D+
− 1

D−

=
∑

r≥2

Br

r!
(Dr−1

+ +Dr−1
− )

Notice that j∗1 = 2D+D−. The factor of two here comes from the fact that
each irreducible component of Z is covered by two gluing maps of the type

M′ ×X M′′
and M′′ ×X M′

, or in case that M′
= M′′

then the fiber product

M′ × M′
has an additional Z2 symmetry, so the corresponding irreducible

component of Z instead of being isomorphic to M′×XM′
is in fact isomorphic

to (M′ ×X M′
)/Z2.
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Just like above we can see that j∗+D+ = −ψ′
• − ψ′′

◦ and since (σ+)
∗ψ′

• = 0
we get that j∗D+ = −ψ+. Similarly, j∗D− = −ψ−. From here Theorem 8.2
follows easily. �

8.3. The virtual bundles Eg,n,d. SincX is a projective manifold we can find
a positive line bundle L, such that E ⊗ L⊗N is generated by global sections
(for some N sufficeintly large). In particular, we have an exact sequence of the
following type:

0 - Ker - H0(X,E ⊗ L⊗N ) - E ⊗ L⊗N - 0,

tensoring with (L∨)⊗N and then pulling back to Σ we get:

0 - f ∗A - f ∗B - f ∗E - 0,

where f ∗B is a direct sum of negative line bundles. In particular H0(Σ, f ∗B) =
0, so by taking a long exact cohomology sequence we get:

0 - H0(Σ, f ∗E) - H1(Σ, f ∗A) - H1(Σ, f ∗B) - H1(Σ, f ∗E) - 0

From here we get that as an element in K-theory Eg,n,d = Bg,n,d − Ag,n,d is a
difference of two vector bundles.

Lemma 8.3. We have the following relations:

j∗Eg,n+1,d = Eg−1,n+◦+◦,d − ev∗E +
∑(

Eg′,n′+◦,d′ + Eg′′,•+n′′,d′′ − ev∗E
)

and π∗Eg,n,d = Eg,n+1,d.

To prove this lemma, one may assume that H0(Σ, f ∗E) = 0 for every holo-
morphic map f : Σ → X and that Eg,n,d is a bundle with fiber H1(Σ, f ∗E).
The later due to Serre duality is H0(Σ, ωΣ⊗ f ∗E∨)∨. Recall that the dualizing
sheaf ωΣ for a nodal curve coincides with the sheaf of differentials holomorphic
away from the nodes and such that near a node the sections could have simple
(logarithmic) poles at such that the residues at the two branches add up to
0. Now the lemma follows easily by comparing the fibers of the corresponding
bundles.

8.4. The quantum Riemann-Roch theorem. Let X be a projective man-
ifold of complex dimension D. We fix a basis φa, 0 ≤ a ≤ N − 1 in H∗(X). We
recall the quntization formalism from before: symplectic vector space H, the
Lie algebra correspondence A 7→ hA between infintesimal symplectic transfor-
mations and quadratic functions on H. Also, we define Darboux coordinates
on H by f =

∑
k,a pk,a(f)φ

a(−z)−k−1 + qak(f)φaz
k.

Let sk, k ≥ 0 be a sequence of formal variables. We define a multiplica-
tive characteristic class: c(E) = e

∑
skchk(E). By definition the twisted GW
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invariants are the following correlators:

〈cg,n,d; t, . . . , t〉g,n,d =
∫

[Mg,n(X,d)]

c(Eg,n,d) ∧ t(ψ1) . . . t(ψn),

where t(ψi) =
∑

k,a t
a
kev

∗
i (φa)ψ

k
i . The twisted total descendent potential is

defined by:

Ds = exp
∑

g,n,d

ǫ2g−2

n!
Qd〈cg,n,d; t, . . . , t〉g,n,d.

Recall that the Fock space was defined as the space of formal series in q0, q1 +
1, q2, . . . . We identify Ds with an element of the Fock space by the twisted
dilaton shift: q(z) =

√
c(E)(t(z)− 1), i.e.,

qk =
√
c(E) tk, k 6= 1, q1 =

√
c(E) (t1 − 1).

Theorem 8.4. The following formula holds:

Ds = C(s) exp
(∑

m>0
l≥0

B2m

(2m)!
sl+2m−1

(
chl(E)z

2m−1
)̂
)
×

× exp
(∑

l≥0

sl
(
chl+1(E)z

−1
)̂
)
D0,

where

logC(s) =
1

48

∑

k≥0

sk

(∫

X

e(X)chk(E) + 2

∫

X

chk+1cD−1(TX)
)
,

and the Bernouli numbers B2m are defined by:

x

ex − 1
= −x

2
+
∑

m≥0

B2m

(2m)!
x2m.

8.5. Differential equation for the RHS. According to our quantization
formalism, if A = A1z+A2z

2+ . . . and B = B1z
−1 are infinitesimal symplectic

transformations, then we have:

Â =
ǫ2

2

∑
(−1)i(Ai+j+1φ

a, φb)
∂2

∂qai ∂q
b
j

+ (−1)i(Aiφ
a, φb)q

b
j

∂

∂qai+j
,

where the summation is over all i, j ≥ 0 and 0 ≤ a, b ≤ N − 1, and

B̂ = − 1

2ǫ2
(B1q0, q0)−

∑

k≥0

(B1φ
a, φb)q

b
k+1

∂

∂qak
.

On the other hand if F and G are quadratic Hamiltonians, then we have

[F̂ , Ĝ] = ({F,G})̂+ C(F,G),
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where the cocycle is non-zero only for the following pairs of Darboux quadratic
monomials: C(p2a, q

2
a) = 2 and C(papb, qaqb) = 1, for a 6= b. In particular for

the infinitesimal symplectic transformations A and B we have:

[Â, B̂] = [A,B]̂− 1

2
tr(A1B1).

This implies that eÂB̂e−Â = ead(A)B̂ = B̂− 1
2
tr(A1B1). Keeping this remark in

mind it is easy to see that the RHS of the formula we want to prove satisfies
the following differential equations:

(8.5)
∂

∂sk
RHS =

( k+1∑

r=0
r 6=1

Br

r!
(chk+1−r(E)z

r−1)̂
)
RHS +

1

48
L(s)RHS,

where the linear (with respect to s) term L(s) is given by the following formula:

∫

X

(
e(X)chk(E) + 2cD−1(TX)chk+1(E)− 2e(X)

(∑

l≥0

sl+1chl(E)
)
chk+1(E)

)
.

Let us remark that in order to derive the above differential equation one should
also use that tr(α∪) =

∫
X
αe(X), where e(X) is the Euler class of the tangent

bundle.
So we need to check that Ds satisfies the above differential equation. Let us

differentiate logDs:

∂

∂sk
logDs =

∑

g,n,d

ǫ2g−2Qd

n!

(
〈chk(Eg,n,d) ∧ cg,n,d; t, . . . , t〉g,n,d + 〈cg,n+1,d;

∂t

∂sk
, t, . . . , t〉g,n+1,d

)
.

According to Theorem 8.2 we have that chk(Eg,n,d) equals to:

k+1∑

r=0

Br

r!
π∗

(
ev∗

n+1chk+1−r(E)
(
ψrn+1 −

n∑

i=1

(σi)∗ψ
r−1
i +

1

2
j∗

∑

a+b=r−2

(−1)aψa+ψ
b
−

))
.

Now, one has to consider three cases depending whether r is 0, 1, or ≥ 2. Since
the ideas and the techniques in each of these three cases are the same, we
consider only the case when r ≥ 2. More precisely we check that

(∑

g,n,d

ǫ2g−2Qd

n!
〈
(
ψrn+1 −

n∑

i=1

(σi)∗ψ
r−1
i +

1

2
j∗

∑

a+b=r−2

(−1)aψa+ψ
b
−

)
∧(8.6)

π∗cg,n,d; t, . . . , t, chk+1−r(E)〉g,n+1,d

)
Ds =

(
chk+1−r(E)z

r−1
)̂Ds,
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where t = π∗t. Notice that

ψ
k

i = ψ
k−1

i (ψi − (σi)∗1) = ψiψ
k−1

i − (σi)∗ψ
k−1
i = . . . = ψki − (σi)∗ψ

k−1
i .

Let us simplify

∑

g,n,d

ǫ2g−2Qd

n!

∑

a+b=r−2

(−1)a

2
〈j∗ψa+ψb− ∧ cg,n+1,d; t, . . . , t, chk+1−r(E)〉g,n+1,dDs,

We may assume that ψ
k

i = ψki , becaus the cohomology class (σi)∗ψ
k−1
i is sup-

ported on the divisor Di = Im(σi) and the singular locus is disjoint from Di.
Notice that the above correlator could be written as a sum of correlators of
two types:
〈
cg′,n′+◦,d′; t, . . . , t, chk+1−r(E)

φµψb−√
c(E)

〉
g′,n′+◦,d′

〈
cg′′,•+n′′,d′′ ; t, . . . , t,

φµψ
a
+√

c(E)

〉
g′′,•+n′′,d′′

,

where g′ + g′′ = g, n′ + n′′ = n, d′ + d′′ = d, and
〈
cg−1,n+◦+•,d; t, . . . , t, chk+1−r(E)

φµ√
c(E)

,
φµ√
c(E)

〉
g−1,n+◦+•,d

.

On the other hand we have ∂qν
k
t(z) = φνzk√

c(E)
. So if we put F = logDs then the

sum from above turns into:

ǫ2

2

∑

a+b=r−2

(−1)a (chk+1−r(E)φ
µ, φν)

(∂F
∂qbν

∂F
∂qaµ

+
∂2F
∂qbν∂q

a
µ

)
eF .

Notice that
(∂F
∂qbν

∂F
∂qaµ

+
∂2F
∂qbν∂q

a
µ

)
eF =

∂2

∂qbν∂q
a
µ

eF

and that

ǫ2

2

∑

a+b=r−2

(−1)a (chk+1−r(E)φ
µ, φν)

∂2

∂qbν∂q
a
µ

coincides with the quntization of the p2-squares terms of the operator chk+1−r(E)z
r−1.

The rest of the details are left to the reader. �

9. The quantization operator

Let M be a small ball centered at 0 in CN , equipped with a Frobenius
structure, i.e., a family of commutative associative multiplications •τ : TτM ⊗
TtM → TtM , a flat, non-degenerate, complex bilinear pairing ( , )t : TtM ⊗
TtM → C, satisfying the integrability conditions listed in Definition 5.4, except
possibly for the absense of an Euler vector field.
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Definition 9.1. We say that a Frobenius structure is semi-simple if there are
local vector fields ei, 1 ≤ i ≤ N such that the multiplication and the pairing
assume a diagonal form:

ei •t ej = δijej , (ei, ej)t =
δij
∆i
.

Theorem 9.2. If M is semi-simple then there are local coordinates ui, 1 ≤ i ≤
N , called canonical, such that ei = ∂/∂ui.

Proof. We need just to check that the vector fields ei pairwise commute. Let
∇LC
ei
ej = Γqijeq (summation over repeating upper and lower indexes is assumed).

By definition the flatness of the connection∇ = ∇LC−z−1
∑

a (∂ta•) dta means:(
∇ei∇ej −∇ej∇ei

)
ek = ∇[ei,ej ]ek. Comparing the coefficients in front of z−1

we get:

∇LC
ei
(ej • ek) + ei • ∇LC

ej
ek − [i↔ j] = [ei, ej] • ek,

where the term in the square brackets is obtained from the preceeding expres-
sion by swapping i and j. The above identity transforms into:

δjkΓ
q
ijeq + Γqjkδiqeq − [i↔ j] = [ei, ej ] • ek.

Notice that the RHS in the above equality is exactly the coefficient in front of
ek in [ei, ej ]. On the other hand on the LHS the coefficient in front of ek is

δjkΓ
k
ij + Γkjkδik −

(
δikΓ

k
ij + Γkikδjk

)
= 0.

�

Lemma 9.3. If the Frobenius structure on M is confromal with Euler vector
field E, then

[E,X • Y ]− [E,X ] • Y −X • [E, Y ] = X • Y,
for every vector fields X and Y .

Proof. By definition the connection operators (acting on sections of the bundle
TM → M × C∗) ∇X = ∇L.C.

X − z−1X• and ∇∂/∂z = ∂/∂z − (z−2E • −z−1µ)
satisfy a flatness condition. In particular, we have

(9.1) ∇E∇XY −∇X∇EY = ∇[E,X]Y

and

(9.2) ∇∂/∂z∇XY −∇X∇∂/∂zY = ∇[∂/∂z,X]Y = 0.

To prove the lemma, one has to extract two identities, obtained from (9.1) and
(9.2) by comparing the coefficients in front of z−1 and z−2 respectively:

∇LC
E (X • Y ) + E • (∇LC

X Y )−
(
∇LC
X (E • Y ) +X • (∇LC

E Y )
)
= [E,X ] • Y,

E • (∇LC
X Y ) +X • Y +∇LC

X•YE = X • ∇YE +∇LC
X (E • Y ),
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where we used that by definition µ(Z) = ∇LC
Z E. Subtracting these two identi-

ties and then using that the Levi-Cevita connection is torsion free, i.e. ∇LC
X Y −

∇LC
Y X = [X, Y ] we get the identity we wanted to prove. �

Corollary 9.4. For a conformal, semisimple Frobenius structure, one can
choose canonical coordinates ui such that the Euler vector field assumes the
form: E =

∑
i u

i ∂
∂ui
.

Proof. Let u = (u1, . . . , uN) be any canonical coordinate system. Let E =∑
Ei(u)

∂
∂ui
. Recalling Lemma 9.3 with X = ∂/∂ui and Y = ∂/∂uj we get

−δij
∂Eq
∂uj

(∂/∂uq) +
∂Ei
∂uj

(∂/∂ui) +
∂Ej
∂ui

(∂/∂uj) = δij(∂/∂u
j).

From here it follows that ∂Ei/∂u
j = δij , i.e., up to some constants Ei = ui, 1 ≤

i ≤ N . Replacing ui by appropriate translations of ui we obtained the desired
canonical coordinate system �

Let us assume that M has a semi-simple Frobenius structure. We denote
by u = (u1, . . . , uN) a canonical coordinate system, by τ = (τ 0, . . . , τN−1) a
flat coordinate system and by ∂a = ∂/∂τa the corresponding flat vector fields.
In case the Frobenius structure is conformal we require that the canonical
coordinates are chosen in such a way that E =

∑
i u

i ∂
∂ui
.

Using the canonical coordinates we trivialize the tangent bundle TM , by
the following family of linear operators, parametrized by τ ∈ M :

(9.3) Ψτ : C
N → TτM, Ψei =

√
∆i

∂

∂ui
.

Put U = diag(u1, . . . , uN). Our next goal is to describe the formal asymptotical
solutions, near z = 0 to the system

z∂aJ = (∂a•)J, 0 ≤ a ≤ N − 1,

(z∂z + LE)J = µJ,

J = Ψτ (1 +R1(τ)z +R2(τ)z
2 + . . .)eU/z,

where the second equation should be considered only if the Frobenius structure
is conformal, and Rk(τ) are matrices which together with U are idenitfied with
linear operators on CN via the standard basis ei, 1 ≤ i ≤ N. Also, we identify
Ψ with a N ×N matrix via the standard basis in CN and the flat basis ∂a in
TτM.

Lemma 9.5. a) Let g be the matrix of the flat metric, i.e., gab = (∂a, ∂b).
Then the following formula holds: tΨτgΨτ = 1. In particular, Ψ−1dΨ is an
anti-symmetric matrix.
b) Let A =

∑
a(∂a•)dτa. Then A = ΨdUΨ−1.
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Proof. a) It follows from

δij = (Ψei,Ψej) =
∑

a,b

ΨiaΨjb(∂a, ∂b).

b) The identity follows easily becaus if we think of the matrix A as a linear
operator then since A =

∑
i(∂/∂u

i•)dui we see that in the basis ei =
√
∆i∂/∂u

i

the matrix of A becomes dU, so the formula is just the standard change of basis
in linear algebra. �

Theorem 9.6. Existence: The formal asymptotical solution always exists.
Uniqueness: a) If we require that tR(−z)R(z) = 1, then R is uniquely deter-

mined up to multiplication from the right by exp
(∑

m≥1A2m−1z
2m−1

)
, where

A2m−1 are constant diagonal matrices.
b) If the Frobenius structure is semisimple then R is uniquely determined

and it automatically satisfies the symplectic condition: tR(−z)R(z) = 1.

Proof. Using Lemma 9.5, part b) we get that the system of differential equa-
tions for J is equivalent to:

(d+ Ω)R = z−1[dU,R], Ω = Ψ−1dΨ.

Comapring the coefficients in front of zk we get:

(9.4) (d+Ψ−1dΨ)Rk = [dU,Rk+1], k ≥ 0.

The equation corresponding to k = 0 reads: (dui−duj)Rij
1 = (Ω)ij . From here

we find Rij
1 = (Ψ−1∂uiΨ)ij for i 6= j. Now one has to check that if R1 is defined

by the above formula then [dU,R1] = Ω. This follows from the fact that dU ∧
Ω+Ω∧dU = d(dU) = 0, which implies that Ωij∧(dui−duj) = 0. From the case
k = 1, by comparing the diagonal entries we find that dRii

1 = −∑j(Ω)
ijRji

1 .
Notice that in the above sum the RHS depends only on the offdiagonal entries
of R1, so the diagonal entries are determined up to a constant.
Continuing in the same fashion we see that the the entries of Rk are uniquely

determined except for the diagonal ones which are determined up to a constant,

i.e., that R can be recovered uniquely up to a factor exp
(∑

k Akz
k
)
.

Put P = tR(−z)R(z) = 1+P1z+. . . . Then one checks that dP = z−1[dU, P ],
i.e., dPk = [dU, Pk+1]. From k = 0 case we get P1 is diagonal and then dP1 = 0
because [dU, P2] is off-diagonal. Continuing in the same way, we get that all
Pk’s are constant diagonal matrices. Also, from

Pk = (−1)ktRk + (−1)k−1tRk−1R1 + . . .+Rk

we get tPk = (−1)kPk, so P2m+1 = 0. Now the first existence statement follows
easily.
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For the second one, we use that LERk = −kRk. By the Cartan’s magic
formula:

−kRii
k = ιEdRk = ιE

(
−
∑

j

ΩijRji
k

)
=
∑

j

(uj − ui)Rij
1 R

ji
k .

�

We trivialize the tangent bundle TM ∼= M × H , H := T0M via the flat
metric. Put φa = ∂a, basis of H . Using the flat metric instead of intersection
pairing, we addopt the same quantization formalism on H = H((z−1)) as
before.

Lemma 9.7. Let R = 1 + R1z + R2z
2 + . . . be a symplectic transformation,

i.e. tR(−z)R(z) = 1. Then

(R̂F)(q) =
(
e

ǫ2

2
V (∂q ,∂q)F

)
(R−1q),

where the Laplacian V (∂q, ∂q) =
∑

(φa, Vklφ
b)∂qa

k
∂qb

l
is defined by

∑

k,l

Vkl(−z)k(−w)l =
tR(z)R(w)− 1

z + w
.

In the above lemma F is an element of the Fock space on the variables qak ,
k ≥ 0, 0 ≤ a ≤ N − 1. However, this action does not always makes sense. For
example if F(q) = qa0 + qa1 + . . . then F(R−1q) is a linear function in q whose
coefficient in front of (say) qb0 is

∑
k
t(Rkφa, φ

b)(−1)k, and the later sum might
be diveregent.
We prove that the action of R is well defined on the class of the so called

tame asymptotical functions. By definition, an expression of the type

F = exp

∞∑

g=0

ǫ2g−2F (g)(q),

is called an asymptotical function. Furthermore, such a function is called tame
if each F (g) is a sum of monomials of the type qa1k1 . . . q

ar
kr

satisfying k1+. . .+kr ≤
3g − 3 + r. For the purposes of GW theory one has to incorporate everywhere
the dilation shift, however, we leave this to the reader.
We are going to use the following combinatorial fact. Let V = {Vij}, i, j ≥ 0

be an infinite symmetric matrix. Given a graph Γ whose flags (flag is a pair
of incident vertex and edge of Γ) are labeled by the integers i ≥ 0. For each
edge e ∈ E(Γ) put Ve = ǫVij , where i, j are the labels of the two flags incident
with e. Also, for each vertex v ∈ V (Γ) we put ∂v = ∂i1 . . . ∂ir where i1, . . . , ir
are the labels of the flags incident with v.
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Lemma 9.8. a) The following formula holds:

e
ǫ2

2

∑
i,j≥0 Vij

∂2

∂qi∂qj eF =
∑

Γ

1

|Aut(Γ)|
∏

e∈E(Γ)

Ve
∏

v∈V (Γ)

∂vF ,

where the sum is taken over all, possibly disconnected, graphs.
b) The logarithm of the LHS is given by the same formula except that the

summation is over all connected graphs.

Lemma 9.9. The symplectic transformation R preserves the class of tame
asymptotical functions.

Proof. Assume that F is a tame asymptotical function. Let lnF =
∑
ǫ2g−2qa1k1 . . . q

ar
kr
.

The tameness of F is equivalent to k1 + . . .+ kr ≤ 3g − 3 + r.
We have

ln
(
e

ǫ2

2

∑
ij Vij∂i∂jF

)
=
∑

ǫ2g−2qa1k1 . . . q
ar
kr
.

On the RHS we fix a monomial ǫ2g−2qa1k1 . . . q
ar
kr
. Using Lemma 9.8, b) we write

the LHS as a sum over connected graphs Γ, for each vertex v of Γ we choose

a monomial ǫ2gv−2q
av1
kv1
q
av2
kv2
. . . from the expansion of lnF . Let us see what Γ

and corresponding vertex contributions contribute to the monomial on the
RHS that we fixed. We use the following notations: ev – number of edges
incident with v ∈ V (Γ), the set of labels {(kv1 , av1), (kv2, av2), . . .} splits into two
parts labels that correspond to the flags incident with v and labels (ki, ai)
associated with the the monomial ǫ2g−2qa1k1 . . . q

ar
kr
. Let rv be the number of the

second type of labels (notice
∑

v rv = r) and denote by kv the sum of all kis
of these labels. Finally, lv is the sum of ks from all labels (k, a) of the flags
incident with v.
From the tameness of F we have:

3gv − 3 + ev + rv ≥ kv + lv.

On the other hand, using the genus relation 2g − 2 =
∑

v(2gv − 2) + 2|E(Γ)|,
we get

g − 1 =
∑

v

(gv − 1) + |E(Γ)| ≥ |E(Γ)| − |V (Γ)| ≥ −1,

where we used that Γ is connected. In particular, g ≥ 0. Also, 3g − 3 + r =∑
v(3gv − 3) + 3|E(Γ)|+

∑
v rv ≥

∑
v(kv + lv − ev) + 3|E(Γ)| =

∑
v(kv + lv) +

|E(Γ)| ≥∑v kv =
∑

i ki.
The fact that the transformation q 7→ R−1q preserves the class of tame

functions is obvious. �

Assume that τ ∈M is a semi-simple point. Then we have two Fock spaces:
one associated to H = TτM and the flat metric, and another one associated
to CN and the standard complex bi-linear form. The two spaces are naturally
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identified via Ψτ . Explicitly, we have: q(z) =
∑

k,a q
a
k∂az

k ∈ H [z] and Q(z) =∑
k,iQ

i
keiz

k ∈ CN [z]. Then the identification Ψ, which we also denote by Ψ̂,

is given by the following substitution: qak =
∑

iΨaiQ
i
k.

Lemma 9.10. Let Sτ = 1+S1(τ)z
−1+ . . . be a solution to the system of differ-

ential equations z∂aSτ = (∂a•τ )S, 0 ≤ a ≤ N−1. There exists a constant C(τ)
such that the composition of differential operators, whenever their composition
makes sense,

eC(τ)Ŝ−1
τ Ψ̂τ R̂e

(U/z)̂

is independent of τ . In fact the constant is given by: C(τ) =
∫ τ∑N

i=1R
ii
1 du

i.

10. Equivariant cohomology and fixed-point localization

Let T = (S1)n+1 be the (n + 1)-dimensional torus acting on a compact
complex manifold X . We assume further that the fixed points set XT = {x ∈
X | T · x = x} is a submanifold (possibly disconnected) of X.

10.1. Basic definitions. Let ET → BT be the universal T -bundle. The
equivariant cohomology H∗

T (X), of a topological space X equipped with a T -
action, is by definition the cohomology (we work only with coefficients in C)
of (ET × X)/T , where T acts diagonally, i.e., t · (v, x) = (t · v, t · x). Since
the above construction is functorial, every T -equivariant map X → Y induces
a ring homeomorphism H∗

T (Y ) → H∗
T (X). In particular, the contraction map

X → pt turns every H∗
T (X) into a H∗

T (pt)-module.

Lemma 10.1. a) The algebra H∗
T := H∗

T (pt) is naturally isomorphic to the
symmetric algebra S(t∗), where t is the Lie algebra of T.
b) If T ′ ⊂ T then there is a natural map φ : H∗

T → H∗
T ′ . Furthermore, there

is f ∈ H∗
T such that f 6= 0 and φ(f) = 0.

Proof. First, consider the case T = S1. Recall that ES1 = S∞ is the set of
unitary vectors in C∞ and BS1 = CP∞ is the set of all complex lines in
C∞. Notice that if we take the standard representation of S1 on C, then the
corresponding line bundle (ES1×C)/S1 is the tautological line bundle O(−1)
on CP∞, so the standard generator of H∗(CP∞) is c1(O(1)) = c1((ES

1 ×
C∗)/S1). For the genral case, let νi, 0 ≤ i ≤ n be a basis in t∗, dual to the
standard basis of t ∼= Rn+1, i.e., νi(ej) = δij . The set of characters Hom(T,C∗)
is naturally identified with the lattice t∗

Z
= Zν0 + . . . + Zνn : if χ ∈ tZ then

χ(eX) := eχ(X). Using the well known description of the cohomology of CP∞,
it is easy to see that the map:

χ ∈ t∗Z 7→ c1(Lχ) ∈ H2(BT ;Z), Lχ = (ET ×χ C
∗)/T,
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where the torus representation is the one dual to the representation corre-
sponding to χ, induces the isomorphism S(t∗) ∼= H∗(BT ) = H∗

T . This proves
part a).
In other words we may think of H∗

T as the algebra of functions on t. More-
over, if T ′ ⊂ T , then the map BT ′ = ET/T ′ → BT induces a ring homeomor-
phism S(t∗) → S((t′)∗) which is in fact a restriction to the subvector space t′

of t. Part b) of the lemma follows. �

Theorem 10.2 (Borel’s localization). The inclusion map XT → X induces a
ring isomorphism:

H∗
T (X)⊗H∗

T
C(ν0, . . . , νn) ∼= H∗

T (X
T )⊗H∗

T
C(ν0, . . . , νn),

where we used that S(t∗) = H∗
T = C[ν0, . . . , νn].

Proof. We follow the argument from Hsiang’s book. Since X is compact we
can find a covering of T -invariant open subsets Ui, 1 ≤ i ≤ N , V such that V
is a tubular neighborhood of XT , and Ui are tubular neighborhoods of T -orbits
Txi, xi ∈ X. Put U = U1 ∪ . . . ∪ UN .
Step 1: there exists f ∈ H∗

T such that f ·H∗
T (U) = 0. Since Ui is a deformation

retract of Txi, we have

H∗
T (Ui) = H∗

T (Txi) = H∗(ET/Txi) = H∗(BTxi),

where Txi = {t ∈ T | txi = xi}. So we can find fi ∈ H∗
T such that fi|txi = 0, in

particular fi ·H∗
T (Ui) = 0.

Put f = f1 . . . fN . Then f ·H∗
T (Ui) = 0 for all i. Using the functoriality of

the equivariant construction we get that the maps Ui ∩ Uj → Ui → X → pt,
gives us f · H∗

T (Ui ∩ Uj) = 0. The equivaraint version of the Mayer-Vietories
sequence holds, so we have:

. . . - H∗
T (Ui ∩ Uj)

δ
- H∗

T (Ui ∪ Uj)
β
- H∗

T (Ui)⊕H∗
T (Uj)

- . . .

where all the maps are H∗
T -module homeomorphisms. If m ∈ H∗

T (Ui ∪ Uj) is
arbitrary, then we have β(fm) = (fm′, fm′′) = 0, so fm = δ(m′′) and we get
f 2m = fδ(m′′) = δ(fm′′) = 0. In other words, f 2 · H∗

T (Ui ∪ Uj) = 0, for all
1 ≤ i, j ≤ N . So inductively, we get fN ·H∗

T (U) = 0.
Step 2. From the long exact sequence of the pair (X,XT )

. . . - H∗
T (X,X

T ) - H∗
T (X) - H∗

T (X
T ) - H∗

T (X,X
T ) - . . .

we get that it is enough to prove that H∗
T (X,X

T )⊗H∗
T
C(ν0, . . . , νn) = 0, i.e.,

that for every m ∈ H∗
T (X,X

T ) there exists f ∈ H∗
T such that fm = 0.
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In fact we prove that f , chosen as in Step 1 works. We have the following
commutative diagram:

H∗
T ⊗H∗

T (X, V )

H∗
T (X,U)⊗H∗

T (X, V )
α
- H∗

T (X)⊗H∗
T (X, V )

? β
- H∗

T (U)⊗H∗
T (X, V )

H∗
T (X,U ∪ V )

∪
?

- H∗
T (X, V )

∪
?

- H∗
T (U, U ∩ V )

∪
?

Since β(f · 1) = 0, we have f = α(m′′), so fm = α(m′′)∪m = α(m′′ ∪m) = 0,
because m′′ ∪m ∈ H∗

T (X,U ∪ V ) = 0. �

10.2. Equivariant integration. If α ∈ H∗
T (X) then we define

∫
X
α ∈ H∗

T to
be the pushforward of α via the projection of the fibration XT → BT.

Theorem 10.3. Assume that X is a compact complex manifold equipped with
a T -action such that the fixed points set is a submanifold of X. Then the
following formula holds:

∫

X

α =

∫

XT

i∗α

ET (i)
, α ∈ H∗

T (X)⊗Q(ν0, . . . , νn)

where i : XT →֒ X is the embedding of the fixed point locus and ET (i) is the
equivariant Euler class of the corresponding normal bundle.

Proof. We may assume that XT is connected. First notice that ET (i) is in-
vertible in H∗

T (X) ⊗ Q(ν0, . . . , νn). Indeed, let N → XT be the normal bun-
dle. Then each fiber Nx, x ∈ XT is equipped with a T -action and so it
splits into a sum of T -invariant complex lines (Li)x ∼= C, i = 1, 2, . . . , r,
r = codim(XT ). Moreover, if we denote by χi,x ∈ t∗

Z
the characters corre-

sponding to the T -action on (Li)x, then since χi,x depends continuously on x
and t∗

Z
is a discrete set we get that χi,x is independent of x, i.e., the bundle N

splits into a direct sum of T -equivariant line bundles Li. Now it is easy to see
that (ET ×N)/T =

⊕r
i=1(Li ⊠ L−χi

), so ET (i) =
∏r

i=1(c1(Li)− χi).
Put β = i∗α. Then we have i∗i∗β = ET (i)β, i.e.,

i∗i∗
β

ET (i)
= β = i∗α.
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On the other hand, according to the Borel localization theorem, i∗ is an iso-
morphism. Thus α = i∗(β/ET (i)). Let π : XT → BT , then

∫
X
α = π∗(α) =

(π ◦ i)∗(β/ET (i)) =
∫
XT

β/ET (i). �

10.3. The equivariant cohomology of the projective space. Assume
that X = CP n. We equip X with the following T -action:

t · [z0, . . . , zn] = [t0z0, . . . , tnzn], where t = (t0, . . . , tn) ∈ T.

It is not hard to see that XT is the projectivization of the bundle
⊕n

i=0 L−νi .
In particular XT has a tautological bundle O(−1), whose Chern class will be
denoted by −p, and the equivariant cohomology of X is given by:

C[p, ν0, . . . , νn]/(p− ν0) . . . (p− νn).

We can also compute the equivariant intersection pairing. Notice that XT

consists of n + 1 points: pi = [0, . . . , 1, . . . , 0], where 1 is on the i-th place,
0 ≤ i ≤ n. It follows from the definitions that (ET × {pi})/T is the image of
the section of P(

⊕n
i=0 L−νi) → BT , determined by the i-th line. In particular,

the restriction of O(−1) to (ET ×{pi})/T ∼= BT is L−νi and so the restriction
of p ∈ H∗

T (X) to the fixed point pi is νi. Put

φi =
∏

j:j 6=i

p− νi
νj − νi

, 0 ≤ i ≤ n.

In order to compute the equivariant pairing we need also to know the equivari-
ant Euler class of the tangent spaces TpiX. Since xj = zj/zi, j 6= i are local co-
ordinates near pi, we have that the torus T acts on TpiX with characters νj−νi.
This implies that the equivariant Euler class of TpiX is ei :=

∏
j:j 6=i(νi − νj).

Using the equivariant integration formula we get

(φi, φj) :=

∫

X

φiφj =
δij
ei
.

11. Fixed-point localization in Gromov–Witten theory

From now on we assume that X = CP n. The goal in this lecture is to prove
that the equivariant quantum cohomology of CP n is semi-simple and that the
corresponding system of quantum differential equations admits an asymptot-
ical solution, whose ingredients, U and R coincide with certain contributions
to the fixed point localization formula for the genus-0 GW theory of X.

11.1. The combinatorial model for the fixed-points locus. The moduli
space Mg,n(X, d) admits a T -action: (t · f)(x) = t(f(x)), where t ∈ T and f
is a stable map. Moreover, the cotangent lines bundles Li admit a T -action,
so we have the equivariant version of GW theory.
Let us describe the fixed-point locus. Assume that f : (Σ, x1, . . . , xm) → X

is a stable map. Let {Σr} be the set of irreducible components of Σ. Recall
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that a special point on an irreducible component of Σ is called special if it is
a marked point or a nodal point on Σ. The following statements are easy to
verify:

(1) Each special point is mapped to a fixed point.
(2) If (Σr, special points) is stable then f(Σr) coincides with some of the

fixed points.
(3) If (Σr, special points) is not stable, then Σr is a copy of CP 1 with one

or two special points. The map f |Σr
has the following form: let w

be a local coordinate near a special point on Σr and assume that this
special point is mapped to pi. Then the image of Σr is the complex
line passing through pi and some other fixed point pj , and the map is
given by z = wd, where z = zj/zi and d ≥ 1 is some integer.

It follows that to a generic point (Σ, f) in the fixed point locus we can natu-
rally associate the following graph Γ: the edges correspond to non-contracted
components, and the vertices correspond to parts of Σ which are pre-images
of the fixed points. Also, each vertex is labeled, by a genus and an inte-
ger i ∈ {0, 1, . . . , n} which encodes to which fixed point pi the vertex is
mapped. Each flag, i.e., an incident edge-vertex pair is labeled by the charac-
ter χ := (νi − νj)/d, where the vertex is mapped to the fixed point pi and j
and d are the same as above (see the 3-rd property of the fixed point locus).
We will refer to Γ as the combinatorial model of the stable map.
We denote byMΓ the fixed points inMg,n(X, d) whose combinatorial model

is Γ. The stable maps with different combinatorial models belong to different
connected components of the fixed point locus. Notice that for each flag (v, e)
the tangent lines to the edge at the corresponding special point (common for
the vertex and the edge) form a trivial bundle on MΓ whose equivariant Euler
class is χ.

11.2. Materialization.
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